
306 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

dominated by one of the design parameters, that parameter will be found with
this sampling technique. On the other hand, if there is an important interaction
among different design parameters, then the Latin hypercube gives no particular
advantage. Use with care.

CITED REFERENCES AND FURTHER READING:

Halton, J.H. 1960, Numerische Mathematik, vol. 2, pp. 84–90. [1]

Bratley P., and Fox, B.L. 1988, ACM Transactions on Mathematical Software, vol. 14, pp. 88–
100. [2]

Lambert, J.P. 1988, in Numerical Mathematics – Singapore 1988, ISNM vol. 86, R.P. Agarwal,
Y.M. Chow, and S.J. Wilson, eds. (Basel: Birkhaüser), pp. 273–284.

Niederreiter, H. 1988, in Numerical Integration III, ISNM vol. 85, H. Brass and G. Hämmerlin,
eds. (Basel: Birkhaüser), pp. 157–171.

Sobol’, I.M. 1967, USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 4,
pp. 86–112. [3]

Antonov, I.A., and Saleev, V.M 1979, USSR Computational Mathematics and Mathematical
Physics, vol. 19, no. 1, pp. 252–256. [4]

Dunn, O.J., and Clark, V.A. 1974, Applied Statistics: Analysis of Variance and Regression (New
York, Wiley) [discusses Latin Square].

7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas [1,2], and miser [3]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.6), but are otherwise
quite distinct.

Importance Sampling

The use of importance sampling was already implicit in equations (7.6.6) and (7.6.7).
We now return to it in a slightly more formal way. Suppose that an integrand f can be written
as the product of a function h that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V is∫

f dV =

∫
(f/g) gdV =

∫
hgdV (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral of g. That made gdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more general
interpretation of equation (7.8.1) is that we can integrate f by instead sampling h — not,
however, with uniform probability density dV , but rather with nonuniform density gdV . In
this second interpretation, the first interpretation follows as the special case, where the means
of generating the nonuniform sampling of gdV is via the transformation method, using the
indefinite integral G (see §7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that points xi are chosen within the volume V with a
probability density p satisfying ∫

pdV = 1 (7.8.2)

7.8 Adaptive and Recursive Monte Carlo Methods 307

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

The generalized fundamental theorem is that the integral of any function f is estimated, using
N sample points xi, . . . , xN , by

I ≡
∫
f dV =

∫
f

p
pdV ≈

〈
f

p

〉
±

√
〈f2/p2〉 − 〈f/p〉2

N
(7.8.3)

where angle brackets denote arithmetic means over the N points, exactly as in equation
(7.6.2). As in equation (7.6.1), the “plus-or-minus” term is a one standard deviation error
estimate. Notice that equation (7.6.1) is in fact the special case of equation (7.8.3), with
p = constant = 1/V .

What is the best choice for the sampling density p? Intuitively, we have already
seen that the idea is to make h = f/p as close to constant as possible. We can be more
rigorous by focusing on the numerator inside the square root in equation (7.8.3), which is
the variance per sample point. Both angle brackets are themselves Monte Carlo estimators
of integrals, so we can write

S ≡
〈
f2

p2

〉
−
〈
f

p

〉2

≈
∫
f2

p2
pdV −

[∫
f

p
pdV

]2

=

∫
f2

p
dV −

[∫
f dV

]2

(7.8.4)

We now find the optimal p subject to the constraint equation (7.8.2) by the functional variation

0 =
δ

δp

(∫
f2

p
dV −

[∫
f dV

]2

+ λ

∫
p dV

)
(7.8.5)

with λ a Lagrange multiplier. Note that the middle term does not depend on p. The variation
(which comes inside the integrals) gives 0 = −f2/p2 + λ or

p =
|f |√
λ

=
|f |∫
|f | dV (7.8.6)

where λ has been chosen to enforce the constraint (7.8.2).
If f has one sign in the region of integration, then we get the obvious result that the

optimal choice of p — if one can figure out a practical way of effecting the sampling — is
that it be proportional to |f |. Then the variance is reduced to zero. Not so obvious, but seen
to be true, is the fact that p ∝ |f | is optimal even if f takes on both signs. In that case the
variance per sample point (from equations 7.8.4 and 7.8.6) is

S = Soptimal =

(∫
|f | dV

)2

−
(∫

f dV

)2

(7.8.7)

One curiosity is that one can add a constant to the integrand to make it all of one sign,
since this changes the integral by a known amount, constant× V . Then, the optimal choice
of p always gives zero variance, that is, a perfectly accurate integral! The resolution of
this seeming paradox (already mentioned at the end of §7.6) is that perfect knowledge of p
in equation (7.8.6) requires perfect knowledge of

∫
|f |dV , which is tantamount to already

knowing the integral you are trying to compute!
If your function f takes on a known constant value in most of the volume V , it is

certainly a good idea to add a constant so as to make that value zero. Having done that, the
accuracy attainable by importance sampling depends in practice not on how small equation
(7.8.7) is, but rather on how small is equation (7.8.4) for an implementable p, likely only a
crude approximation to the ideal.

