

Hypervelocity star candidates from Gaia DR2 and DR3 proper motions and parallaxes *

Ralf-Dieter Scholz / MWLV+DGGH meeting / 25 April 2024

* update on previous talk from 22 June 2023,
corresponding paper submitted to A&A on 30 October 2023,
referee report received 24 December 2023,
accepted after minor revision 12 February 2024

Structure of the paper

★ = briefly discussed in this talk

HVS = hypervelocity stars HPM = high proper motion 🗮 1. Introduction

*

*

*

- 2. Gaia HVS selection from tangential velocities
 - 2.1. Galactocentric tangential velocities
 - 2.2. Gaia DR2 candidates
- 2.3. Gaia DR3 candidates
- 2.4. Spurious HPMs in crowded regions
- 2.5. Trends from Gaia DR2 to DR3
 - 2.6. DR3 HVS selection effects with magnitude
- 2.7. Comparison with DR3 radial velocities
 - 3. Verification of nearest extreme HVS candidates
 - 3.1. Close next neighbours (NNs)
- 3.2. DR3 astrometric quality parameters
 - 3.3. Local comparison of astrometric parameters
 - 3.4. Global comparison of astrometric parameters
 - 3.5. No good candidates fulfilling all criteria
 - 3.6. Best candidates with relaxes criteria
 - 4. Summary and conclusions

Hypervelocity stars (HVS) = unbound stars in the Galaxy

First theoretical predictions:

Hills (1988):

HVS formation = tidal disruption of tight binaries by supermassive black hole (SMBH)

Yu & Tremaine (2003): three scenarios of HVS ejection by (binary) SMBH in the Galactic centre (GC)

First observations:

Brown et al. (2005, 2006, 2007): B-type HVSs originating from GC (now >50 kpc away)

Hirsch et al. (2005), Edelman et al. (2005), Heber et al. (2008): different types, not all from GC

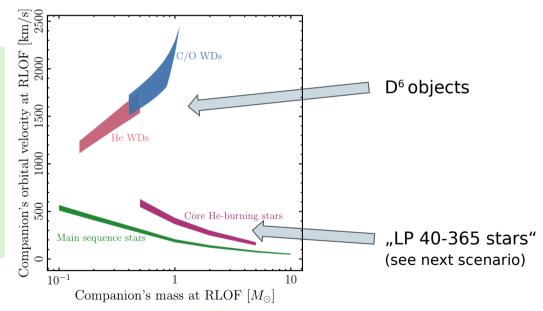
Some authors included these formation scenarios in the definition of HVS

with new discoveries, in particular of exotic WDs (see next 2 slides), alternative scenarios were suggested

How a white dwarf (WD) may become a HVS:

their Fig.1:

for a complete overview see: Igoshev et al. (2022), who list eight (!) scenarios

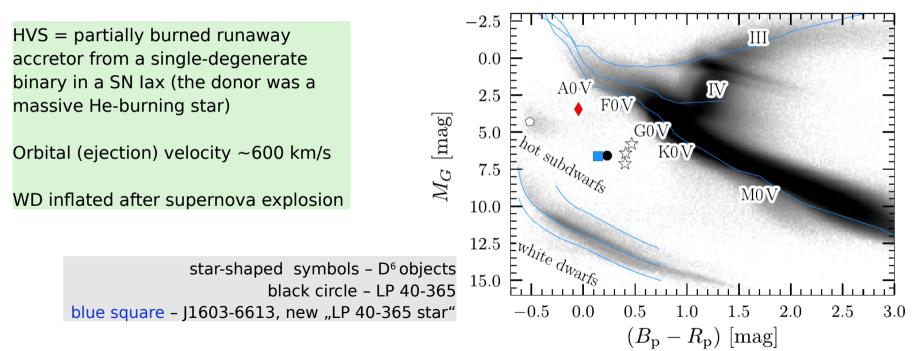

1) Dynamically Driven Double-Degenerate Double Detonation (D⁶) scenario

proposed by Shen et al. (2018) for three exotic WDs found from Gaia DR2 tangential velocities

