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Abstract. I present a new version of the NIRVANA code capable for the simulation of multi-scale self-gravitational
magnetohydrodynamics problems in three space dimensions employing the technique of adaptive mesh refinement.
The building blocks of NIRVANA are (i) a fully conservative, divergence-free Godunov-type central scheme for
the solution of the equations of magnetohydrodynamics, (ii) a block-structured mesh refinement algorithm which
automatically adds and removes elementary grid blocks whenever necessary to achieve adequate resolution and,
(iii) an adaptive mesh Poisson solver based on multigrid philosophy which incorporates the so-called elliptic
matching condition to keep the gradient of the gravitational potential continous at fine/coarse mesh interfaces.
In this paper I give an overview of the basic numerical ideas standing behind NIRVANA and apply the code to
the problem of protostellar core collaps and fragmentation.
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1. Introduction

From analysis of observational data there comes strong
evidence that stars are preferably formed as a binary sys-
tem or even higher-order multiple systems (Reipurth &
Zinnecker 1993, Bodenheimer et al. 2000, Tokovinin &
Smekhov 2002, Patience et al. 2002). From theory, the
most plausible explanation for this is fragmentation of
an unstable cloud core into smaller condensations (pre-
stellar cores) during gravitational collapse. Fragmentation
is usually studied through numerical simulations since the
underlying equations are too complex to solve by ana-
lytical techniques. However, on several reasons, numeri-
cal investigations also require highly sophisticated codes.
First, the problem of fragmentation is intrinsically three-
dimensional. Second, it involves a large dynamic range in
length scales which must be well resolved numerically to
follow the collapse and to obtain useful solutions at all.
Codes based on fixed resolution schemes are ruled out be-
cause these would need tremendous computer resources
not available today. Moreover, such methods would be
very inefficient since regions which actually need no high
numerical resolution are yet fully resolved. Third, there
are different physical effects involved described by differ-
ent types of mathematical equations requiring different
numerical methods. As an example, the conservation laws
of ideal hydrodynamics are of hyperbolic type whereas the
Poisson equation for the gravitational potential is elliptic.
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An issue of particular interest in the fragmentation
process is the likely role of magnetic fields. This is be-
cause there is striking evidence that dense cloud cores
are partly supported – besides internal turbulent motions
and ordered rotation – by magnetic fields against collapse
(Crutcher 1999, Caselli et al. 2002). To study fragmenta-
tion of magnetized clouds the full nonlinear equations of
gravitomagnetohydrodynamics (GMHD) must be solved
in a multi-scale fashion.

Solutions of the G(M)HD equations for the collpase
problem are either based on smoothed particle (mag-
neto)hydrodynamics (SP(M)H) or finite-difference/finite-
volume schemes with adaptive mesh refinement (AMR)
each in combination with a solver for the Poisson equa-
tion. SPH is a Lagrangian approach where ”smoothed par-
ticles” carrying fluid properties are integrated forward in
time subject to mutual gravitational attraction. Usually,
the number of particles in a SPH simulation is fixed pro-
viding a variable spatial resolution through the movement
of the particles itself but keeping the mass in a ”smoothing
sphere” konstant (Monaghan 1992). Variable mass resolu-
tion can be obtained to some extend by a new technique
called particle splitting (Kitsionas & Whitworth 2002) in
which a particle is subdivided into a number of child par-
ticles having accordingly lower masses.

In order to account for the large scale variations typical
in collapse scenarios grid-based codes make use of AMR
– the counterpart to particle splitting in SPH. Several ap-
proaches have been employed here. Boss (2002), for in-
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stance, applied a spherical code in which only the radial
coordinate is adaptive. This is a useful procedure when
structures near the coordinate origin are produced but it
is less suited if such structures form further away from the
center. Another approach which has been used by some
workers is the nested-grid method in Cartesian geometry
(see e.g. Burkert & Bodenheimer 1993). In this method
a sequence of finer-spaced smaller grids is hierarchically
nested and placed around the coordinate origin from the
beginning of the simulation. Like in a r-adaptive spherical
grid code a nested-grid scheme may underresolve struc-
tures not captured by the finest level of refinement. In
a more sophisticated variant as that used by Truelove et
al. (1997) the mesh is fully adaptive adding and remov-
ing finer grid units locally according to specific refinement
criteria during the course of simulation.