308 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Stratified Sampling

The idea of stratified sampling is quite different from importance sampling. Let us
expand our notation slightly and let 〈〈f〉〉 denote the true average of the function f over
the volume V (namely the integral divided by V), while 〈f〉 denotes as before the simplest
(uniformly sampled) Monte Carlo estimator of that average:

〈〈f〉〉 ≡ 1

V

∫
f dV 〈f〉 ≡ 1

N

∑
i

f(xi) (7.8.8)

The variance of the estimator, Var (〈f〉), which measures the square of the error of the
Monte Carlo integration, is asymptotically related to the variance of the function, Var(f) ≡
〈〈f2〉〉 − 〈〈f〉〉2, by the relation

Var (〈f〉) =
Var (f)

N
(7.8.9)

(compare equation 7.6.1).
Suppose we divide the volume V into two equal, disjoint subvolumes, denoted a and b,

and sample N/2 points in each subvolume. Then another estimator for 〈〈f〉〉, different from
equation (7.8.8), which we denote 〈f〉′, is

〈f〉′ ≡ 1

2

(
〈f〉a + 〈f〉b

)
(7.8.10)

in other words, the mean of the sample averages in the two half-regions. The variance of
estimator (7.8.10) is given by

Var
(
〈f〉′

)
=

1

4

[
Var
(
〈f〉a

)
+ Var

(
〈f〉b

)]
=

1

4

[
Vara (f)

N/2
+

Varb (f)

N/2

]
=

1

2N
[Vara (f) + Varb (f)]

(7.8.11)

Here Vara (f) denotes the variance of f in subregion a, that is, 〈〈f2〉〉a − 〈〈f〉〉2a, and
correspondingly for b.

From the definitions already given, it is not difficult to prove the relation

Var (f) =
1

2
[Vara (f) + Varb (f)] +

1

4
(〈〈f〉〉a − 〈〈f〉〉b)2 (7.8.12)

(In physics, this formula for combining second moments is the “parallel axis theorem.”)
Comparing equations (7.8.9), (7.8.11), and (7.8.12), one sees that the stratified (into two
subvolumes) sampling gives a variance that is never larger than the simple Monte Carlo case
— and smaller whenever the means of the stratified samples, 〈〈f〉〉a and 〈〈f〉〉b, are different.

We have not yet exploited the possibility of sampling the two subvolumes with different
numbers of points, say Na in subregion a and Nb ≡ N −Na in subregion b. Let us do so
now. Then the variance of the estimator is

Var
(
〈f〉′

)
=

1

4

[
Vara (f)

Na
+

Varb (f)

N −Na

]
(7.8.13)

which is minimized (one can easily verify) when

Na
N

=
σa

σa + σb
(7.8.14)

Here we have adopted the shorthand notation σa ≡ [Vara (f)]1/2, and correspondingly for b.
If Na satisfies equation (7.8.14), then equation (7.8.13) reduces to

Var
(
〈f〉′

)
=

(σa + σb)
2

4N
(7.8.15)

7.8 Adaptive and Recursive Monte Carlo Methods 309

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Equation (7.8.15) reduces to equation (7.8.9) if Var (f) = Vara (f) = Varb (f), in which case
stratifying the sample makes no difference.

A standard way to generalize the above result is to consider the volume V divided into
more than two equal subregions. One can readily obtain the result that the optimal allocation of
sample points among the regions is to have the number of points in each region j proportional
to σj (that is, the square root of the variance of the function f in that subregion). In spaces
of high dimensionality (say d >∼ 4) this is not in practice very useful, however. Dividing a
volume into K segments along each dimension implies Kd subvolumes, typically much too
large a number when one contemplates estimating all the corresponding σj ’s.

Mixed Strategies

Importance sampling and stratified sampling seem, at first sight, inconsistent with each
other. The former concentrates sample points where the magnitude of the integrand |f | is
largest, that latter where the variance of f is largest. How can both be right?

The answer is that (like so much else in life) it all depends on what you know and how
well you know it. Importance sampling depends on already knowing some approximation to
your integral, so that you are able to generate random points xi with the desired probability
density p. To the extent that your p is not ideal, you are left with an error that decreases
only as N−1/2. Things are particularly bad if your p is far from ideal in a region where the
integrand f is changing rapidly, since then the sampled function h = f/p will have a large
variance. Importance sampling works by smoothing the values of the sampled function h,
and is effective only to the extent that you succeed in this.