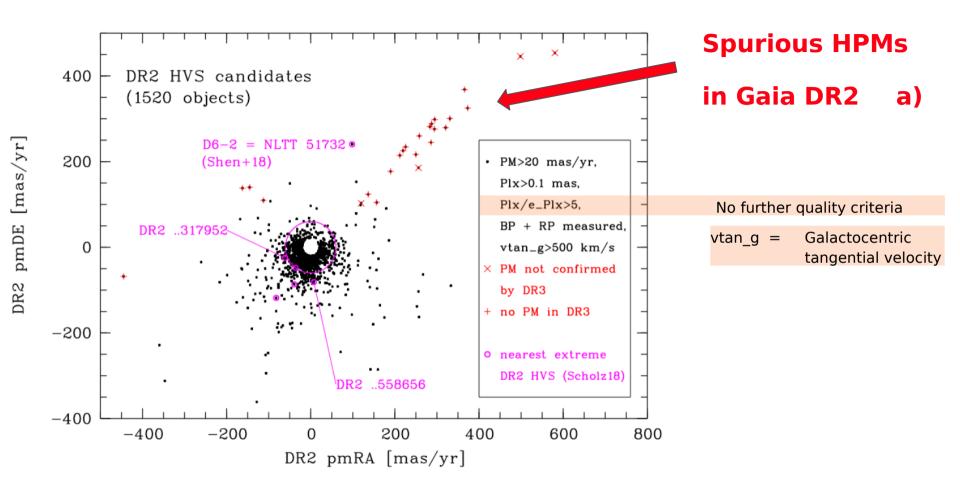
HVS = runaway *donor* of a WD+WD binary after double detonation (first helium, then carbon) of the more massive primary (*accretor*) in a SN Ia

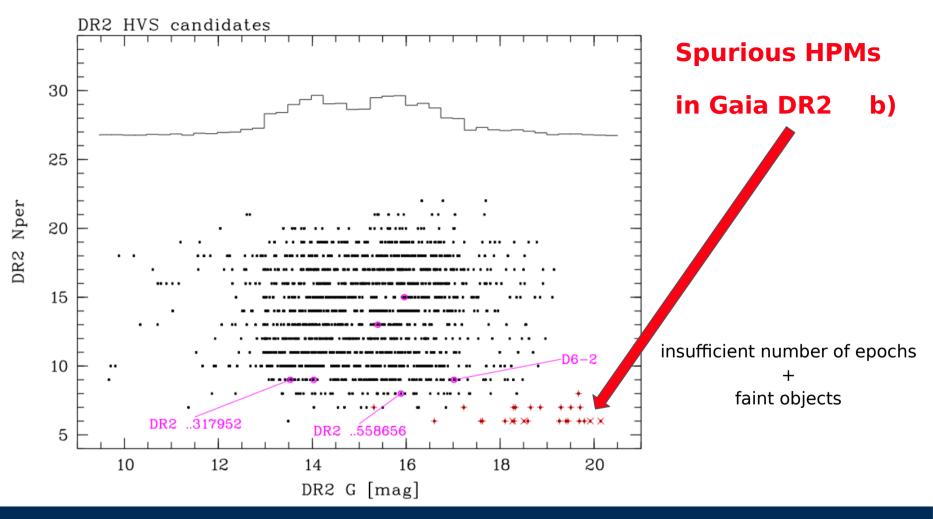
Orbital (ejection) velocity 1000-2500 km/s