Most numerical calculations on protostellar fragmen-
tation so far focused on non-magnetic configurations
(Truelove et al. 1998; Boss et al. 2000; Bate et al. 2002a,b;
Bate et al. 2003; Klein et al. 2003; Goodwin et al. 2004a,b).
Only just recently the magnetic regime has begun to be
explored. Balsara & Burkert (2001) were the first using
a fully adaptive GMHD scheme to study examplary the
collapse of a magnetized cloud core. Boss (2002) and Boss
(2004) in a more systematic way investigated the possible
role of magnetic fields during collapse, however, neglecting
the important effect of magnetic braking in the governing
equations. Machida et al. (2004) constructed a fragmenta-
tion model based on a nested-grid GMHD code. Finally,
Hosking & Whitworth (2004a,b) applied a recently devel-
oped two-fluid SPMH method to the problem of protostel-
lar core collaps in the presence of a magnetic field includ-
ing the effect of ambipolar diffusion. The major pitfall I
see with this approach, however, is the severe violation of
the divergence constraint for the magnetic field of up to
100% maximum relative error. Such large errors produce
unphysical forces leading to wrong dynamics and generate
wrong field topologies.

In this paper I present a new version of the NIRVANA
code – a fully-conservative, divergence-free grid-based
code for the equations of GMHD able to treat multi-
scale problems employing AMR techniques. Section 2 will
give an overview of the basic numerical algorithms imple-
mented in the NIRVANA code. First results of an appli-
cation of the code to the fragmentation problem in non-
magnetic and magnetic cloud cores are then presented in
Section 3 of this paper.

2. Algorithms

2.1. Equations

The algorithms described in the following aim to find nu-
merical solutions to the equations of ideal magnetohydro-
dynamics including the effects of selfgravity:

∂t% + ∇·(%v) = 0 , (1)

∂te + ∇·
[(

e + p +
1

2µ
|B|2

)

v − 1

µ
(v·B)B
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∂t(%v) + ∇·
[

%vv +

(

p +
1

2µ
|B|2

)

I − 1

µ
BB
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= −%∇Φ ,(3)

∂tB−∇×(v×B) = 0 , (4)

∇2Φ = 4πG% (5)

where % is the mass density, e is the total energy density
excluding gravitational energy, v is the velocity, B is the
magnetic field, Φ is the gravitational potential, µ is the
magnetic permeability and G is the gravitational constant.
The equations are supplemented by the zero divergence
condition for the magnetic field,

∇·B = 0 ,

and the ideal gas equation of state

p = (γ − 1)

(

e − 1

2
%|v|2 − 1

2µ
|B|2

)

. (6)

where γ is the ratio of specific heats.

2.2. MHD solver

The first building block of the NIRVANA code is the
numerical method for the solution of the ideal MHD equa-
tions on a fixed-resolution Cartesian grid. Here, I present
a compact overview of the basic ideas standing behind te
MHD scheme. More details can be found in Ziegler (2004).

Space discretization. The equations (1)–(3) excluding
the gravity source terms but including the Lorentz force
are solved with help of the Godunov-type central scheme
for conservation laws developed by Kurganov et al.
(2001). The scheme has been slightly modified for the
MHD case and combined with the constraint transport
to solve the induction equation for a divergence-free
evolution of the magnetic field. I apply a semi-discrete
approach where the equations are first discretized in
flux conservation form in space leaving open the time
discretization. On a 3D Cartesian grid indexed {ijk}
with constant cell width δx (δy, δz) in x(y, z)-direction
the second-order version of the scheme reads:
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where the numerical fluxes are given by
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with the flux functions
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uijk is the numerical approximation to the cell-averaged
solution vector u = (%, e,m = %v). The quantities
wN(S,W,E,T,B) ={uN(S,W,E,T,B), BN(S,W,E,T,B)} repre-
sent the reconstructed variables at the 6 face-centered cell
locations N,S,W,E,T,B (see Fig. 1) at time t (notice that
all quantities are functions of time since no time discretiza-
tion is given yet). a± denotes the maximum (plus sign)
and minimum (minus sign) local characteristic speed in
x-direction at a cell interface i.e.

a+
i+ 1

2
,j,k

= max{(vx + cf )W
i+1,j,k , (vx + cf )E

i,j,k , 0} ,

a−

i+ 1

2
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= min{(vx − cf )W
i+1,j,k , (vx − cf )E

i,j,k , 0}

where cf is the fast magnetosonic speed. b± (c±) are the
corresponding local speeds in the y(z)-direction which one
obtains by replacing vx with vy (vz) in the above expres-
sions for a± and by evaluation at N,S (T,B) positions.
The applied reconstruction procedure is linear in space
and makes use of the van Leer (1977) slope limiter. Notice
that the only information required to compute the numeri-
cal flux is the one-sided minimum and maximum propaga-
tion speed and no further details about the eigenstructure
of the system is needed contrary to Riemann solver based
schemes.

The induction equation (4) is solved separately with
the constraint transport (CT) method (see e.g. Evans
& Hawley 1988, Tóth 2000). Utilizing the staggered
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Fig. 1. Locations of the reconstructed variables uN(S,W,E,T,B)

(and BN(S,W,E,T,B))

collocation of the magnetic field components on cell
faces renders the numerical divergence of curl operator
to vanish exactely. CT thus ensures that the magnetic
field evolves divergence-free up to machine accuracy,
(∇·B)ijk = 0 to second-order, if the magnetic field is
divergence-free on the grid initially.

