For small N one does better to use an algorithm whose operation count goes as a higher, i.e., poorer, power of N, if the constant in front is small enough. For $N < 20$, roughly, the method of straight insertion (§8.1) is concise and fast enough. We include it with some trepidation: It is an N^2 algorithm, whose potential for misuse (by using it for too large an N) is great. The resultant waste of computer time is so awesome, that we were tempted not to include any N^2 routine at all. We will draw the line, however, at the inefficient N^2 algorithm, beloved of elementary computer science texts, called bubble sort. If you know what bubble sort is, wipe it from your mind; if you don’t know, make a point of never finding out!

For $N < 50$, roughly, Shell’s method (§8.1), only slightly more complicated to program than straight insertion, is competitive with the more complicated Quicksort on many machines. This method goes as $N^{3/2}$ in the worst case, but is usually faster.

See references [1,2] for further information on the subject of sorting, and for detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N^2 routine, and should be used only for small N, say < 20.

The technique is exactly the one used by experienced card players to sort their cards: Pick out the second card and put it in order with respect to the first; then pick out the third card and insert it into the sequence among the first two; and so on until the last card has been picked out and inserted.

```fortran
SUBROUTINE piksrt(n,arr)
INTEGER n
REAL arr(n)
Sorts an array arr(1:n) into ascending numerical order, by straight insertion. n is input; arr is replaced on output by its sorted rearrangement.
INTEGER i,j
REAL a
DO j=2,n
   a=arr(j)
   DO i=j-1,1,-1
      IF(arr(i).le.a) GO TO 10
      arr(i+1)=arr(i)
   END DO
   i=0
   10 arr(i+1)=a
END DO
RETURN
END
```

What if you also want to rearrange an array brr at the same time as you sort arr? Simply move an element of brr whenever you move an element of arr:
SUBROUTINE piksr2(n,arr,brr)
INTEGER n
REAL arr(n),brr(n)

Sorts an array arr(1:n) into ascending numerical order, by straight insertion, while making
the corresponding rearrangement of the array brr(1:n).

INTEGER i,j
REAL a,b
do: j=2,n Pick out each element in turn.
a=arr(j)
b=brr(j)
do: i=j-1,1,-1 Look for the place to insert it.
 if(arr(i).le.a)goto 10
 arr(i+1)=arr(i)
brr(i+1)=brr(i)
endo: i=0
10 arr(i+1)=a Insert it.
brr(i+1)=b
endo: return
END

For the case of rearranging a larger number of arrays by sorting on one of
them, see §8.4.

Shell’s Method

This is actually a variant on straight insertion, but a very powerful variant indeed.
The rough idea, e.g., for the case of sorting 16 numbers $n_1 \ldots n_{16}$, is this: First sort,
by straight insertion, each of the 8 groups of 2 $(n_1,n_9), (n_2,n_{10}), \ldots (n_8,n_{16})$. Next,
sort each of the 4 groups of 4 $(n_1,n_5,n_9,n_{13}), \ldots (n_4,n_8,n_{12},n_{16})$. Next
sort the 2 groups of 8 records, beginning with $(n_1,n_3,n_5,n_7,n_{11},n_{13},n_{15})$. Finally,
sort the whole list of 16 numbers.

Of course, only the last sort is necessary for putting the numbers into order. So
what is the purpose of the previous partial sorts? The answer is that the previous
sorts allow numbers efficiently to filter up or down to positions close to their final
resting places. Therefore, the straight insertion passes on the final sort rarely have to
go past more than a “few” elements before finding the right place. (Think of sorting
a hand of cards that are already almost in order.)

The spacings between the numbers sorted on each pass through the data (8,4,2,1
in the above example) are called the increments, and a Shell sort is sometimes
called a diminishing increment sort. There has been a lot of research into how to
choose a good set of increments, but the optimum choice is not known. The set
$\ldots, 8, 4, 2, 1$ is in fact not a good choice, especially for N a power of 2. A much
better choice is the sequence

\[(3^k - 1)/2, \ldots, 40, 13, 4, 1\] (8.1.1)

which can be generated by the recurrence

\[i_1 = 1, \quad i_{k+1} = 3i_k + 1, \quad k = 1, 2, \ldots\] (8.1.2)

It can be shown (see [1]) that for this sequence of increments the number of operations
required in all is of order $N^{3/2}$ for the worst possible ordering of the original data.
For “randomly” ordered data, the operations count goes approximately as $N^{1.25}$, at least for $N < 60000$. For $N > 50$, however, Quicksort is generally faster. The program follows:

SUBROUTINE shell(n,a)
INTEGER n
REAL a(n)
 Sorts an array a(1:n) into ascending numerical order by Shell’s method (diminishing increment sort). n is input; a is replaced on output by its sorted rearrangement.
INTEGER i,j,inc
REAL v

inc=1
1 inc=3*inc+1
 if(inc.le.n)goto 1
2 continue
 Loop over the partial sorts.
 inc=inc/3
 do 11 i=inc+1,n
 v=a(i)
 j=i
3 if(a(j-inc).gt.v)then
 a(j)=a(j-inc)
 j=j-inc
 if(j.le.inc)goto 4
 goto 3
 endif
4 a(j)=v
 enddo
 if(inc.gt.1)goto 2
return
END

CITED REFERENCES AND FURTHER READING:

8.2 Quicksort

Quicksort is, on most machines, on average, for large N, the fastest known sorting algorithm. It is a “partition-exchange” sorting method: A “partitioning element” a is selected from the array. Then by pairwise exchanges of elements, the original array is partitioned into two subarrays. At the end of a round of partitioning, the element a is in its final place in the array. All elements in the left subarray are $\leq a$, while all elements in the right subarray are $\geq a$. The process is then repeated on the left and right subarrays independently, and so on.

The partitioning process is carried out by selecting some element, say the leftmost, as the partitioning element a. Scan a pointer up the array until you find an element $> a$, and then scan another pointer down from the end of the array until you find an element $< a$. These two elements are clearly out of place for the final partitioned array, so exchange them. Continue this process until the pointers