15.3 Straight-Line Data with Errors in Both Coordinates

If experimental data are subject to measurement error not only in the y_i’s, but also in the x_i’s, then the task of fitting a straight-line model

$$y(x) = a + bx$$ \hspace{1cm} (15.3.1)

is considerably harder. It is straightforward to write down the χ^2 merit function for this case,

$$\chi^2(a,b) = \sum_{i=1}^{N} \frac{(y_i - a - bx_i)^2}{\sigma_{y_i}^2 + b^2 \sigma_{x_i}^2}$$ \hspace{1cm} (15.3.2)

where σ_{x_i} and σ_{y_i} are, respectively, the x and y standard deviations for the ith point. The weighted sum of variances in the denominator of equation (15.3.2) can be understood both as the variance in the direction of the smallest χ^2 between each data point and the line with slope b, and also as the variance of the linear combination $y_i - a - bx_i$ of two random variables x_i and y_i,

$$\text{Var}(y_i - a - bx_i) = \text{Var}(y_i) + b^2 \text{Var}(x_i) = \sigma_{y_i}^2 + b^2 \sigma_{x_i}^2 \equiv 1/w_i$$ \hspace{1cm} (15.3.3)

The sum of the square of N random variables, each normalized by its variance, is thus χ^2-distributed.

We want to minimize equation (15.3.2) with respect to a and b. Unfortunately, the occurrence of b in the denominator of equation (15.3.2) makes the resulting equation for the slope $\partial \chi^2/\partial b = 0$ nonlinear. However, the corresponding condition for the intercept, $\partial \chi^2/\partial a = 0$, is still linear and yields

$$a = \left[\sum_i w_i (y_i - bx_i) \right] / \sum_i w_i$$ \hspace{1cm} (15.3.4)

where the w_i’s are defined by equation (15.3.3). A reasonable strategy, now, is to use the machinery of Chapter 10 (e.g., the routine brent) for minimizing a general one-dimensional function to minimize with respect to b, while using equation (15.3.4) at each stage to ensure that the minimum with respect to b is also minimized with respect to a.

CITED REFERENCES AND FURTHER READING:

15.3 Straight-Line Data with Errors in Both Coordinates

Because of the finite error bars on the \(x_i \)'s, the minimum \(\chi^2 \) as a function of \(b \) will be finite, though usually large, when \(b \) equals infinity (line of infinite slope). The angle \(\theta \equiv \arctan b \) is thus more suitable as a parametrization of slope than \(b \) itself. The value of \(\chi^2 \) will then be periodic in \(\theta \) with period \(\pi \) (not \(2\pi \)). If any data points have very small \(\sigma_y \)'s but moderate or large \(\sigma_x \)'s, then it is also possible to have a maximum in \(\chi^2 \) near zero slope, \(\theta \approx 0 \). In that case, there can sometimes be two \(\chi^2 \) minima, one at positive slope and the other at negative. Only one of these is the correct global minimum. It is therefore important to have a good starting guess for \(b \) (or \(\theta \)). Our strategy, implemented below, is to scale the \(y_i \)'s so as to have variance equal to the \(x_i \)'s, then to do a conventional (as in §15.2) linear fit with weights derived from the (scaled) sum \(\sigma^2_y + \sigma^2_x \). This yields a good starting guess for \(b \) if the data are even plausibly related to a straight-line model.

Finding the standard errors \(\sigma_a \) and \(\sigma_b \) on the parameters \(a \) and \(b \) is more complicated. We will see in §15.6 that, in appropriate circumstances, the standard errors in \(a \) and \(b \) are the respective projections onto the \(a \) and \(b \) axes of the "confidence region boundary" where \(\chi^2 \) takes on a value one greater than its minimum, \(\Delta \chi^2 = 1 \). In the linear case of §15.2, these projections follow from the Taylor series expansion

\[
\Delta \chi^2 \approx \frac{1}{2} \left[\frac{\partial^2 \chi^2}{\partial a^2} (\Delta a)^2 + \frac{\partial^2 \chi^2}{\partial b^2} (\Delta b)^2 \right] + \frac{\partial^2 \chi^2}{\partial a \partial b} \Delta a \Delta b
\]

Because of the present nonlinearity in \(b \), however, analytic formulas for the second derivatives are quite unwieldy; more important, the lowest-order term frequently gives a poor approximation to \(\Delta \chi^2 \). Our strategy is therefore to find the roots of \(\Delta \chi^2 = 1 \) numerically, by adjusting the value of the slope \(b \) away from the minimum. In the program below the general root finder \texttt{zbrent} is used. It may occur that there are no roots at all — for example, if all error bars are so large that all the data points are compatible with each other. It is important, therefore, to make some effort at bracketing a putative root before refining it (cf. §9.1).