As before, a semi-discrete ansatz is adopted. The
scheme reads
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i.e. by suitable face-to-edge interpolations of the face-
centered electric field fluxes which are computed with the
two-speed flux formular of the base central scheme:
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It is this close relation to the central base scheme providing
the CT algorithm with properly upwinded numerical elec-
tric field components which ultimately gives the full MHD
scheme its stability and robustness as demonstrated in a
variety of test problems (see Ziegler 2004).

In the final GMHD scheme gravity source terms con-
taining the gradient of the gravitational potential Φ ap-
pear on the rhs. of the energy equation and momen-
tum equation. With Φ defined at cell centers as the u’s,
(∇Φ)i,j,k to second-order is computed in straightforward
manner by

(∇Φ)i,j,k =





(Φi+1,j,k − Φi−1,j,k)/2δx
(Φi,j+1,k − Φi,j−1,k)/2δy
(Φi,j,k+1 − Φi,j,k−1)/2δz



 .

Time discretization. The semi-discrete MHD scheme
described above is discretized in time with a standard 2-

step Runge-Kutta method. Denoting the rhs. of Eq. (7) as
F[u,B], the rhs. of Eqs. (8)–(10) as E[u,B] and introduc-
ing the gravity source term Su[u, Φ] = (0,−m·∇Φ,−%∇Φ)
the set of resulting ODE’s is solved in the following way.
First, the solution at the new time level n + 1 with
tn+1 = tn + δt where δt is the usual CFL time-step is
predicted to first-order accuracy according to

un+1? = un + δt·F[un,B
n
] ,

B
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= B
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n
] .

In a second step temporal means are calculated which
serve as approximations at time tn+ 1

2
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Finally, second-order accuracy is achieved by a corrector
flux term and by using time-averaged quantities in the
gravitational source term update:
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2
? +

δt

2
·F[un+1?,B

n+1?
] + δtSu[un+ 1

2
?, Φn+ 1

2
?] ,

B
n+1

= B
n+ 1

2
?

+
δt

2
·E[un+1?,B

n+1?
] .

2.3. Adaptive mesh refinement

The second building block of the NIRVANA code is its
AMR facility. The basic ideas of the algorithm are re-
viewed here, and the reader is refered to Ziegler (2005) for
more details.

Refinement principle. AMR in the NIRVANA code
as well as many other codes (e.g. AMRVAC, see Keppens
et al. 2003) is based on a block-structured ansatz as de-
scribed in the fundamental work of Berger & Oliger (1984)
and Berger & Collela (1989). In this ansatz grid blocks of
finer resolution and with variable size are overlain respec-
tive parent grids in a recursive procedure till the required
resolution is reached. Major differences to the original ap-
proach comes about because in NIRVANA (i) blocks have
a fixed size of 4 cell per coordinate direction, (ii) the base
level itself consists out of such elementary blocks i.e. there
is no single base grid (in contrast to previous code ver-
sions), (iii) the parent-to-child block refinement ratio is
always two and, (iv), elementary blocks are clustered tem-
porarily to larger grid objects (called superblocks, see be-
low) on which numerical integration of the equations take
place followed by a remap step. The set of blocks builds an
oct-tree data structure similar to the PARAMESH pack-
age of MacNeice et al. (2000) used in the FLASH code.
Each block with given resolution belongs to a refinement
level l starting with l = 0 for the base level up to some
maximum level L specified by the user. Technically, a
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block has to be understood as a logical grid unit storing
not only the variables (without ghost zones for boundary
conditions) and cell positions but also all necessary in-
formations about its mesh environment realized by a set
of pointers to its parent block, block neighbors and child
blocks.

Refinement criteria. Mesh refinement is controlled
according to some refinement criteria. On the base level
the criterion is based on evaluating normalized gradients
in all variables. If any of these exceeds a prescribed thresh-
old the mesh is locally refined by inserting a new block. On
higher levels l > 0, refinement is controlled by comparing
the known solutions on levels l and l− 1. Apart from that
standard refinement criteria, in self-gravitational flows
Truelove et al. (1997) demonstrated that it is an abso-
lute necessity to sufficiently resolve the local Jeans length
λJ,

λJ =

(

πp

G%2

)1/2

.

According to this, in order to avoid that grid-scale numer-
ical perturbations grow into artificial fragments

λJ > 5δx

is used as additional criterion to trigger mesh refinement.
In general, all criteria – standard and Jeans-based – are
evaluated in a buffer zone around the point of refinement
to ensure smart capturing of structures.

