5.6 Quadratic and Cubic Equations

The roots of simple algebraic equations can be viewed as being functions of the equations’ coefficients. We are taught these functions in elementary algebra. Yet, surprisingly many people don’t know the right way to solve a quadratic equation with two real roots, or to obtain the roots of a cubic equation.

There are two ways to write the solution of the quadratic equation

\[ax^2 + bx + c = 0 \] \hspace{1cm} (5.6.1)

with real coefficients \(a, b, c\), namely

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] \hspace{1cm} (5.6.2)

and

\[x = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}} \] \hspace{1cm} (5.6.3)

If you use either (5.6.2) or (5.6.3) to get the two roots, you are asking for trouble: If either \(a\) or \(c\) (or both) are small, then one of the roots will involve the subtraction of \(b\) from a very nearly equal quantity (the discriminant); you will get that root very inaccurately. The correct way to compute the roots is

\[q \equiv -\frac{1}{2} \left[b + \text{sgn}(b) \sqrt{b^2 - 4ac} \right] \] \hspace{1cm} (5.6.4)

Then the two roots are

\[x_1 = \frac{q}{a} \quad \text{and} \quad x_2 = \frac{c}{q} \] \hspace{1cm} (5.6.5)

If the coefficients \(a, b, c\), are complex rather than real, then the above formulas still hold, except that in equation (5.6.4) the sign of the square root should be chosen so as to make

\[\text{Re}(b^* \sqrt{b^2 - 4ac}) \geq 0 \] \hspace{1cm} (5.6.6)

where \(\text{Re}\) denotes the real part and \(*\) denotes complex conjugation.

Apropos of quadratic equations, this seems a convenient place to recall that the inverse hyperbolic functions \(\sinh^{-1}\) and \(\cosh^{-1}\) are in fact just logarithms of solutions to such equations,

\[\sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1}) \] \hspace{1cm} (5.6.7)

\[\cosh^{-1}(x) = \pm \ln(x + \sqrt{x^2 - 1}) \] \hspace{1cm} (5.6.8)

Equation (5.6.7) is numerically robust for \(x \geq 0\). For negative \(x\), use the symmetry \(\sinh^{-1}(-x) = -\sinh^{-1}(x)\). Equation (5.6.8) is of course valid only for \(x \geq 1\). Since FORTRAN mysteriously omits the inverse hyperbolic functions from its list of intrinsic functions, equations (5.6.7)–(5.6.8) are sometimes quite essential.
For the cubic equation
\[x^3 + ax^2 + bx + c = 0 \] (5.6.9)

with real or complex coefficients \(a, b, c \), first compute
\[Q = \frac{a^2 - 3b}{9} \quad \text{and} \quad R = \frac{2a^3 - 9ab + 27c}{54} \] (5.6.10)

If \(Q \) and \(R \) are real (always true when \(a, b, c \) are real) and \(R^2 < Q^3 \), then the cubic equation has three real roots. Find them by computing
\[\theta = \arccos\left(\frac{R}{\sqrt[3]{Q}}\right) \] (5.6.11)
in terms of which the three roots are
\[x_1 = -2\sqrt[3]{Q} \cos\left(\frac{\theta}{3}\right) - \frac{a}{3} \]
\[x_2 = -2\sqrt[3]{Q} \cos\left(\frac{\theta + 2\pi}{3}\right) - \frac{a}{3} \] (5.6.12)
\[x_3 = -2\sqrt[3]{Q} \cos\left(\frac{\theta - 2\pi}{3}\right) - \frac{a}{3} \]

(This equation first appears in Chapter VI of François Viète’s treatise “De emendatione,” published in 1615!)

Otherwise, compute
\[A = -\left[R + \sqrt{R^2 - Q^3}\right]^{1/3} \] (5.6.13)

where the sign of the square root is chosen to make
\[\text{Re}(R^* \sqrt{R^2 - Q^3}) \geq 0 \] (5.6.14)

(asterisk again denoting complex conjugation). If \(Q \) and \(R \) are both real, equations (5.6.13)–(5.6.14) are equivalent to
\[A = -\text{sgn}(R) \left[|R| + \sqrt{R^2 - Q^3}\right]^{1/3} \] (5.6.15)

where the positive square root is assumed. Next compute
\[B = \begin{cases} Q/A & (A \neq 0) \\ 0 & (A = 0) \end{cases} \] (5.6.16)
in terms of which the three roots are
\[x_1 = (A + B) - \frac{a}{3} \] (5.6.17)
(the single real root when a, b, c are real) and

$$x_2 = \frac{1}{2}(A + B) - \frac{a}{3} + \frac{i\sqrt{3}}{2}(A - B)$$

$$x_3 = \frac{1}{2}(A + B) - \frac{a}{3} - \frac{i\sqrt{3}}{2}(A - B)$$

(5.6.18)

(in that same case, a complex conjugate pair). Equations (5.6.13)–(5.6.16) are
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman)
to ensure that no choice of branch for the complex cube root can result in
the spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coefficients,
it is more efficient to use Newton’s method (§9.4).

CITED REFERENCES AND FURTHER READING:
Rubber Co.), pp. 130–133.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a function $f(x)$, and now
you want to compute its derivative $f'(x)$. Easy, right? The definition of the
derivative, the limit as $h \to 0$ of

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

practically suggests the program: Pick a small value h; evaluate $f(x+h)$; you
probably have $f(x)$ already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
 guaranteed to produce inaccurate results. Applied properly, it can be the right way
to compute a derivative only when the function f is *fiercely* expensive to compute,
when you already have invested in computing $f(x)$, and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choose h properly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2 f''(x) + \frac{1}{6}h^3 f'''(x) + \cdots$$

(5.7.2)

whence

$$\frac{f(x+h) - f(x)}{h} = f' + \frac{1}{2}hf'' + \cdots$$

(5.7.3)