Because \(a \) is minimized at each stage of varying \(b \), successful numerical root-finding leads to a value of \(\Delta b \) that minimizes \(\chi^2 \) for the value of \(\Delta a \) that gives \(\Delta \chi^2 = 1 \). This (see Figure 15.3.1) directly gives the tangent projection of the confidence region onto the \(b \) axis, and thus \(\sigma_b \). It does not, however, give the tangent projection of the confidence region onto the \(a \) axis. In the figure, we have found the point labeled \(B \); to find \(\sigma_a \) we need to find the
point A. Geometry to the rescue: To the extent that the confidence region is approximated by an ellipse, then you can prove (see figure) that \(\sigma_a^2 = r^2 + s^2 \). The value of \(s \) is known from having found the point B. The value of \(r \) follows from equations (15.3.2) and (15.3.3) applied at the \(\chi^2 \) minimum (point O in the figure), giving

\[
r^2 = 1 / \sum_i w_i
\]

(15.3.6)

Actually, since \(b \) can go through infinity, this whole procedure makes more sense in \((a, \theta)\) space than in \((a, b)\) space. That is in fact how the following program works. Since it is conventional, however, to return standard errors for \(a \) and \(b \), not \(a \) and \(\theta \), we finally use the relation

\[
\sigma_b = \sigma_\theta / \cos^2 \theta
\]

(15.3.7)

We caution that if \(b \) and its standard error are both large, so that the confidence region actually includes infinite slope, then the standard error \(\sigma_b \) is not very meaningful. The function \(\text{chixy} \) is normally called only by the routine \(\text{fitexy} \). However, if you want, you can yourself explore the confidence region by making repeated calls to \(\text{chixy} \) (whose argument is an angle \(\theta \), not a slope \(b \)), after a single initializing call to \(\text{fitexy} \).

A final caution, repeated from §15.0, is that if the goodness-of-fit is not acceptable (returned probability is too small), the standard errors \(\sigma_a \) and \(\sigma_b \) are surely not believable. In dire circumstances, you might try scaling all your \(x \) and \(y \) error bars by a constant factor until the probability is acceptable (0.5, say), to get more plausible values for \(\sigma_a \) and \(\sigma_b \).

```c
#include <math.h>
#include "nrutil.h"
#define POTN 1.571000
#define BIG 1.0e30
#define PI 3.14159265
#define ACC 1.0e-3
int nn;
Global variables communicate with
float *xx,*yy,*sx,*sy,*ww,aa,offs;
void fitexy(float x[], float y[], int ndat, float sigx[], float sigy[],
float *a, float *b, float *siga, float *sigb, float *chi2, float *q);

Straight-line fit to input data \( x[1..ndat] \) and \( y[1..ndat] \) with errors in both \( x \) and \( y \), the respective standard deviations being the input quantities \( \text{sigx}[1..ndat] \) and \( \text{sigy}[1..ndat] \). Output quantities are \( a \) and \( b \) such that \( y = a + bx \) minimizes \( \chi^2 \), whose value is returned as \( \chi^2 \). The \( \chi^2 \) probability is returned as \( q \), a small value indicating a poor fit (sometimes indicating underestimated errors). Standard errors on \( a \) and \( b \) are returned as \( \text{siga} \) and \( \text{sigb} \). These are not meaningful if either (i) the fit is poor, or (ii) \( b \) is so large that the data are consistent with a vertical (infinite \( b \)) line. If \( \text{siga} \) and \( \text{sigb} \) are returned as \( \text{BIG} \), then the data are consistent with all values of \( b \).
{
  void avevar(float data[], unsigned long n, float *ave, float *var);
  float brent(float ax, float bx, float cx,
              float (*f)(float), float tol, float *xmin);
  float chixy(float bang);
  float fit(float x[], float y[], int ndata, float sig[],
            int mwt, float *a, float *b, float *siga, float *sigb, float *chi2, float *s);
  float gammq(float a, float x);
  void mnbrak(float *ax, float *bx, float *cx,
              float *fa, float *fb, float *fc, float (*func)(float));
  float zbrent(float (*func)(float), float x1, float x2, float tol);
  int j;
  float swap,amx,amm,varx,vary,ang[7],ch[7],scale,bmn,bmx,d1,d2,r2,
  dum1,dum2,dum3,dum4,dum5;
xx=vector(1,ndat);
yy=vector(1,ndat);
```
sx=vector(1,ndat);
sy=vector(1,ndat);
ww=vector(1,ndat);
avevar(x,ndat,&dum1,&varx);
avevar(y,ndat,&dum1,&vary);
scale=sqrt(varx/vary);
nn=ndat;
for (j=1;j<ndat;j++) {
 xx[j]=x[j];
 yy[j]=y[j]*scale;
 sx[j]=sigx[j];
 sy[j]=sigy[j]*scale;
 ww[j]=sqrt(SQR(sx[j])+SQR(sy[j]));
}

Find the x and y variances, and scale the data into the global variables for communication with the function chixy.

Use both x and y weights in first trial fit.

Trial fit for b.

Construct several angles for reference points, and make b an angle.

Bracket the χ^2 minimum and then locate it with brent.

Compute χ^2 probability.

Save the inverse sum of weights at the minimum.