Block initialisation. Variables on a newly generated
block are initialised by interpolation from the underly-
ing coarser level. In doing so, the procedure of limited
reconstruction is used as in the central-constraint trans-
port MHD scheme. Conservation properties of the MHD
scheme are maintained this way. In particular, the mag-
netic field is reconstructed in a divergence-free manner.

Block clustering and time integration. The equa-
tions are not solved on individual blocks but on su-
perblocks. Superblocks are larger rectangular grids which
temporarily coexist with the blocks. Each refinement level
made up of generic blocks is mapped onto a set of su-
perblocks representing that refinement level for time inte-
gration. I call this mechanism block clustering. The num-
ber of superblocks associated with a refinement level de-
pends on the degree of fragmentation of the grid struc-
ture. In generating superblocks generic blocks are clus-
tered such that the resulting superblock has maximal pos-
sible dimension in x-direction. Ghost zones needed by the
solver to take up boundary conditions are automatically
added. After a time step is complete the advanced solu-
tion on superblocks is transfered back to generic blocks
and superblocks are destroyed. Notice that when the grid
structure changes the superblock distribution changes as
well. The purpose of block clustering is to increase effi-
ciency: the use of small blocks allow a very flexible mesh
adaptation i.e. regions which are refined but actually need
no refinement are sparse. On the other hand, solving the
equations on lots of small blocks would be associated with

an overwhelming amount of overhead due to the large
number of interfaces. Block clustering combines mesh flex-
ibility with performance because, by experience, the over-
head due to the block clustering algorithm itself is much
smaller than the overhead without block clustering1. For
problems involving self-gravity each refinement level is in-
tegrated with the same time-step dictated by the CFL-
related minimum time-step over the grid hierarchy.

Consistency. Several mechanism in an AMR simu-
lation ensure that the solution remains consistent on the
block-structured grid hierarchy. First, to restore conser-
vation fixup steps in the hydrodynamical fluxes and the
electric field at fine-coarse grid interfaces are necessary.
More precisely, the numerical flux at coarse cell faces
matching a coarse-fine interface has to be replaced by
the corresponding fine cell numerical fluxes. Similarly, the
numerical electric field at coarse cell edges matching a
coarse-fine interface must be replaced by the correspond-
ing fine cell numerical electric fields to ensure solenoidality
of the magnetic field. The use of a multi-stage time inte-
gration scheme demands that the fixup steps are carried
out after each substep. Here, in the 2-step Runge-Kutta
method fixup steps are carried out after the predictor step
and after the corrector step. Moreover, synchronization of
boundary values along superblock interfaces is required
after the predictor step to avoid time mismatching of the
solution.

2.4. Poisson solver

The third building block of the NIRVANA code is the
adaptive mesh solver for the Poisson equation

∇2Φ = L(Φ) = 4πG% .

The algorithm used here is a modification of the node-
centered algorithm of Almgren et al. (1994) adapted to
the cell-centered terminology of the Godunov-type cen-
tral scheme of the NIRVANA code. A similar approach
to solve the Poisson equation in conjunction with AMR
can be found in Martin & Cartwright (1996). The method
resembles the basic idea of a V-cycle multigrid relaxation
scheme: it is started with the finest level, then progres-
sively coarsened and relaxed down the V-cycle, solved (or
relaxed) on the base level, and interpolated and relaxed
back up the V-cycle to complete one iteration step. The
main difference is that within the AMR framework relax-
ation is restricted to the grid levels and may not encom-
pass the entire domain spanned by the base level. Also,
in the AMR multigrid solver matching of the solution at
coarse-fine grid interfaces requires special attention. More
precisely, to avoid artificial forces at interfaces one must
enforce both Dirichlet and Neumann (elliptic) matching
at those locations.

In the AMR multigrid approach the Poisson equation
is solved simultaneously on all grid levels rather than level

1 this is no longer true, if the grid structure is very incoherent
i.e. if there are lots of isolated blocks
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Fig. 2. Principle of the AMR V-cycle.

by level. Consequently, in a V-cycle iteration step relax-
ation takes place on the full grid hierarchy. Iteration is
then stopped if the residual R = s−L(Φ) with s = 4πG%
becomes small enough, i.e. if
∣

∣

∣

∣

∣

∣

∣

∣

R

s

∣

∣

∣

∣

∣

∣

∣

∣

∞

< ε

where || · ||∞ means the maximum value over all su-
perblocks of all levels l = 0, ..., L, and the tolerance
ε = 10−5.

The procedure is as follows (see also Fig. 2). For rea-
sons of clearness grid indices are dropped. The V-cycle
starts on the finest level L. First, save the current potential
ΦL

save for later update when going up the V-cycle. Then,
perform one Gauß-Seidel relaxation step for the correction

δΦL, i.e.