Stratified sampling, by contrast, does not necessarily require that you know anything
about f . Stratified sampling works by smoothing out the fluctuations of the number of points
in subregions, not by smoothing the values of the points. The simplest stratified strategy,
dividing V into N equal subregions and choosing one point randomly in each subregion,
already gives a method whose error decreases asymptotically as N−1, much faster than
N−1/2. (Note that quasi-random numbers, §7.7, are another way of smoothing fluctuations in
the density of points, giving nearly as good a result as the “blind” stratification strategy.)

However, “asymptotically” is an important caveat: For example, if the integrand is
negligible in all but a single subregion, then the resulting one-sample integration is all but
useless. Information, even very crude, allowing importance sampling to put many points in
the active subregion would be much better than blind stratified sampling.

Stratified sampling really comes into its own if you have some way of estimating the
variances, so that you can put unequal numbers of points in different subregions, according to
(7.8.14) or its generalizations, and if you can find a way of dividing a region into a practical
number of subregions (notably not Kd with large dimension d), while yet significantly
reducing the variance of the function in each subregion compared to its variance in the full
volume. Doing this requires a lot of knowledge about f , though different knowledge from
what is required for importance sampling.

In practice, importance sampling and stratified sampling are not incompatible. In many,
if not most, cases of interest, the integrand f is small everywhere in V except for a small
fractional volume of “active regions.” In these regions the magnitude of |f | and the standard
deviation σ = [Var (f)]1/2 are comparable in size, so both techniques will give about the
same concentration of points. In more sophisticated implementations, it is also possible to
“nest” the two techniques, so that (e.g.) importance sampling on a crude grid is followed
by stratification within each grid cell.

Adaptive Monte Carlo: VEGAS

The VEGAS algorithm, invented by Peter Lepage [1,2], is widely used for multidimen-
sional integrals that occur in elementary particle physics. VEGAS is primarily based on
importance sampling, but it also does some stratified sampling if the dimension d is small
enough to avoidKd explosion (specifically, if (K/2)d < N/2, with N the number of sample

310 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

points). The basic technique for importance sampling in VEGAS is to construct, adaptively,
a multidimensional weight function g that is separable,

p ∝ g(x, y, z, . . .) = gx(x)gy(y)gz(z) . . . (7.8.16)

Such a function avoids the Kd explosion in two ways: (i) It can be stored in the computer
as d separate one-dimensional functions, each defined by K tabulated values, say — so that
K × d replacesKd. (ii) It can be sampled as a probability density by consecutively sampling
the d one-dimensional functions to obtain coordinate vector components (x, y, z, . . .).

The optimal separable weight function can be shown to be [1]

gx(x) ∝
[∫

dy

∫
dz . . .

f2(x, y, z, . . .)

gy(y)gz(z) . . .

]1/2

(7.8.17)

(and correspondingly for y, z, . . .). Notice that this reduces to g ∝ |f | (7.8.6) in one
dimension. Equation (7.8.17) immediately suggests VEGAS’ adaptive strategy: Given a
set of g-functions (initially all constant, say), one samples the function f , accumulating not
only the overall estimator of the integral, but also the Kd estimators (K subdivisions of the
independent variable in each of d dimensions) of the right-hand side of equation (7.8.17).
These then determine improved g functions for the next iteration.

When the integrand f is concentrated in one, or at most a few, regions in d-space, then
the weight function g’s quickly become large at coordinate values that are the projections of
these regions onto the coordinate axes. The accuracy of the Monte Carlo integration is then
enormously enhanced over what simple Monte Carlo would give.

The weakness of VEGAS is the obvious one: To the extent that the projection of the
function f onto individual coordinate directions is uniform, VEGAS gives no concentration
of sample points in those dimensions. The worst case for VEGAS, e.g., is an integrand that
is concentrated close to a body diagonal line, e.g., one from (0, 0, 0, . . .) to (1, 1, 1, . . .).
Since this geometry is completely nonseparable, VEGAS can give no advantage at all. More
generally, VEGAS may not do well when the integrand is concentrated in one-dimensional
(or higher) curved trajectories (or hypersurfaces), unless these happen to be oriented close
to the coordinate directions.

The routine vegas that follows is essentially Lepage’s standard version, minimally
modified to conform to our conventions. (We thank Lepage for permission to reproduce the
program here.) For consistency with other versions of the VEGAS algorithm in circulation,
we have preserved original variable names. The parameter NDMX is what we have called K ,
the maximum number of increments along each axis; MXDIM is the maximum value of d; some
other parameters are explained in the comments.

The vegas routine performs m = itmx statistically independent evaluations of the
desired integral, each with N = ncall function evaluations. While statistically independent,
these iterations do assist each other, since each one is used to refine the sampling grid for
the next one. The results of all iterations are combined into a single best answer, and its
estimated error, by the relations

Ibest =

m∑
i=1

Ii
σ2
i

/
m∑
i=1

1

σ2
i

σbest =

(
m∑
i=1

1

σ2
i

)−1/2

(7.8.18)

Also returned is the quantity

χ2/m ≡ 1

m− 1

m∑
i=1

(Ii − Ibest)
2

σ2
i

(7.8.19)

If this is significantly larger than 1, then the results of the iterations are statistically
inconsistent, and the answers are suspect.