Now, find standard errors for b as points where $\Delta \chi^2 = 1$.

Go through saved values to bracket the desired roots. Note periodicity in slope angles.

Call zbrent to find the roots.

Unscale the answers.

*b=tan(*b)/scale;
free_vector(ww,1,ndat);
free_vector(sy,1,ndat);
free_vector(sx,1,ndat);
free_vector(yy,1,ndat);
free_vector(xx,1,ndat);
#include <math.h>
#include "nrutil.h"
#define BIG 1.0e30

extern int nn;
extern float *xx,*yy,*sx,*sy,*ww,aa,offs;

float chixy(float bang)
Captive function of fitexy, returns the value of ($\chi^2 - offs$) for the slope $b = \tan(bang)$.
Scaled data and offs are communicated via the global variables.
{
 int j;
 float ans,avex=0.0,avey=0.0,sumw=0.0,b;
 b=tan(bang);
 for (j=1;j<=nn;j++)
 {ww[j] = SQR(b*sx[j])+SQR(sy[j]);
 sumw += (ww[j] = (ww[j] < 1.0/BIG ? BIG : 1.0/ww[j]));
 avex += ww[j]*xx[j];
 avey += ww[j]*yy[j];
 }
avex /= sumw;
avey /= sumw;
aa=avey-b*avex;
for (ans = -offs,j=1;j<=nn;j++)
 {ans += ww[j]*SQR(yy[j]-aa-b*xx[j]);
 return ans;
 }

Be aware that the literature on the seemingly straightforward subject of this section
is generally confusing and sometimes plain wrong. Deming's [1] early treatment is sound,
but its reliance on Taylor expansions gives inaccurate error estimates. References [2-4] are
reliable, more recent, general treatments with critiques of earlier work. York [5] and Reed [6]
usefully discuss the simple case of a straight line as treated here, but the latter paper has
some errors, corrected in [7]. All this commotion has attracted the Bayesians [8-10], who
have still different points of view.

CITED REFERENCES AND FURTHER READING:
Deming, W.E. 1943, Statistical Adjustment of Data (New York: Wiley), reprinted 1964 (New York:
Dover). [1]
Reed, B.C. 1989, American Journal of Physics, vol. 57, pp. 642–646; see also vol. 58, p. 189,
and vol. 58, p. 1209. [6]
Zellner, A. 1971, An Introduction to Bayesian Inference in Econometrics (New York: Wiley);
Jaynes, E.T. 1991, in Maximum-Entropy and Bayesian Methods, Proc. 10th Int. Workshop,
15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points \((x_i, y_i)\) to a model that is not just a linear combination of 1 and \(x\) (namely \(a + bx\)), but rather a linear combination of any \(M\) specified functions of \(x\). For example, the functions could be 1, \(x, x^2, \ldots, x^{M-1}\), in which case their general linear combination,

\[
y(x) = a_1 + a_2 x + a_3 x^2 + \cdots + a_M x^{M-1}
\] (15.4.1)

is a polynomial of degree \(M - 1\). Or, the functions could be sines and cosines, in which case their general linear combination is a harmonic series.

The general form of this kind of model is

\[
y(x) = \sum_{k=1}^{M} a_k X_k(x)
\] (15.4.2)

where \(X_1(x), \ldots, X_M(x)\) are arbitrary fixed functions of \(x\), called the basis functions.

Note that the functions \(X_k(x)\) can be wildly nonlinear functions of \(x\). In this discussion “linear” refers only to the model’s dependence on its parameters \(a_k\).

For these linear models we generalize the discussion of the previous section by defining a merit function

\[
\chi^2 = \sum_{i=1}^{N} \left[\frac{y_i - \sum_{k=1}^{M} a_k X_k(x_i)}{\sigma_i} \right]^2
\] (15.4.3)

As before, \(\sigma_i\) is the measurement error (standard deviation) of the \(i\)th data point, presumed to be known. If the measurement errors are not known, they may all (as discussed at the end of §15.1) be set to the constant value \(\sigma = 1\).

Once again, we will pick as best parameters those that minimize \(\chi^2\). There are several different techniques available for finding this minimum. Two are particularly useful, and we will discuss both in this section. To introduce them and elucidate their relationship, we need some notation.

Let \(A\) be a matrix whose \(N \times M\) components are constructed from the \(M\) basis functions evaluated at the \(N\) abscissas \(x_i\), and from the \(N\) measurement errors \(\sigma_i\), by the prescription

\[
A_{ij} = \frac{X_j(x_i)}{\sigma_i}
\] (15.4.4)

The matrix \(A\) is called the design matrix of the fitting problem. Notice that in general \(A\) has more rows than columns, \(N \geq M\), since there must be more data points than model parameters to be solved for. (You can fit a straight line to two points, but not a very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector \(b\) of length \(N\) by

\[
b_i = \frac{y_i}{\sigma_i}
\] (15.4.5)

and denote the \(M\) vector whose components are the parameters to be fitted, \(a_1, \ldots, a_M\), by \(a\).