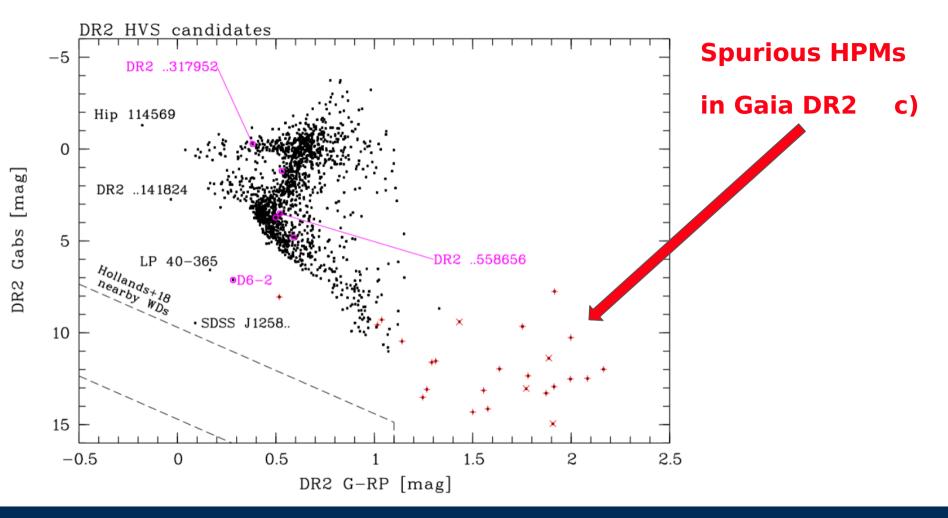
WD inflated possibly by tidal heating

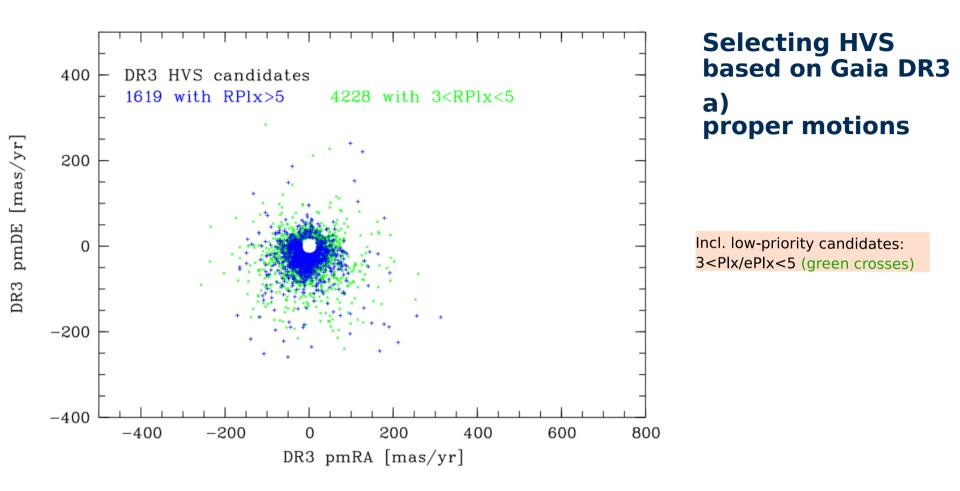

Figure 1. Companion's orbital velocity vs. mass at <u>**RLOF**</u>. The upper boundary of each region corresponds to a $1.1 M_{\odot}$ primary WD; the lower boundary corresponds to a $0.85 M_{\odot}$ primary.

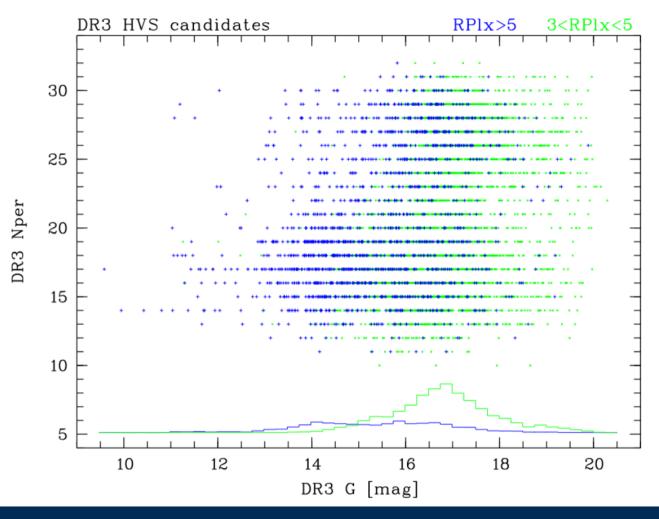
How a white dwarf (WD) may become a HVS:

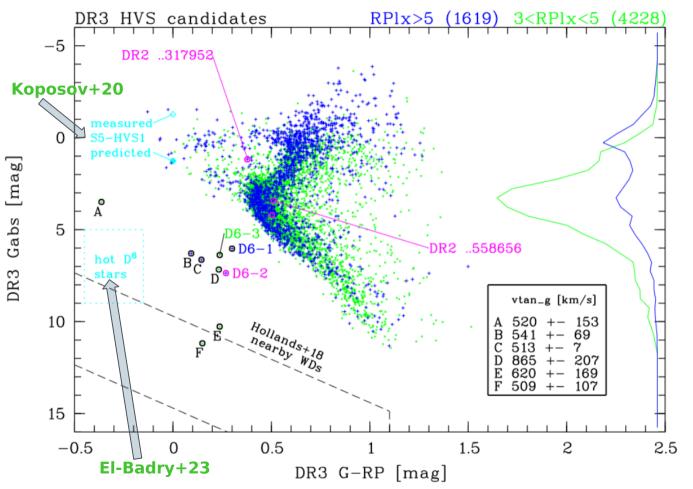

2) survivor of a thermonuclear explosion in a single-degenerate scenario


proposed by Vennes et al. (2017) for LP 40-365; + similar star found by Raddi et al. (2019)


their Fig.1:



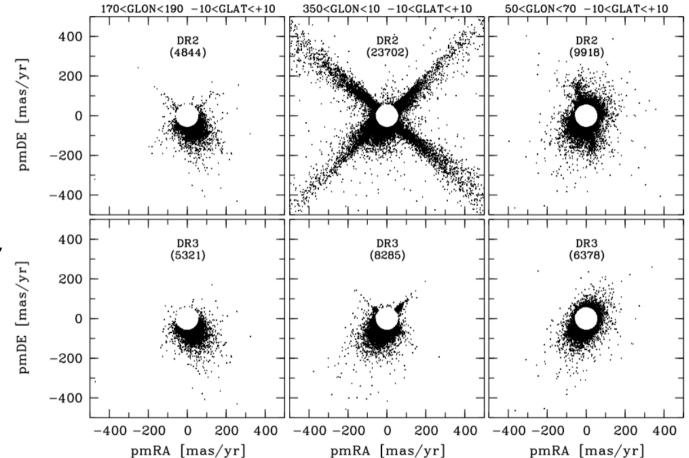

Astrometric selection of the nearest extreme HVS in DR2 Scholz (2018) main quality criterion: additional guality criteria: Plx/ePlx>5UWE sepsi gofAL Nper **Table 1.** Selected Gaia DR2 stars with proper motions $\mu > 60 \text{ mas/yr}$ and Galactocentric tangential velocities $v_{t,q} > 700 \text{ km/s}$ u^1 D^2 $gofAL^3$ vpu^4 Gaia DR2 ID GBP - RP $\mu_{\alpha}\cos\delta$ $\overline{\omega}$ μ_{δ} $v_{t,q}$ [mas/yr] [mas/yr] [km/s][mag] [mag] \max 1798008584396457088^5 2.7 1248 ± 122 17.020.40 1.05 ± 0.11 $+98.39 \pm 0.21$ $+240.35\pm0.17$ 1.131.89 1540013339194597376^{6} 15.961.01 0.59 ± 0.05 -82.03 ± 0.05 -118.29 ± 0.05 0.98-0.4 917 ± 104 0.015 6698855754225352192^{6} 15.39 -86.57 ± 0.05 0.81 0.47 ± 0.05 -38.97 ± 0.07 1.020.00.313 733 ± 99 3841458366321558656 15.890.86 0.33 ± 0.06 $+7.29\pm0.11$ -81.39 ± 0.11 0.920.0-1.08 978 ± 220 14.03 -36.35 ± 0.06 -47.95 ± 0.04 -1.2 855 ± 156 3593446274383096448 0.89 0.27 ± 0.04 0.920.09 6097052289696317952 13.530.60 0.17 ± 0.03 -61.10 ± 0.05 -24.73 ± 0.05 1.020.00.3 1617 ± 347 9 NOTE—¹unit weight error, ²astrometric_excess_noise_sig, ³astrometric_gof_al, ⁴visibility_periods_used, ⁵(= NLTT 51732) classified as hypervelocity white dwarf D6-2 (Shen et al. 2018), ⁶ previously found nearby high-speed star candidate (Bromley et al. 2018) Only three out of six still have >700 km/s in Gaia DR3 ! Galactocentric (will be marked in the following plots) tangential velocity (cf. Hattori et al. 2018; Bromley et al. 2018)