GS(δΦL, RL) : δΦL → δΦL + α
[

L(δΦL) − RL
]

where α = 1/2(δx−2 + δy−2 + δz−2) is the relaxation pa-
rameter, and taking δΦL−1 = 0 as boundary condition
when evaluating the L-operator. Define the corrected po-
tential Φ̃L = ΦL + δΦL needed later to ensure elliptic
matching at grid interfaces. Next, perform a Gauß-Seidel
relaxation step on the coarser level L−1 using the residual

RL−1 =







P(RL − L(δΦL)) on the subdomain
covered by level L

sL−1 − L̃(ΦL−1, Φ̃L) otherwise
.

P is the projection operator which averages the (by the
current δΦL corrected) residual of level L down to level
L − 1. L̃ is the usual (second-order) Laplacian operator
except at grid interfaces where it is modified in such a
way that the elliptic matching condition is fulfilled. For
that the previously defined Φ̃L is necessary to evaluate L̃.
Now, repeat this process until the base level is reached.
On the base level 5 SOR iteration steps – SOR(δΦ0, R0) –
instead of one Gauß-Seidel step are carried out. This gives
the updated solution Φ0 → Φ0+δΦ0. On the following way
up the V-cycle the current correction δΦ1 on level 1 is first
updated by the known correction on the base level, i.e.
δΦ1 → δΦ1 + I(δΦ0) where I is an interpolation operator.
Usually, quadratic interpolation is used. Next, a Gauß-
Seidel relaxation step is performed on level 1 using the
given, now non-vanishing, coarser grid correction δΦ0 as
boundary condition for evaluation of the Laplacian. Then,
update the gravitational potential using the saved value:

Φ1 = Φ1
save + δΦ1 .

Continue this process up to the finest level of the grid
hierarchy to complete the V-cycle.

Note that, of course, synchronization work is needed
during a V-cycle along superblock interfaces to achieve
global convergence. For instance, internal boundary values
of the correction δΦl must be exchanged among adjacent
superblocks since level l is relaxed sucessively superblock
by superblock. Note also that, without AMR, the method
reduces to a pure SOR scheme. Thats why SOR is used
as relaxation scheme for the base level.

Boundary conditions on the base level are

∂Φ

∂n
= 0

at symmetry planes and

Φ = −G
M

|x| − G
p·x
|x|3 − 1

2
G

3
∑

i,j=1

Qij
xixj

|x|5

at open boundaries where the mono-, di- and quadrupole
is given by

M =

∫

%(x′) dV ′ ,

p =

∫

%(x′)x′ dV ′ ,

Qij =

∫

%(x′)(3x′

ix
′

j − |x′|2δij) dV ′ .

3. Application to cloud collapse and

fragmentation

As ’tests’ of the GMHD scheme I consider a suite of col-
lapse simulations of an initially uniform solar-mass cloud
subject to various conditions, namely, with and without
rigid rotation of the cloud, with and without attached az-
imuthal mode perturbation, with and without magnetic
field and, finally, with different gas equation of states. In
all simulations the computational domain is a cubic box
with length four times the cloud radius and is spanned
by 643 grid cells. From the beginning there is a first per-
manent refinement level in a spherical region covering the
full cloud i.e. the cloud radius is effectively resolved by 32
grid cells.

3.1. Isothermal collapse

In one class of simulations a quasi-isothermal equation of
state is considered. Quasi-isothermal in this context means
that the energy equation is retained but an adiabatic index
γ = 1.001 close to unity is adopted.

3.1.1. Non-rotating cloud

The first case of a non-rotating uniform cloud is identical
to the model described in Truelove et al. (1998) (here-
after T98) and for which analytical predictions exist. The
cloud of radius Rcl = 7.8 · 1013 m has density %cl = 10−12
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kg/m3, temperature T = 3.63 K and is in pressure balance
with the surrounding medium having a density 10−2 · %cl.
The analytic solution consists of a rarefaction wave prop-
agating inwards from the cloud surface superimposed a
self-similar collapse solution. The central by the rarefac-
tion wave unaffected part of the cloud collapses in free-fall
time tff = (3π/32G%cl)

1/2 = 6.645 · 1010 s towards a sin-
gular state according to

t%
tff

=
2

π

[

ξ +
1

2
sin(2ξ)

]

where t% is the time to reach density % and

ξ = arccos

[

(

%

%cl

)−1/6
]

.

The initial parameters of the problem have been chosen in
such a way that the cloud collapses to a singularity before
the rarefaction front can reach the cloud center.