The input flag init can be used to advantage. One might have a call with init=0,
ncall=1000, itmx=5 immediately followed by a call with init=1, ncall=100000, itmx=1.
The effect would be to develop a sampling grid over 5 iterations of a small number of samples,
then to do a single high accuracy integration on the optimized grid.

7.8 Adaptive and Recursive Monte Carlo Methods 311

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Note that the user-supplied integrand function, fxn, has an argument wgt in addition
to the expected evaluation point x. In most applications you ignore wgt inside the function.
Occasionally, however, you may want to integrate some additional function or functions along
with the principal function f . The integral of any such function g can be estimated by

Ig =
∑
i

wig(x) (7.8.20)

where the wi’s and x’s are the arguments wgt and x, respectively. It is straightforward to
accumulate this sum inside your function fxn, and to pass the answer back to your main
program via a common block. Of course, g(x) had better resemble the principal function f
to some degree, since the sampling will be optimized for f .

SUBROUTINE vegas(region,ndim,fxn,init,ncall,itmx,nprn,
* tgral,sd,chi2a)

INTEGER init,itmx,ncall,ndim,nprn,NDMX,MXDIM
REAL tgral,chi2a,sd,region(2*ndim),fxn,ALPH,TINY
PARAMETER (ALPH=1.5,NDMX=50,MXDIM=10,TINY=1.e-30)
EXTERNAL fxn

C USES fxn,ran2,rebin
Performs Monte Carlo integration of a user-supplied ndim-dimensional function fxn over
a rectangular volume specified by region, a 2×ndim vector consisting of ndim “lower
left” coordinates of the region followed by ndim “upper right” coordinates. The integration
consists of itmx iterations, each with approximately ncall calls to the function. After each
iteration the grid is refined; more than 5 or 10 iterations are rarely useful. The input flag
init signals whether this call is a new start, or a subsequent call for additional iterations
(see comments below). The input flag nprn (normally 0) controls the amount of diagnostic
output. Returned answers are tgral (the best estimate of the integral), sd (its standard
deviation), and chi2a (χ2 per degree of freedom, an indicator of whether consistent results
are being obtained). See text for further details.

INTEGER i,idum,it,j,k,mds,nd,ndo,ng,npg,ia(MXDIM),kg(MXDIM)
REAL calls,dv2g,dxg,f,f2,f2b,fb,rc,ti,tsi,wgt,xjac,xn,xnd,xo,

* d(NDMX,MXDIM),di(NDMX,MXDIM),dt(MXDIM),dx(MXDIM),
* r(NDMX),x(MXDIM),xi(NDMX,MXDIM),xin(NDMX),ran2

DOUBLE PRECISION schi,si,swgt
COMMON /ranno/ idum Means for random number initialization.
SAVE Best make everything static, allowing restarts.
if(init.le.0)then Normal entry. Enter here on a cold start.

mds=1 Change to mds=0 to disable stratified sampling, i.e., use im-
portance sampling only.ndo=1

do 11 j=1,ndim
xi(1,j)=1.

enddo 11

endif
if (init.le.1)then Enter here to inherit the grid from a previous call, but not its

answers.si=0.d0
swgt=0.d0
schi=0.d0

endif
if (init.le.2)then Enter here to inherit the previous grid and its answers.

nd=NDMX
ng=1
if(mds.ne.0)then Set up for stratification.

ng=(ncall/2.+0.25)**(1./ndim)
mds=1
if((2*ng-NDMX).ge.0)then

mds=-1
npg=ng/NDMX+1
nd=ng/npg
ng=npg*nd

endif
endif
k=ng**ndim

312 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

npg=max(ncall/k,2)
calls=float(npg)*float(k)
dxg=1./ng
dv2g=(calls*dxg**ndim)**2/npg/npg/(npg-1.)
xnd=nd
dxg=dxg*xnd
xjac=1./calls
do 12 j=1,ndim

dx(j)=region(j+ndim)-region(j)
xjac=xjac*dx(j)

enddo 12

if(nd.ne.ndo)then Do binning if necessary.
do 13 i=1,max(nd,ndo)

r(i)=1.
enddo 13

do 14 j=1,ndim
call rebin(ndo/xnd,nd,r,xin,xi(1,j))

enddo 14

ndo=nd
endif
if(nprn.ge.0) write(*,200) ndim,calls,it,itmx,nprn,

* ALPH,mds,nd,(j,region(j),j,region(j+ndim),j=1,ndim)
endif
do 28 it=1,itmx

Main iteration loop. Can enter here (init ≥ 3) to do an additional itmx iterations with all
other parameters unchanged.
ti=0.
tsi=0.
do 16 j=1,ndim

kg(j)=1
do 15 i=1,nd

d(i,j)=0.
di(i,j)=0.