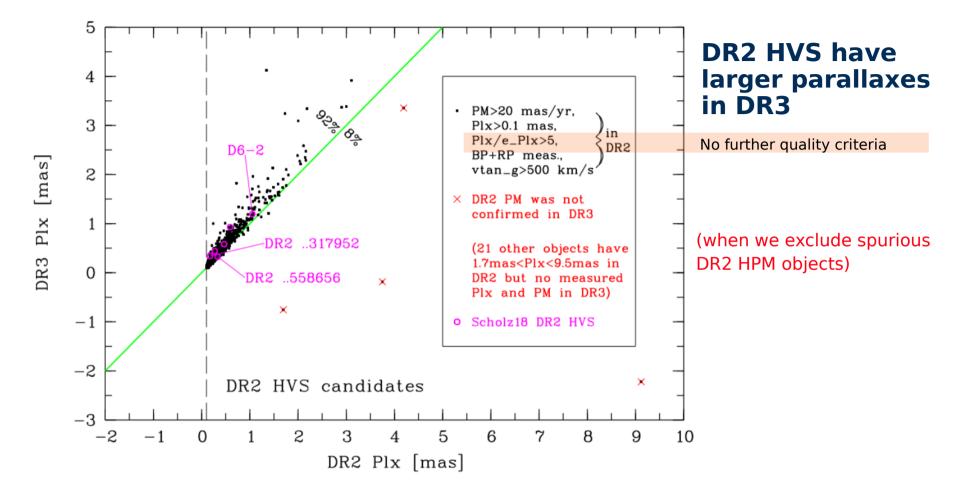


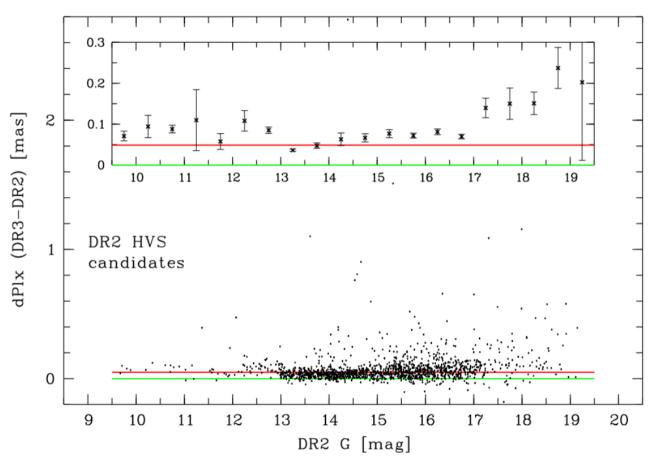
Selecting HVS based on Gaia DR3 b) N visibility periods vs. magnitudes

Incl. low-priority candidates: 3<Plx/ePlx<5 (green crosses)

Selecting HVS based on Gaia DR3 c) CMD


Incl. low-priority candidates: 3<Plx/ePlx<5 (green crosses and green histogram)

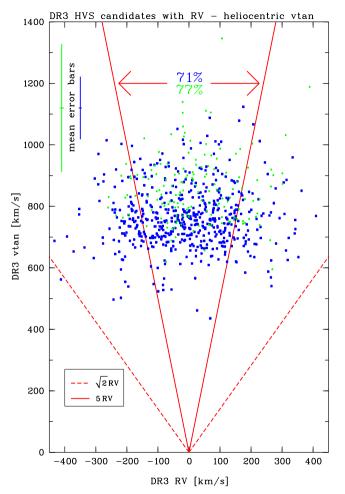

A = known hot subdwarf (Green+86, ..., Geier+20) B = J1603, new "LP 40-365 star" and HVS (Raddi+19) C = LP 40-365 = known HVS (Vennes+17, ..., Lach+22) E, F = new WDs from Gaia (Gentile Fusillo+19) D = new extreme HVS/WD ?


