538 Chapter 13.  Fourier and Spectral Applications

13.2 Correlation and Autocorrelation Using
the FFT

Corrdation is the close mathematical cousin of convolution. It is in some
ways simpler, however, because the two functionsthat go into a correlation are not
as conceptually distinct as were the data and response functions that entered into
convolution. Rather, in correlation, the functions are represented by different, but
generally similar, data sets. We investigate their “correlation,” by comparing them
both directly superposed, and with one of them shifted left or right.

We have aready defined in eguation (12.0.10) the correlation between two
continuous functions ¢g(¢) and h(t), which is denoted Corr(g, ), and is a function
of lag t. Wewill occasionally show thistime dependence explicitly, with the rather
awkward notation Corr(g, h)(t). The correlation will be large a some vaue of
t if the first function (g) is a close copy of the second (h) but lags it in time by
t, i.e, if the first function is shifted to the right of the second. Likewise, the
correlation will be large for some negative value of ¢ if the first function leads the
second, i.e., is shifted to the left of the second. The relation that holds when the
two functions are interchanged is

Corr(g, h)(t) = Corr(h, g)(—t) (13.2.1)

The discrete correlation of two sampled functions g, and hy, each periodic
with period NV, is defined by

N-1

Corr(g,h); = Z Gtk (13.2.2)
k=0

The discrete correlation theorem says that this discrete correlation of two real
functions g and h is one member of the discrete Fourier transform pair

Corr(g, h); <= GrHy* (13.2.3)

where G, and H, are the discrete Fourier transforms of ¢; and h;, and the asterisk
denotes complex conjugation. Thistheorem makes the same presumptions about the
functions as those encountered for the discrete convolution theorem.

We can compute correlations using the FFT as follows: FFT the two data sets,
multiply one resulting transform by the complex conjugate of the other, and inverse
transform the product. The result (call it ;) will formally be a complex vector
of length N. However, it will turn out to have dl its imaginary parts zero since
the original data sets were both real. The components of r, are the values of the
correlation at different lags, with positive and negative lags stored in the by now
familiar wrap-around order: The correlation at zero lag isin rg, the first component;
the correlation at lag 1 isin r1, the second component; the correlation at lag —1
isin ry_1, the last component; etc.

Just as in the case of convolution we have to consider end effects, since our
data will not, in general, be periodic as intended by the correlation theorem. Here
again, we can use zero padding. If you are interested in the correlation for lags as
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large as + K, then you must append a buffer zone of K zeros at the end of both
input data sets. If you want al possible lagsfrom N data points (not a usua thing),
then you will need to pad the datawith an equal number of zeros; thisisthe extreme
case. So here is the program:

SUBROUTINE correl(datal,data2,n,ans)

INTEGER n,NMAX

REAL datal(n),data2(n)

COMPLEX ans(n)

PARAMETER (NMAX=4096)

USES real ft, twofft
Computes the correlation of two real data sets datal(1:n) and data2(1:n) (includ-
ing any user-supplied zero padding). n MUST be an integer power of two. The answer
is returned as the first n points in ans stored in wrap-around order, i.e., correlations at
increasingly negative lags are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(1) (zero lag) on up to ans(n/2). Note that ans
must be supplied in the calling program with length at least 2*n, since it is also used as
working space. Sign convention of this routine: if datal lags data?2, i.e., is shifted to the
right of it, then ans will show a peak at positive lags.

INTEGER i,no2

COMPLEX fft (NMAX)

Maximum anticipated FFT size.

call twofft(datal,data2,fft,ans,n) Transform both data vectors at once.
no2=n/2 Normalization for inverse FFT.
do 11 i=1,no02+1
ans(i)=fft(i)*conjg(ans(i))/float(no2) Multiply to find FFT of their corre-
enddo 11 lation.
ans (1)=cmplx(real(ans(1)),real(ans(no2+1))) Pack first and last into one element.
call realft(ans,n,-1) Inverse transform gives correlation.
return
END

Asin convlv, it would be better to substitute two callsto realft for the one
cal to twofft, if datal and data2 have very different magnitudes, to minimize
roundoff error.

The discrete autocorrelation of a sampled function g; is just the discrete
correlation of the function with itself. Obvioudy this is dways symmetric with
respect to positive and negative lags. Feel free to use the above routine correl
to obtain autocorrelations, simply calling it with the same data vector in both
arguments. If the inefficiency bothers you, routine realft can, of course, be used
to transform the data vector instead.

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §13-2.

13.3 Optimal (Wiener) Filtering with the FFT

There are a number of other tasks in numerical processing that are routinely
handled with Fourier techniques. One of these is filtering for the removal of noise
froma*“corrupted” signal. The particular situationwe consider isthis; Thereissome
underlying, uncorrupted signal w(t) that we want to measure. The measurement
process is imperfect, however, and what comes out of our measurement deviceisa
corrupted signal ¢(¢). The signa ¢(¢) may be less than perfect in either or both of
two respects. First, the apparatus may not have a perfect “delta-function” response,

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