enddo 15

enddo 16

10 continue
fb=0.
f2b=0.
do 19 k=1,npg

wgt=xjac
do 17 j=1,ndim

xn=(kg(j)-ran2(idum))*dxg+1.
ia(j)=max(min(int(xn),NDMX),1)
if(ia(j).gt.1)then

xo=xi(ia(j),j)-xi(ia(j)-1,j)
rc=xi(ia(j)-1,j)+(xn-ia(j))*xo

else
xo=xi(ia(j),j)
rc=(xn-ia(j))*xo

endif
x(j)=region(j)+rc*dx(j)
wgt=wgt*xo*xnd

enddo 17

f=wgt*fxn(x,wgt)
f2=f*f
fb=fb+f
f2b=f2b+f2
do 18 j=1,ndim

di(ia(j),j)=di(ia(j),j)+f
if(mds.ge.0) d(ia(j),j)=d(ia(j),j)+f2

enddo 18

enddo 19

f2b=sqrt(f2b*npg)
f2b=(f2b-fb)*(f2b+fb)

7.8 Adaptive and Recursive Monte Carlo Methods 313

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

if (f2b.le.0.) f2b=TINY
ti=ti+fb
tsi=tsi+f2b
if(mds.lt.0)then Use stratified sampling.

do 21 j=1,ndim
d(ia(j),j)=d(ia(j),j)+f2b

enddo 21

endif
do 22 k=ndim,1,-1

kg(k)=mod(kg(k),ng)+1
if(kg(k).ne.1) goto 10

enddo 22

tsi=tsi*dv2g Compute final results for this iteration.
wgt=1./tsi
si=si+dble(wgt)*dble(ti)
schi=schi+dble(wgt)*dble(ti)**2
swgt=swgt+dble(wgt)
tgral=si/swgt
chi2a=max((schi-si*tgral)/(it-.99d0),0.d0)
sd=sqrt(1./swgt)
tsi=sqrt(tsi)
if(nprn.ge.0)then

write(*,201) it,ti,tsi,tgral,sd,chi2a
if(nprn.ne.0)then

do 23 j=1,ndim
write(*,202) j,(xi(i,j),di(i,j),

* i=1+nprn/2,nd,nprn)
enddo 23

endif
endif
do 25 j=1,ndim Refine the grid. Consult references to understand the subtlety

of this procedure. The refinement is damped, to avoid
rapid, destabilizing changes, and also compressed in range
by the exponent ALPH.

xo=d(1,j)
xn=d(2,j)
d(1,j)=(xo+xn)/2.
dt(j)=d(1,j)
do 24 i=2,nd-1

rc=xo+xn
xo=xn
xn=d(i+1,j)
d(i,j)=(rc+xn)/3.
dt(j)=dt(j)+d(i,j)

enddo 24

d(nd,j)=(xo+xn)/2.
dt(j)=dt(j)+d(nd,j)

enddo 25

do 27 j=1,ndim
rc=0.
do 26 i=1,nd

if(d(i,j).lt.TINY) d(i,j)=TINY
r(i)=((1.-d(i,j)/dt(j))/(log(dt(j))-log(d(i,j))))**ALPH
rc=rc+r(i)

enddo 26

call rebin(rc/xnd,nd,r,xin,xi(1,j))
enddo 27

enddo 28

return
200 FORMAT(/’ input parameters for vegas: ndim=’,i3,’ ncall=’,f8.0
* /28x,’ it=’,i5,’ itmx=’,i5
* /28x,’ nprn=’,i3,’ alph=’,f5.2/28x,’ mds=’,i3,’ nd=’,i4
* /(30x,’xl(’,i2,’)= ’,g11.4,’ xu(’,i2,’)= ’,g11.4))
201 FORMAT(/’ iteration no.’,I3,’: ’,’integral =’,g14.7,’+/- ’,g9.2
* /’ all iterations: integral =’,g14.7,’+/- ’,g9.2,
* ’ chi**2/it’’n =’,g9.2)
202 FORMAT(/’ data for axis ’,I2/’ X delta i ’,

314 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

* ’ x delta i ’,’ x delta i ’,
* /(1x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4,5x,f7.5,1x,g11.4))

END

SUBROUTINE rebin(rc,nd,r,xin,xi)
INTEGER nd
REAL rc,r(*),xi(*),xin(*)

Utility routine used by vegas, to rebin a vector of densities xi into new bins defined by
a vector r.