False DR2 and DR3 HPMs in Galactic plane

Shown are all faint (G>18mag) HPM stars (PM>60mas/yr) in Galactic anti-centre (left), Galactic centre (middle), and at GLON=60deg

Much less problems in DR3, but still visible in Galactic centre !

Plx differences DR3-DR2

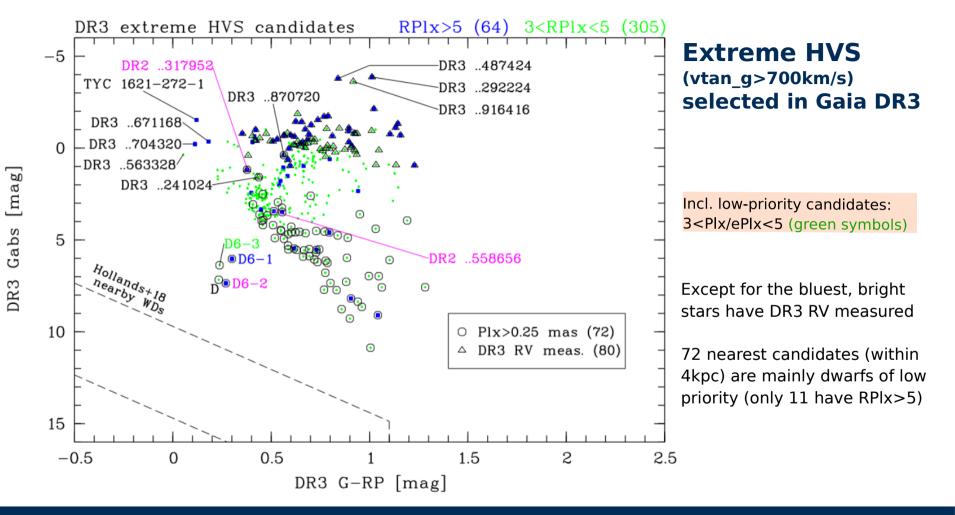

Black crosses with error bars (insert):

mean parallax differences and standard deviations in 0.5mag bins

Red line: median difference Green line: equal parallaxes Heliocentric vtan can be expected to be only slightly higher than the RV, if one assumes for simplicity an isotropic stellar distribution (cf. Fig.1 in **Palladino+14**)

Palladino+14 found large transverse-to-radial velocity ratios in their sample because of large proper motion errors (confirmed by **Ziegerer+15**).

Our sample is likely not affected by proper motion errors but underestimated parallaxes!

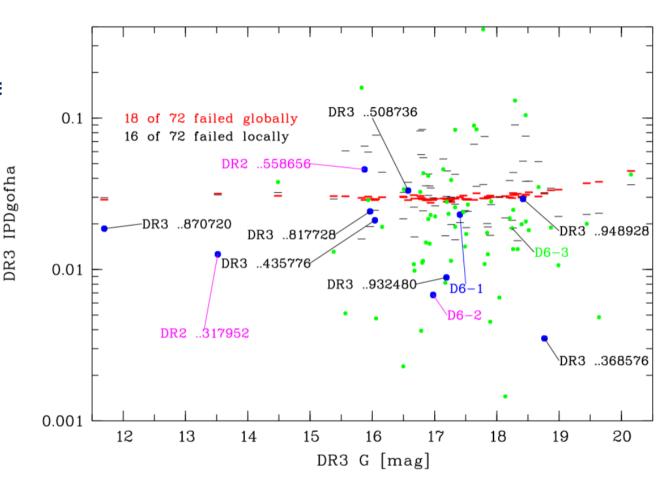


DR3 HVS (vtan_g>500km/s) with RV measurements

Incl. low-priority candidates: 3<Plx/ePlx<5 (green symbols and error bars)

Formal RV errors are 20 x smaller (high-priority HVS) 30 x smaller (low-priority HVS) than tangential velocity errors

