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The solution in such cases is to use an dternative Clenshaw recurrence that
incorporates c’s in an upward direction. The relevant equations are

Y-2 =Y-1 = 0 (5525)
Y = m[yk_2 - a(ka x)yk_l - Ck],
(k=0,1,...,N—-1) (5.5.26)

f(’l)) = CNFN({IJ) — 6(]\7, x)FN—l(x)yN—l — FN(x)yN_Q (5527)

The rare case where equations (5.5.25)—(5.5.27) should be used instead of
equations (5.5.21) and (5.5.23) can be detected automatically by testing whether
the operands in the first sum in (5.5.23) are opposite in sign and nearly equa in
magnitude. Other than in this specia case, Clenshaw’s recurrence is always stable,
independent of whether the recurrence for the functions F}, is stable in the upward
or downward direction.
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5.6 Quadratic and Cubic Equations

The roots of simple a gebraic equations can be viewed as being functions of the
equations’ coefficients. We are taught these functions in elementary algebra. Yet,
surprisingly many people don’t know the right way to solve a quadratic equation
with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation
az® +br+c=0 (5.6.1)
with real coefficients a, b, ¢, namely

. —b +vb% — 4ac

> (5.6.2)
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and )
C

g 56.3

T Ly V2 — dac (56.3)

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If
either a or ¢ (or both) are smdl, then one of the roots will involve the subtraction
of b from a very nearly equal quantity (the discriminant); you will get that root very
inaccurately. The correct way to compute the roots is

1
a=—3 [b+son(b) Ve — dac] (5.64)
Then the two roots are
sr=%  ad  z,=°C (5.6.5)
a q

If the coefficients a, b, ¢, are complex rather than real, then the above formulas
still hold, except that in equation (5.6.4) the sign of the square root should be
chosen so as to make

Re(b*/b% — 4ac) > 0 (5.6.6)
where Re denotes the real part and asterisk denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that
the inverse hyperbolic functions sinh " and cosh™" are in fact just logarithms of
solutions to such eguations,

sinh™'(z) = In(z+ Va2 +1) (5.6.7)
cosh™'(z) = £In(z + Va2 — 1) (5.6.8)

Equation (5.6.7) is numerically robust for x > 0. For negative z, use the symmetry
sinh ™' (—z) = —sinh™*(z). Equation (5.6.8) is of course valid only for z > 1.

For the cubic equation
2* +ar® +br+c=0 (5.6.9)
with real or complex coefficients a, b, ¢, first compute

2 _ 23_ 2
a 3b and R a 9ab + 27¢

Q=" 54

(5.6.10)

If @ and R arereal (alwaystrue when a, b, c are real) and R? < @3, then the cubic
equation has three real roots. Find them by computing

6 = arccos(R/+/Q3) (5.6.11)
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in terms of which the three roots are

0
T, =—2 Qcos(§>—%
2
2 = —2/Qcos (L2} _ @ (5.6.12)
3 3
0 — 27 a
:—2 S —_ =
T3 Qco&( 3 ) 3

(This equation first appears in Chapter VI of Francois Viéte's treatise “De emen-
datione,” published in 1615!)
Otherwise, compute

1/3
A=— [R +/R2— Q?’} (5.6.13)
where the sign of the square root is chosen to make

Re(R*\/R? — Q3) > 0 (5.6.14)

(asterisk again denoting complex conjugation). If @ and R are both real, equations
(5.6.13)(5.6.14) are equivaent to

1/3
A= —sgn(R) [|R| +VR2 - Q?’} (5.6.15)
where the positive square root is assumed. Next compute
_Q/A  (A#0)
B= {o (aZ0) (5.6.16)
in terms of which the three roots are
w1 =(A+B)— 2 (5.6.17)

(the single real root when a, b, ¢ are real) and

xzz—%(A+B)—%+i?(A—B) 5619
:%:—%(/H—B)—%—i?(A—B)

(in that same case, a complex conjugate pair). Equations (5.6.13)—5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in the
spurious loss of a distinct root.

If you need to solve many cubic eguations with only slightly different coeffi-
cients, it is more efficient to use Newton’s method (§9.4).
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5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function f(x), and now
you want to compute its derivative f'(z). Easy, right? The definition of the
derivative, the limit as h — 0 of

fia) ~ LB TN = (@) h}z — /(@) (5.7.1)

practically suggests the program: Pick a small value h; evaluate f(x + h); you
probably have f(x) aready evaluated, but if not, do it too; finaly apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is amost
guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is fiercely expensive to compute,
when you already have invested in computing f(x), and when, therefore, you want
to get the derivativein no more than a single additional function evauation. In such
asituation, the remaining issue isto choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

P+ h) = f(@) 4 hf' (@) + G025 @) + B @) 4 (872)

whence

flz+h) - f(z)

- =f + %hf” NE (5.7.3)

The roundoff error has various contributions. First there is roundoff error in h:
Suppose, by way of an example, that you are at a point x = 10.3 and you blindly
choose h = 0.0001. Neither z = 10.3 nor =z + A = 10.30001 is a number with
an exact representation in binary; each istherefore represented with some fractional
error characteristic of the machine's floating-point format, e,,,, whosevalue in single
precision may be~ 10~7. Theerror inthe effectivevalue of h, namely the difference
between = + h and x as represented in the machine, istherefore on the order of ¢,,, x,
whichimpliesafractiona error in & of order ~ €,z /h ~ 10~2! By equation (5.7.1)
thisimmediately implies at least the same large fractional error in the derivative.
Wearrive at Lesson 1: Alwayschoose h sothat = 4+ h and z differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=2x+nh

(5.7.4)
h=temp—z

Some optimizing compilers, and some computers whose floating-point chips have
higher internal accuracy than is stored externaly, can foil this trick; if so, it is
usualy enough to declare temp as volatile, or else to call a dummy function
donothing (temp) between the two equations (5.7.4). This forces temp into and
out of addressable memory.
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