INTEGER i,k
REAL dr,xn,xo
k=0
xo=0.
dr=0.
do 11 i=1,nd-1

1 if(rc.gt.dr)then
k=k+1
dr=dr+r(k)

goto 1
endif
if(k.gt.1) xo=xi(k-1)
xn=xi(k)
dr=dr-rc
xin(i)=xn-(xn-xo)*dr/r(k)

enddo 11

do 12 i=1,nd-1
xi(i)=xin(i)

enddo 12

xi(nd)=1.
return
END

Recursive Stratified Sampling

The problem with stratified sampling, we have seen, is that it may not avoid the Kd

explosion inherent in the obvious, Cartesian, tesselation of a d-dimensional volume. A
technique called recursive stratified sampling [3] attempts to do this by successive bisections
of a volume, not along all d dimensions, but rather along only one dimension at a time.
The starting points are equations (7.8.10) and (7.8.13), applied to bisections of successively
smaller subregions.

Suppose that we have a quota of N evaluations of the function f , and want to evaluate
〈f〉′ in the rectangular parallelepiped region R = (xa, xb). (We denote such a region by the
two coordinate vectors of its diagonally opposite corners.) First, we allocate a fraction p of
N towards exploring the variance of f in R: We sample pN function values uniformly in
R and accumulate the sums that will give the d different pairs of variances corresponding to
the d different coordinate directions along which R can be bisected. In other words, in pN
samples, we estimate Var (f) in each of the regions resulting from a possible bisection of R,

Rai ≡(xa, xb −
1

2
ei · (xb − xa)ei)

Rbi ≡(xa +
1

2
ei · (xb − xa)ei, xb)

(7.8.21)

Here ei is the unit vector in the ith coordinate direction, i = 1, 2, . . . , d.
Second, we inspect the variances to find the most favorable dimension i to bisect. By

equation (7.8.15), we could, for example, choose that i for which the sum of the square roots
of the variance estimators in regionsRai andRbi is minimized. (Actually, as we will explain,
we do something slightly different.)

7.8 Adaptive and Recursive Monte Carlo Methods 315

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Third, we allocate the remaining (1 − p)N function evaluations between the regions
Rai andRbi. If we used equation (7.8.15) to choose i, we should do this allocation according
to equation (7.8.14).

We now have two parallelepipeds each with its own allocation of function evaluations
for estimating the mean of f . Our “RSS” algorithm now shows itself to be recursive: To
evaluate the mean in each region, we go back to the sentence beginning “First,...” in the
paragraph above equation (7.8.21). (Of course, when the allocation of points to a region falls
below some number, we resort to simple Monte Carlo rather than continue with the recursion.)

Finally, we combine the means, and also estimated variances of the two subvolumes,
using equation (7.8.10) and the first line of equation (7.8.11).

This completes the RSS algorithm in its simplest form. Before we describe some
additional tricks under the general rubric of “implementation details,” we need to return
briefly to equations (7.8.13)–(7.8.15) and derive the equations that we actually use instead of
these. The right-hand side of equation (7.8.13) applies the familiar scaling law of equation
(7.8.9) twice, once to a and again to b. This would be correct if the estimates 〈f〉a and 〈f〉b
were each made by simple Monte Carlo, with uniformly random sample points. However, the
two estimates of the mean are in fact made recursively. Thus, there is no reason to expect
equation (7.8.9) to hold. Rather, we might substitute for equation (7.8.13) the relation,

Var
(
〈f〉′

)
=

1

4

[
Vara (f)

Nα
a

+
Varb (f)

(N −Na)α

]
(7.8.22)

where α is an unknown constant ≥ 1 (the case of equality corresponding to simple Monte
Carlo). In that case, a short calculation shows that Var

(
〈f〉′

)
is minimized when

Na
N

=
Vara (f)1/(1+α)

Vara (f)1/(1+α) + Varb (f)1/(1+α)
(7.8.23)

and that its minimum value is

Var
(
〈f〉′

)
∝
[
Vara (f)1/(1+α) + Varb (f)1/(1+α)

]1+α

(7.8.24)

Equations (7.8.22)–(7.8.24) reduce to equations (7.8.13)–(7.8.15) when α = 1. Numerical
experiments to find a self-consistent value for α find that α ≈ 2. That is, when equation
(7.8.23) with α = 2 is used recursively to allocate sample opportunities, the observed variance
of the RSS algorithm goes approximately as N−2, while any other value of α in equation
(7.8.23) gives a poorer fall-off. (The sensitivity to α is, however, not very great; it is not
known whether α = 2 is an analytically justifiable result, or only a useful heuristic.)

Turn now to the routine, miser, which implements the RSS method. A bit of FORTRAN
wizardry is its implementation of the required recursion. This is done by dimensioning an
array stack, and a shorter “stack frame” stf; the latter has components that are equivalenced
to variables that need to be preserved during the recursion, including a flag indicating where
program control should return. A recursive call then consists of copying the stack frame
onto the stack, incrementing the stack pointer jstack, and transferring control. A recursive
return analogously pops the stack and transfers control to the saved location. Stack growth
in miser is only logarithmic in N , since at each bifurcation one of the subvolumes can
be processed immediately.