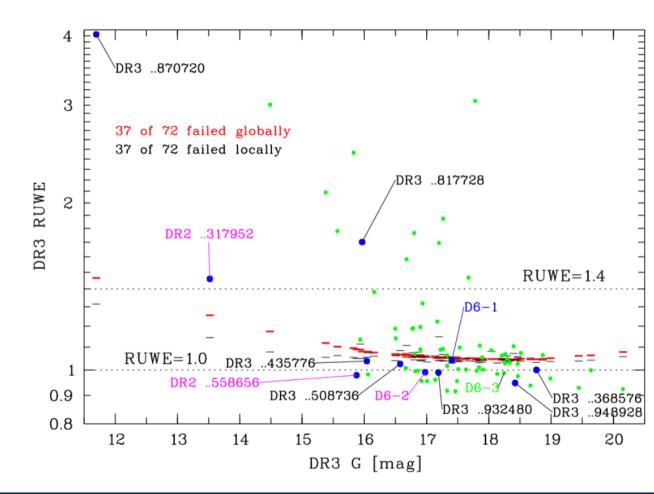
>70% have more than 5 times higher heliocentric vtan than absolute RV



Quantity/ criterion	DR3 column	Critical values (? among 72)	Remark	DR3 quality criteria for 72 nearest extreme HVS
	throughout the paper:			candidates
RPlx	parallax_over_error	>5 (11)	high priority	used as most important criterion
		3-5 (61)	low priority	
	Sect. 3.1			-
close NNs	n/a	(11)	own NN search in DR3	flags and parameters
IPDfmp	ipd_frac_multi_peak	>0 (18)		
IPDfow	ipd_frac_odd_win	>0 (5)		
Solved	astrometric_params_solved	=95 (10)	six-parameter solution	
Dup	duplicated_source	>0 (1)		
	Sects. 3.3: 3.4			-
Nper	visibility_periods_used	<med (22;="" 41)<="" td=""><td>\sim</td><td>\backslash</td></med>	\sim	\backslash
e_Plx	parallax_error	>q75(15;26)	in [mas]	Checked both locally and globally using comparison objects of similar magnitudes
e_pmRA	pmra_error	>q75(15;25)	in [mas/yr]	
e_pmDE	pmdec_error	>q75(15;26)	in [mas/yr]	
gofAL	astrometric_gof_al	>q75(36;36)	can be <0	
epsi	astrometric_excess_noise	>q75(33;28)	≧0; in [mas]	
sepsi	astrometric_excess_noise_sig	>q75(35;29)	≥ 0	
amax	astrometric_sigma5d_max	>q75(16;23)	in [mas]	
IPDg of ha	ipd_gof_harmonic_amplitude	>q75 (16; 18)		
RUWE	ruwe	>q75 (37; 37)		

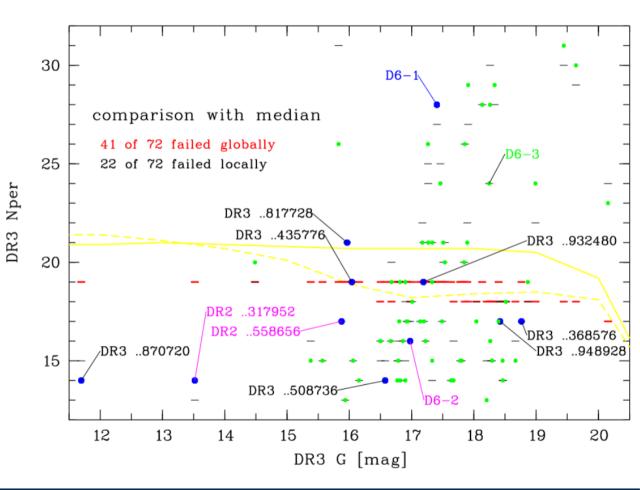
Check of parameter IPDgofha for 72 nearest extreme HVS candidates