Fig. 3 illustrates the solution at time t = 6.501 ·1010 =
0.978tff when the density has reached a maximum value
log %max = −9.28. Fig. 4 shows a cut of log % along the
x-axis. The horizontal line in Fig. 4 indicates the ana-
lytic solution for the collapsing portion not yet reached
by the rarefaction wave at the given time. The extend of
the plateau is computed using the formula for the rar-
efaction front radius as a function of density taken from
T98. The maximum density fits very well whereas there
are somewhat larger deviations from the analytic result at
the edges of the plateau. About 45% of the mass is within
the plateau region. As expected from theory the radial
velocity to a good approximation grows linearly from the
cloud center to the rarefaction front and then falls off in
the surrounding medium.

When comparing the NIRVANA code result with the
T98 result there is one obvious difference, that is, the
T98 solution possesses a time delay also with respect to
the analytic solution: Fig. 5 of T98 shows a snapshot
at a time t > tff associated with a maximum density
log %max = −9.58 which is even lower than in the state
presented in Fig. 3 corresponding to a time t < tff . As re-
ported in T98 this time delay might be mainly due to the
periodic boundary conditions faking neighboring clouds.
These image clouds act as inhibitors to collapse because
of their attractive force on the real cloud. Here, Dirichlet
boundary conditions for the gravitational potential are
used which are computed from a multipole expansion of
the density distribution. This is an excellent approxima-
tion for the almost spherically symmetric configuration
and explains the very insignificant time shift to the ana-
lytic solution.

3.1.2. Rotating cloud

The second case of a rotating uniform cloud again is taken
from T98 but has originally been described in Norman et
al. (1980). A solar-mass cloud with density %cl = 1.26 ·
10−15 kg/m3, radius Rcl = 7.01 · 1014 m and temperature

Fig. 3. Non-rotating collaps: Grey-scale representation of the
density structure (log %min = −13.91, log %max = −9.28) and
velocity field in the x − y plane.

Fig. 4. Non-rotating collaps: Cut of log % along the x-axis.

T = 5 K is initially set in uniform rotation with Ω =
3.04 · 10−13 1/s. In terms of characteristic energy ratios
α = 0.54 (thermal energy to gravitational energy) and
β = 0.08 (rotational energy to gravitational energy).

The main purpose of this collapse problem is to check
the quality of angular momentum conservation by the nu-
merical method. As pointed out by Norman et al. (1980)
good numerical advection of angular momentum is neces-
sary in order to achieve the correct answer to the problem,
namely, the production of a disk which in the isothermal
case evolves towards a singular state. Bad advection of
angular momentum, on the other hand, may generate a
ring-like structure due to artifical transport effects.

As in T98 the collapse is followed over roughly 6
decades in density increase. The result is shown in Fig.
5 representing the density in logarithmic scale in the x−y
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Fig. 5. Rotating collapse: Grey-scale representation of the den-
sity structure in the x−y plane (top) and x−z plane (bottom).

plane (upper panel) and x− z plane (lower panel) at time
t = 2.1753 ·1012 s where log %max = −8.98. The solution is
throughout comparable to the findings of T98 of a rotat-
ing disk structure. There is no visible tendency to build
rings indicating that the NIRVANA code, albeit solving
for the linear momentum, can handle angular momentum
advection in an acceptable manner.

3.1.3. Rotating cloud with azimuthal perturbation

Next, I consider a cloud with azimuthal m = 2 mode per-
turbation i.e.

%cl −→ [1 + 0.1 cos(2φ)] %cl

where the angle φ is measured from the x-axis. Initial
parameters are taken from Hosking & Whitworth (2004b)
hereafter abbreviated HW. In HW %cl = 4.8·10−15 kg/m3,
Rcl = 4.65 · 1014 m, T = 10 K and Ω = 4.25 · 10−13

1/s. The corresponding energy ratios are α = 0.35 and
β = 0.05. No magnetic field is present. The density of the
outer medium is %cl/100. Similar problems of perturbed
uniform clouds have been studied with a grid-based code
by Boss & Bodenheimer (1979), Burkert & Bodenheimer
(1993), Truelove et al. (1997), Truelove et al. (1998) and
with SPH by Kitsionas & Whitworth (2002), for example.

Fig. 6 shows a sequence of snapshots illustrating the
result of this collapse problem after the density has in-
creased by 2.2 decades, 6.3 decades and 9.43 decades, re-

spectively. The last value corresponds to a time 1.066tff
where tff = 9.59 · 1011 s. Fourteen levels of refinement
have been introduced at this latest stage so that the finest
resolution is equivalent to a 10485763 uniform grid simu-
lation. The overdense regions of the cloud seeded by the
initial perturbation stimulate binary fragmentation. When
log(%max) = −8.02 two density maxima have clearly been
produced (Fig. 6, middle panel) which appear as elongated
structures. These high-density regions are connected by a
bar and have rotated in a clockwise sense around the cloud
center a little bit less than 90 degress measured from its
initial orientation in the x−z plane. At this stage each den-
sity peak is resolved by grid blocks of refinement level 9,
the bar in between by grid blocks of refinement level 8. In
the subsequent evolution each of the fragments approach
a singular filamentary state consistent with the analyti-
cal predictions by Inutsuka & Miyama (1997) working on
inviscid filament formation under the assumption of an
isothermal gas equation of state. Fig. 6 (right panel) pre-
senting a close-up view (zooming factor is 4000) around
the upper filament when log(%max) = −4.89 apparently
give support for such a scenario.