The principal difference between miser’s implementation and the algorithm as described
thus far lies in how the variances on the right-hand side of equation (7.8.23) are estimated.
We find empirically that it is somewhat more robust to use the square of the difference of
maximum and minimum sampled function values, instead of the genuine second moment
of the samples. This estimator is of course increasingly biased with increasing sample
size; however, equation (7.8.23) uses it only to compare two subvolumes (a and b) having
approximately equal numbers of samples. The “max minus min” estimator proves its worth
when the preliminary sampling yields only a single point, or small number of points, in active
regions of the integrand. In many realistic cases, these are indicators of nearby regions of
even greater importance, and it is useful to let them attract the greater sampling weight that
“max minus min” provides.

316 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

A second modification embodied in the code is the introduction of a “dithering parameter,”
dith, whose nonzero value causes subvolumes to be divided not exactly down the middle, but
rather into fractions 0.5±dith, with the sign of the± randomly chosen by a built-in random
number routine. Normally dith can be set to zero. However, there is a large advantage in
taking dith to be nonzero if some special symmetry of the integrand puts the active region
exactly at the midpoint of the region, or at the center of some power-of-two submultiple of
the region. One wants to avoid the extreme case of the active region being evenly divided
into 2d abutting corners of a d-dimensional space. A typical nonzero value of dith, on
those occasions when it is useful, might be 0.1. Of course, when the dithering parameter
is nonzero, we must take the differing sizes of the subvolumes into account; the code does
this through the variable fracl.

One final feature in the code deserves mention. The RSS algorithm uses a single set
of sample points to evaluate equation (7.8.23) in all d directions. At bottom levels of the
recursion, the number of sample points can be quite small. Although rare, it can happen that
in one direction all the samples are in one half of the volume; in that case, that direction
is ignored as a candidate for bifurcation. Even more rare is the possibility that all of the
samples are in one half of the volume in all directions. In this case, a random direction is
chosen. If this happens too often in your application, then you should increase MNPT (see
line if (jb.eq.0). . . in the code).

Note that miser, as given, returns as ave an estimate of the average function value
〈〈f〉〉, not the integral of f over the region. The routine vegas, adopting the other convention,
returns as tgral the integral. The two conventions are of course trivially related, by equation
(7.8.8), since the volume V of the rectangular region is known.

SUBROUTINE miser(func,region,ndim,npts,dith,ave,var)
INTEGER ndim,npts,MNPT,MNBS,MAXD,NSTACK
REAL ave,dith,var,region(2*ndim),func,TINY,BIG,PFAC
PARAMETER (MNPT=15,MNBS=4*MNPT,MAXD=10,TINY=1.e-30,BIG=1.e30,

* NSTACK=1000,PFAC=0.1)
EXTERNAL func

C USES func,ranpt
Monte Carlo samples a user-supplied ndim-dimensional function func in a rectangular
volume specified by region, a 2×ndim vector consisting of ndim “lower-left” coordinates
of the region followed by ndim “upper-right” coordinates. The function is sampled a total
of npts times, at locations determined by the method of recursive stratified sampling. The
mean value of the function in the region is returned as ave; an estimate of the statistical
uncertainty of ave (square of standard deviation) is returned as var. The input parameter
dith should normally be set to zero, but can be set to (e.g.) 0.1 if func’s active region
falls on the boundary of a power-of-two subdivision of region.
Parameters: PFAC is the fraction of remaining function evaluations used at each stage to
explore the variance of func. At least MNPT function evaluations are performed in any
terminal subregion; a subregion is further bisected only if at least MNBS function evaluations
are available. MAXD is the largest value of ndim. NSTACK is the total size of the stack.

INTEGER iran,j,jb,jstack,n,naddr,np,npre,nptl,nptr,nptt
REAL avel,fracl,fval,rgl,rgm,rgr,s,sigl,siglb,sigr,sigrb,sum,

* sumb,summ,summ2,varl,fmaxl(MAXD),fmaxr(MAXD),fminl(MAXD),
* fminr(MAXD),pt(MAXD),rmid(MAXD),stack(NSTACK),stf(9)

EQUIVALENCE (stf(1),avel),(stf(2),varl),(stf(3),jb),
* (stf(4),nptr),(stf(5),naddr),(stf(6),rgl),(stf(7),rgm),
* (stf(8),rgr),(stf(9),fracl)

SAVE iran
DATA iran /0/
jstack=0
nptt=npts

1 continue
if (nptt.lt.MNBS) then Too few points to bisect; do straight Monte Carlo.

np=abs(nptt)
summ=0.
summ2=0.
do 11 n=1,np

call ranpt(pt,region,ndim)

7.8 Adaptive and Recursive Monte Carlo Methods 317

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

fval=func(pt)
summ=summ+fval
summ2=summ2+fval**2

enddo 11

ave=summ/np
var=max(TINY,(summ2-summ**2/np)/np**2)

else Do the preliminary (uniform) sampling.
npre=max(int(nptt*PFAC),MNPT)
do 12 j=1,ndim Initialize the left and right bounds for each dimension.