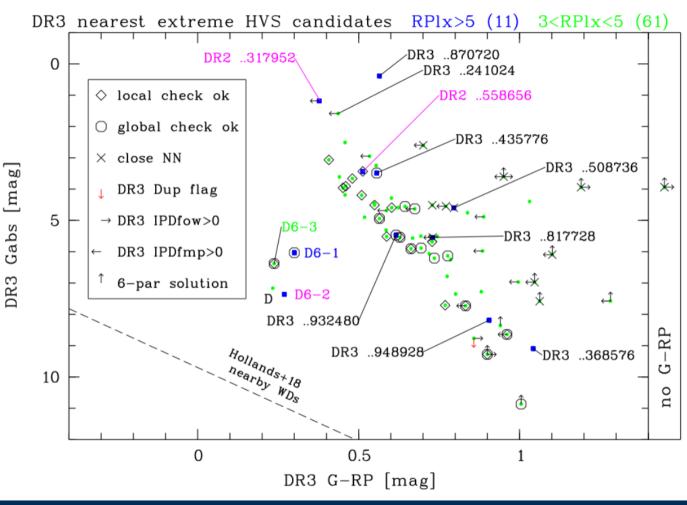
high-priority candidates (Plx/ePlx>5) are labelled: **blue symbols** low-priority candidates (3<Plx/ePlx<5): **green symbols**


Horizontal bars show 0.75 quantiles of objects with similar magnitudes in local (thin black) and **global (thick red)** comparisons

Check of parameter RUWE for 72 nearest extreme HVS candidates

high-priority candidates (Plx/ePlx>5) are labelled: **blue symbols** low-priority candidates (3<Plx/ePlx<5): **green symbols**


Horizontal bars show 0.75 quantiles of objects with similar magnitudes in local (thin black) and **global (thick red)** comparisons



Check of parameter Nper for 72 nearest extreme HVS candidates

high-priority candidates (Plx/ePlx>5) are labelled: **blue symbols** low-priority candidates (3<Plx/ePlx<5): **green symbols**

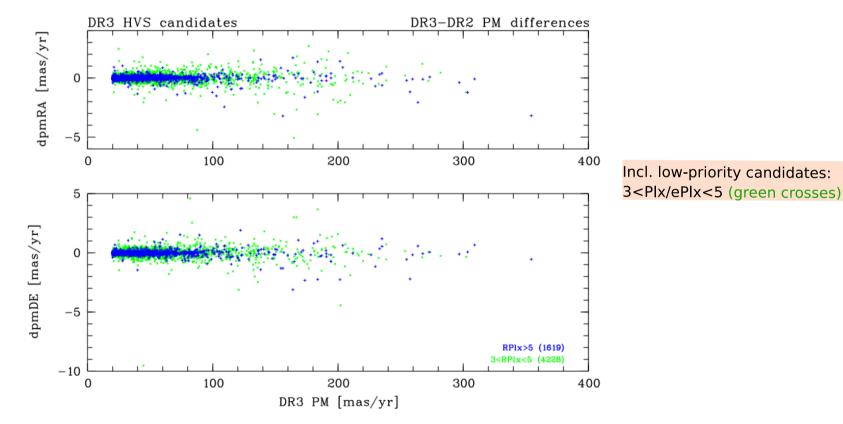
Horizontal bars show median values of objects with similar magnitudes in local (thin black) and global (thick red) comparisons. Yellow solid and dashed lines: mean Nper of all five- and six-parameter solutions (Lindegren+21)

Zoomed CMD of 72 nearest extreme HVS in Gaia DR3

local & global parameter comparison and check of IPD and other (binarity) flags

Incl. low-priority candidates: 3<Plx/ePlx<5 (green symbols)

Most of apparently too red candidates have flags hinting at binarity


None of 11 high-priority candidates passed both global and local quality checks !

Conclusions

- New HVS candidates found and known ones reviewed using Gaia astrometry
- Spurious HPMs in Galactic plane/centre led to false HVS interpretations in Gaia DR2 and are still present in DR3, although to a lesser extent.
- HPMs of DR3 HVS candidates agree with DR2 values and are highly significant
- However, HVS candidates selected from DR2 tend to have larger parallaxes hence lower tangential velocities in DR3
- Most DR3 RVs are much lower than heliocentric tangential velocities, indicating that DR3 HVS candidates are still affected by underestimated parallaxes
- None of 72 extreme (vtan_g>700km/s) and nearby (d<4kpc) DR3 HVS candidates, incl. three D⁶ stars, passed all quality checks of many astrometric parameters+flags

Leibniz-Institut für Astrophysik Potsdam (AIP)

Proper motion differences (DR3-DR2) for HVS candidates selected with DR3