The situation is similar, though not identical, if a ver-
tical magnetic field is present. Fig. 7 illustrates the corre-
sponding result for the magnetic case adopting an initial
field strength which corresponds to a mass-to-flux ratio
twice the critical value (M/Ψ)crit i.e. the magnetic field is
supercritical. From HW

(M/Ψ)crit =
400√

G

and the initial magnetic field strength Bz0 = 3 · 10−8 T.
The presence of the magnetic field leads to a delay of
the whole evolution which is due to the partial magnetic
support against gravitational collapse. At a comparable
stage to the non-magnetic case when log(%max) = −7.96
(t = 1.145tff ; Fig. 7, middle panel) again two lengthy den-
sity peaks have emerged which possess a somewhat larger
separation. At this time the binary fragment is oriented
by ≈ 70◦ relative to the x-axis which is less than before.
This difference results from the effect of magnetic brak-
ing which serves to remove angular momentum from the
cloud spinning down to the outer medium spinning up.
As before, the final outcome are two very thin filaments
which would continue to collapse if the simulation were
not stopped at a time t = 1.248tff where the maximum
density has reached a value log(%max) = −5.05 (see Fig.
7, right panel).

3.2. Barotropic collapse of perturbed clouds

The other class of simulations applies a barotropic equa-
tion of state given by

p = % ·
[

1 +

(

%

%crit

)4/3
]1/2

where the critical density %crit = 10−10 kg/m3. Here, the
energy equation is redundant. The barotropic model de-
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Fig. 6. Isothermal collapse: Snapshots at different evolutionary stages showing the density structure, velocity field (only left
panel) and block distribution (middle and right panels).

Fig. 7. Isothermal collapse with vertical magnetic field.

scribes more realistically the astrophysical cloud collaps
problem because it mimics the transition from a low-
density isothermal state to a high-density adiabatic state
which is assumed to occur around %crit.

For the following collapse problems the same initial
conditions as in the isothermal perturbed case are adopted
i.e. the configuration is identical to that used in the SPH
simulations of HW. Therefore, a direct comparison of SPH
and AMR-GMHD results is accessible. The main differ-
ence between the two models lies in the treatment of the
cloud environment. In SPH there are no particles outside
the cloud whereas in the grid case density is set to 1/50 of
the initial cloud density to avoid vacuum conditions. Note
by the way that due to the choice of equation of state
the cloud surface is not in pressure equilibrium with the
surroundings. This is in contrast to the quasi-isothermal
calculations in which exact pressure balance were initially
achieved. The resulting outwards directed acceleration is,
however, relatively small and is a transient effect which
plays no role in the late callapse phase.

I start with a simulation without magnetic field. As
long as the system remains nearly isothermal runaway
collapse occurs. Later on, when the density approches the
critical density %crit the collapse phase gradually turns into
an accretion phase where scales no longer change drasti-

cally. Fig. 8 presents a sequence of snapshots illustrat-
ing the structure of the system at such later evolution-
ary stages. The density in logarithmic scale and coded in
black-white is shown in the x − y coordinate plane over-
lain by the velocity field. Only a subset of the entire do-
main is visualized by zooming in with a factor 50 around
the coodinate origin. At time t = 1.0855tff (recall that
tff = 9.59 · 1011 s) accompanied by a maximum density
log(%max) = −8.82 a filamentary structure has developed
(Fig. 8, left panel). At this time the adiabatic regime has
clearly reached expressed by the fact that only one fila-
ment appeared instead of two as in the quasi-isothermal
case starting with same initial conditions. This is because
the overdense regions generated early during the collaps by
the imposed azimuthal perturbation have fallen towards
the center and merged. In the non-magnetic SPH model
of HW the same observation has been made (see their Fig.
2, top left). However, notice the difference of order 5% in
evolution time between the grid solution and the HW re-
sult with the former lagging somewhat behind the latter.
The filament is in rotational motion because a substan-
tial fraction of initial angular momentum is still present.
As a consequence, by t = 1.066tff (log(%max) = −7.71)
the filamentary structure transforms into a bar-like struc-
ture with two leading spiral arms attached at the ends
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Fig. 8. Barotropic collaps without magnetic field: Snaphots of the density structure and velocity illustrating the evolution at
later stages.