iran=mod(iran*2661+36979,175000)
s=sign(dith,float(iran-87500))
rmid(j)=(0.5+s)*region(j)+(0.5-s)*region(j+ndim)
fminl(j)=BIG
fminr(j)=BIG
fmaxl(j)=-BIG
fmaxr(j)=-BIG

enddo 12

do 14 n=1,npre Loop over the points in the sample.
call ranpt(pt,region,ndim)
fval=func(pt)
do 13 j=1,ndim Find the left and right bounds for each dimension.

if(pt(j).le.rmid(j))then
fminl(j)=min(fminl(j),fval)
fmaxl(j)=max(fmaxl(j),fval)

else
fminr(j)=min(fminr(j),fval)
fmaxr(j)=max(fmaxr(j),fval)

endif
enddo 13

enddo 14

sumb=BIG Choose which dimension jb to bisect.
jb=0
siglb=1.
sigrb=1.
do 15 j=1,ndim

if(fmaxl(j).gt.fminl(j).and.fmaxr(j).gt.fminr(j))then
sigl=max(TINY,(fmaxl(j)-fminl(j))**(2./3.))
sigr=max(TINY,(fmaxr(j)-fminr(j))**(2./3.))
sum=sigl+sigr Equation (7.8.24), see text.
if (sum.le.sumb) then

sumb=sum
jb=j
siglb=sigl
sigrb=sigr

endif
endif

enddo 15

if (jb.eq.0) jb=1+(ndim*iran)/175000 MNPT may be too small.
rgl=region(jb) Apportion the remaining points between left and right.
rgm=rmid(jb)
rgr=region(jb+ndim)
fracl=abs((rgm-rgl)/(rgr-rgl))
nptl=MNPT+(nptt-npre-2*MNPT)

* *fracl*siglb/(fracl*siglb+(1.-fracl)*sigrb) Equation (7.8.23).
nptr=nptt-npre-nptl
region(jb+ndim)=rgm Set region to left.
naddr=1 Push the stack.
do 16 j=1,9

stack(jstack+j)=stf(j)
enddo 16

jstack=jstack+9
nptt=nptl
goto 1 Dispatch recursive call; will return back here eventually.

10 continue

318 Chapter 7. Random Numbers

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

avel=ave Save left estimates on stack variable.
varl=var
region(jb)=rgm Set region to right.
region(jb+ndim)=rgr
naddr=2 Push the stack.
do 17 j=1,9

stack(jstack+j)=stf(j)
enddo 17

jstack=jstack+9
nptt=nptr
goto 1 Dispatch recursive call; will return back here eventually.

20 continue
region(jb)=rgl Restore region to original value (so that we don’t

need to include it on the stack).ave=fracl*avel+(1.-fracl)*ave
var=fracl**2*varl+(1.-fracl)**2*var Combine left and right regions by equa-

tion (7.8.11) (1st line).endif
if (jstack.ne.0) then Pop the stack.

jstack=jstack-9
do 18 j=1,9

stf(j)=stack(jstack+j)
enddo 18

goto (10,20),naddr
pause ’miser: never get here’

endif
return
END

The miser routine calls a short subroutineranpt to get a random point within a specified
d-dimensional region. The following version of ranpt makes consecutive calls to a uniform
random number generator and does the obvious scaling. One can easily modify ranpt to
generate its points via the quasi-random routine sobseq (§7.7). We find that miser with
sobseq can be considerably more accurate than miser with uniform random deviates. Since
the use of RSS and the use of quasi-random numbers are completely separable, however, we
have not made the code given here dependent on sobseq. A similar remark might be made
regarding importance sampling, which could in principle be combined with RSS. (One could
in principle combine vegas and miser, although the programming would be intricate.)

SUBROUTINE ranpt(pt,region,n)
INTEGER n,idum
REAL pt(n),region(2*n)
COMMON /ranno/ idum
SAVE /ranno/

C USES ran1
Returns a uniformly random point pt in an n-dimensional rectangular region. Used by
miser; calls ran1 for uniform deviates. Your main program should initialize idum, through
the COMMON block /ranno/, to a negative seed integer.

INTEGER j
REAL ran1
do 11 j=1,n

pt(j)=region(j)+(region(j+n)-region(j))*ran1(idum)
enddo 11

return
END

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M. and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).

Kalos, M.H. and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-Verlag).

7.8 Adaptive and Recursive Monte Carlo Methods 319

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

Lepage, G.P. 1978, Journal of Computational Physics, vol. 27, pp. 192–203. [1]

Lepage, G.P. 1980, “VEGAS: An Adaptive Multidimensional Integration Program,” Publication
CLNS-80/447, Cornell University. [2]

Press, W.H., and Farrar, G.R. 1990, Computers in Physics, vol. 4, pp. 190–195. [3]

