fl=func(x1)
fh=func(x2)
if((fl.gt.0..and.fh.lt.0.).or.(fl.lt.0..and.fh.gt.0.))then
 xl=x1
 xh=x2
 zriddr=UNUSED
enddo :: j=1,MAXIT
 xm=0.5*(xl+xh)
 fm=func(xm)
 s=sqrt(fm**2-fl*fh)
 if(s.eq.0.)return
 xnew=xm+(xm-xl)*(sign(1.,fl-fh)*fm/s)
else if (sign(fm,fnew).ne.fm) then
 xl=xm
 fl=fm
 xh=zriddr
 fh=fnew
else if(sign(fh,fnew).ne.fh) then
 xh=zriddr
 fh=fnew
else if(sign(fl,fnew).ne.fl) then
 xl=zriddr
 fl=fnew
else
 pause 'never get here in zriddr'
endif
 if(abs(xh-xl).le.xacc) return
 zriddr=xnew
 fnew=func(zriddr)
 if (fnew.eq.0.) return
 if(sign(fm,fnew).ne.fm) then
 xl=xm
 fl=fm
 xh=zriddr
 fh=fnew
 else if(sign(fh,fnew).ne.fh) then
 xh=zriddr
 fh=fnew
 else if(sign(fl,fnew).ne.fl) then
 xl=zriddr
 fl=fnew
 else
 pause 'zriddr exceed maximum iterations'
endif
 if(abs(xh-xl).le.xacc) return
 zriddr=x1
else if (fl.eq.0.) then
 zriddr=x1
else if (fh.eq.0.) then
 zriddr=x2
else
 pause 'root must be bracketed in zriddr'
endif
return
END

CITED REFERENCES AND FURTHER READING:

9.3 Van Wijngaarden–Dekker–Brent Method

While secant and false position formally converge faster than bisection, one finds in practice pathological functions for which bisection converges more rapidly.
These can be choppy, discontinuous functions, or even smooth functions if the second derivative changes sharply near the root. Bisection always halves the interval, while secant and false position can sometimes spend many cycles slowly pulling distant bounds closer to a root. Ridders’ method does a much better job, but it too can sometimes be fooled. Is there a way to combine superlinear convergence with the sureness of bisection?

Yes. We can keep track of whether a supposedly superlinear method is actually converging the way it is supposed to, and, if it is not, we can intersperse bisection steps so as to guarantee at least linear convergence. This kind of super-strategy requires attention to bookkeeping detail, and also careful consideration of how roundoff errors can affect the guiding strategy. Also, we must be able to determine reliably when convergence has been achieved.

An excellent algorithm that pays close attention to these matters was developed in the 1960s by van Wijngaarden, Dekker, and others at the Mathematical Center in Amsterdam, and later improved by Brent[1]. For brevity, we refer to the final form of the algorithm as Brent’s method. The method is guaranteed (by Brent) to converge, so long as the function can be evaluated within the initial interval known to contain a root.

Brent’s method combines root bracketing, bisection, and inverse quadratic interpolation to converge from the neighborhood of a zero crossing. While the false position and secant methods assume approximately linear behavior between two prior root estimates, inverse quadratic interpolation uses three prior points to fit an inverse quadratic function (x as a quadratic function of y) whose value at $y = 0$ is taken as the next estimate of the root x. Of course one must have contingency plans for what to do if the root falls outside of the brackets. Brent’s method takes care of all that. If the three point pairs are $[a, f(a)], [b, f(b)], [c, f(c)]$ then the interpolation formula (cf. equation 3.1.1) is

$$x = \frac{[y - f(a)][y - f(b)]c}{[f(c) - f(a)][f(c) - f(b)]} + \frac{[y - f(b)][y - f(c)]a}{[f(c) - f(a)][f(c) - f(b)]} + \frac{[y - f(c)][y - f(a)]b}{[f(c) - f(a)][f(c) - f(b)]} \tag{9.3.1}$$

Setting y to zero gives a result for the next root estimate, which can be written as

$$x = b + \frac{P}{Q} \tag{9.3.2}$$

where, in terms of

$$R \equiv \frac{f(b)}{f(c)}, \quad S \equiv \frac{f(b)}{f(a)}, \quad T \equiv \frac{f(a)}{f(c)} \tag{9.3.3}$$

we have

$$P = S[T(R - T)(c - b) - (1 - R)(b - a)] \tag{9.3.4}$$

$$Q = (T - 1)(R - 1)(S - 1) \tag{9.3.5}$$

In practice b is the current best estimate of the root and P/Q ought to be a “small” correction. Quadratic methods work well only when the function behaves smoothly;
they run the serious risk of giving very bad estimates of the next root or causing machine failure by an inappropriate division by a very small number \((Q \approx 0)\).

Brent’s method guards against this problem by maintaining brackets on the root and checking where the interpolation would land before carrying out the division. When the correction \(P/Q\) would not land within the bounds, or when the bounds are not collapsing rapidly enough, the algorithm takes a bisection step. Thus, Brent’s method combines the sureness of bisection with the speed of a higher-order method when appropriate. We recommend it as the method of choice for general one-dimensional root finding where a function’s values only (and not its derivative or functional form) are available.

```fortran
FUNCTION zbrent(func,x1,x2,tol)
INTEGER ITMAX
REAL zbrent,tol,x1,x2,func,EPS
EXTERNAL func
PARAMETER (ITMAX=100,EPS=3.e-8)

Using Brent’s method, find the root of a function `func` known to lie between `x1` and `x2`. The root, returned as `zbrent`, will be refined until its accuracy is `tol`.

Parameters: Maximum allowed number of iterations, and machine floating-point precision.

```
9.4 Newton-Raphson Method Using Derivative

Perhaps the most celebrated of all one-dimensional root-finding routines is Newton's method, also called the Newton-Raphson method. This method is distinguished from the methods of previous sections by the fact that it requires the evaluation of both the function \(f(x) \), and the derivative \(f'(x) \), at arbitrary points \(x \). The Newton-Raphson formula consists geometrically of extending the tangent line at a current point \(x \), until it crosses zero, then setting the next guess \(x_{i+1} \) to the abscissa of that zero-crossing (see Figure 9.4.1). Algebraically, the method derives from the familiar Taylor series expansion of a function in the neighborhood of a point,

\[
 f(x + \delta) \approx f(x) + f'(x)\delta + \frac{f''(x)}{2}\delta^2 + \ldots. \tag{9.4.1}
\]

For small enough values of \(\delta \), and for well-behaved functions, the terms beyond linear are unimportant, hence \(f(x + \delta) = 0 \) implies

\[
 \delta = -\frac{f(x)}{f'(x)}. \tag{9.4.2}
\]