Fig. 9. Barotropic collaps without magnetic field: density structure in the coordinate planes (shifted for the x − z and y − z
planes) and block distribution in the x − y coordinate plane.

of the bar. In the center of the bar a core starts to con-
dense out. For the purpose of comparison with the SPH
simulations of HW consult their Fig. 2 with our snapshot
lying in evolution somewhere between the bottom left and
bottom right panel. The simulation has been stopped af-
ter a time t = 1.073tff where the maximum density has
reached a value of log(%max) = −7.69. Meanwhile, the spi-
ral structure has evolved to a mini-spiral with central core
surrounded by a ring-like object. The ring is formed from
the collision of the spiral arms with the bar. In this context
HW report the formation of further Jeans-unstable dense
knots which is not seen here. Furthermore, the NIRVANA
code solution provides an almost perfect point symmetry
whereas in the SPH simulations of HW point-symmetry
is clearly violated in the later course of evolution. Viewed
edge-on the resulting structure appears rather flat in ver-

tial direction with scale of the order of the local Jeans
length. This can be seen in the color-coded representation
of Fig. 9 showing density contours along the coordinate
directions (the x − z plane and y − z plane is shifted) to-
gether with the block distribution of grid levels 5-7 in the
x − y plane.

The situation is quite different if a magnetic field is
present. Here, I consider only the case of a vertical mag-
netic field of uniform strength i.e. the magnetic field is
oriented along the rotation axis. The initial magnetic field
strength is chosen like in the isothermal case with a mass-
to-flux ratio twice the critical mass-to-flux ratio and the
magnetic field is supercritical from the beginning. The fi-
nal outcome at t = 1.444tff with log(%max) = −7.73 is
illustrated in the color-coded representation of Fig. 10
(left panel) similar to Fig. 9. In the very beginning of
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Fig. 10. Barotropic collaps with magnetic field: resulting structure for (M/Ψ) = 2 ·(M/Ψ)crit (left) and (M/Ψ) = 1.2 ·(M/Ψ)crit
(right).

the collaps the overdense regions initiated by the initial
perturbation again fall towards the center and merge. In
contrast to the non-magnetic case, however, there is a re-
bound leading again to two separate overdensed objects.
These objects are the seed for binary formation. Indeed
a binary system is formed. The oblate cores separated a
distance ≈ 0.06 · Rcl from each other are connected by a
less dense bar. Each core is surrounded by a thin disk-like
structure with a gap tied up by the bar. As expected the
magnetic field is dragged with the infall and builds a hour-
glass morphology around each of the density cores. The
magnetic field lines in Fig. 10 show a perceptible amount
of twist emanating from a differentially rotating flow field
along the vertical direction.

For a stronger magnetic field with mass-to-flux ratio
1.2·(M/Ψ)crit the situation again drastically changes. The
solution at t = 2.057tff and log(%max) = −8.55 is illus-
trated in Fig. 10 (right panel). In this case only one core
has been formed imbedded in an extended disk. The mag-
netic field near the core again has a hour-glass structure
but is significantly less twisted than in the previous case.
This can be explained by efficient magnetic braking which
removes angular momentum from the collapsing material
and which tends to equalize differential rotation. The ef-
fect is the more pronounced the stronger the magnetic
field is.

4. Conclusions

I have presented a powerful new version of the NIRVANA
code suitable for the simulation of multi-scale gravito-
magnetohydrodynamics problems in three space dimen-
sions. A state-of-the-art Godunov-type central scheme for

divergence-free MHD has been combined with a multigrid-
type Poisson solver both operating within an adaptive
mesh refinement framework. This new code has then been
applied to the gravitational collpase of a solar-mass uni-
form cloud subject to different gas equation of states and
for various initial conditions: isothermal and barotropic,
non-magnetic and magnetic, non-rotating and rotating,
with and without binary perturbation. In particular, it
has been demonstrated that the code was able to robustly
model the magnetodydrodynamical collapse and the re-
lated issue of fragmentation – a problem of high complex-
ity which just begins to become explored in more depth. It
has been shown that in the models with barotropic equa-
tion of state and an initial m = 2 mode perturbation frag-
mentation is controlled by magnetic fields. Without mag-
netic field the final outcome is a single core surrounded by
a ring-like structure. In case of a strong vertical field with
mass-to-flux ratio close to the critical value again a single
core is formed but embedded in an extended disk. For a
weaker field with mass-to-flux ratio twice the critical one
a binary system is produced connected by a bar.

The results presented in this paper are very encourag-
ing and give strong motivation for further studies in this
research field. To get more insight in the fragmentation
process during protostellar core collapse the effects of am-
bipolar diffusion and probably radiation transport should
be included. It would also be very fruitful to compare such
AMR-GMHD models with models based on using SPH.
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