Introduction to OpenGL

By Nick Gnedenin

Largely based on a lecture by Prof. G. Wolberg, CCNY
If You Want to Learn How to Do This…

… You are in a wrong place!
Overview

• What is OpenGL?
• Object Modeling
• Lighting and Shading
• Computer Viewing
• Rendering
• Texture Mapping
• Homogeneous Coordinates
What Is OpenGL?
The Programmer’s Interface

- Programmer sees the graphics system through an interface: the Application Programmer Interface (API)
SGI and GL

- Silicon Graphics (SGI) revolutionized the graphics workstation by implementing the pipeline in hardware (1982)
- To use the system, application programmers used a library called GL
- With GL, it was relatively simple to program three dimensional interactive applications
OpenGL

• The success of GL lead to OpenGL in 1992, a platform-independent API that was
 - Easy to use
 - Close enough to the hardware to get excellent performance
 - Focused on rendering
 - Omitted windowing and input to avoid window system dependencies
OpenGL Evolution

• Controlled by an Architectural Review Board (ARB)
 - Members include SGI, Microsoft, Nvidia, HP, 3DLabs, IBM, …
 - Relatively stable (present version 1.4)
 • Evolution reflects new hardware capabilities
 – 3D texture mapping and texture objects
 – Vertex programs
 - Allows for platform specific features through extensions
 - See www.opengl.org for up-to-date info
OpenGL Libraries

• OpenGL core library
 - OpenGL32 on Windows
 - GL on most Unix/Linux systems

• OpenGL Utility Library (GLU)
 - Provides functionality in OpenGL core but avoids having to rewrite code

• Links with window system
 - GLX for X window systems
 - WGL for Windows
 - AGL for Macintosh
Software Organization

application program

OpenGL Motif widget or similar

GLUT

GLX, AGL or WGL

X, Win32, Mac O/S

GLU

GL

software and/or hardware
Windowing with OpenGL

• OpenGL is independent of any specific window system
• OpenGL can be used with different window systems
 - X windows (GLX)
 - MFC
 - ...
• GLUT provide a portable API for creating window and interacting with I/O devices
API Contents

• Functions that specify what we need to form an image
 - Objects
 - Viewer (camera)
 - Light Source(s)
 - Materials

• Other information
 - Input from devices such as mouse and keyboard
 - Capabilities of system
OpenGL State

- OpenGL is a state machine
- OpenGL functions are of two types
 - Primitive generating
 - Can cause output if primitive is visible
 - How vertices are processed and appearance of primitive are controlled by the state
 - State changing
 - Transformation functions
 - Attribute functions
OpenGL function format

- Function name: `glVertex3f(x, y, z)`
- Belongs to GL library
- `x, y, z` are floats

- Function name: `glVertex3fv(p)`
- `p` is a pointer to an array
OpenGL #defines

• Most constants are defined in the include files `gl.h`, `glu.h` and `glut.h`
 - Note `#include <glut.h>` should automatically include the others
 - Examples
 - `glBegin(GL_POLYGON)`
 - `glClear(GL_COLOR_BUFFER_BIT)`

• include files also define OpenGL data types: `Glfloat`, `Gldouble`,
Object Modeling
OpenGL Primitives

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_POLYGON

GL_QUAD_STRIP
Example: Drawing an Arc

• Given a circle with radius r, centered at (x,y), draw an arc of the circle that sweeps out an angle θ.

\[
(x, y) = (x_0 + r \cos \theta, y_0 + r \sin \theta),
\]

for $0 \leq \theta \leq 2\pi$.
The Line Strip Primitive

```c
void drawArc(float x, float y, float r,
             float t0, float sweep)
{
    float t, dt;  /* angle */
    int n = 30;   /* # of segments */
    int i;

    t = t0 * PI/180.0;  /* radians */
    dt = sweep * PI/(180*n);  /* increment */

    glBegin(GL_LINE_STRIP);
    for(i=0; i<=n; i++, t += dt)
        glVertex2f(x + r*cos(t), y + r*sin(t));
    glEnd();
}
```
Polygon Issues

- OpenGL will only display polygons correctly that are
 - **Simple**: edges cannot cross
 - **Convex**: All points on line segment between two points in a polygon are also in the polygon
 - **Flat**: all vertices are in the same plane
- User program must check if above true
- Triangles satisfy all conditions

nonsimple polygon

nonconvex polygon
Attributes

- Attributes are part of the OpenGL and determine the appearance of objects
 - Color (points, lines, polygons)
 - Size and width (points, lines)
 - Stipple pattern (lines, polygons)
 - Polygon mode
 - Display as filled: solid color or stipple pattern
 - Display edges
RGB color

- Each color component stored separately (usually 8 bits per component)
- In OpenGL color values range from 0.0 (none) to 1.0 (all).
Lighting and Shading
Lighting Principles

• Lighting simulates how objects reflect light
 - material composition of object
 - light’s color and position
 - global lighting parameters
 • ambient light
 • two sided lighting
 - available in both color index and RGBA mode
Types of Lights

• OpenGL supports two types of Lights
 - Local (Point) light sources
 - Infinite (Directional) light sources
• In addition, it has one global ambient light that emanates from everywhere in space (like glowing fog)
• A point light can be a spotlight
Spotlights

- Direction (vector)
- Cutoff (cone opening angle)
- Attenuation with angle
Moving Light Sources

- Light sources are geometric objects whose positions or directions are user-defined
- Depending on where we place the position (direction) setting function, we can
 - Move the light source(s) with the object(s)
 - Fix the object(s) and move the light source(s)
 - Fix the light source(s) and move the object(s)
 - Move the light source(s) and object(s) independently
Steps in OpenGL shading

1. Enable shading and select model
2. Specify normals
3. Specify material properties
4. Specify lights
Normals

• In OpenGL the normal vector is part of the state

• Usually we want to set the normal to have unit length so cosine calculations are correct

Note that right-hand rule determines outward face
Polygonal Shading

- Shading calculations are done for each vertex; vertex colors become vertex shades
- By default, vertex colors are interpolated across the polygon (so-called Phong model)
- With flat shading the color at the first vertex will determine the color of the whole polygon
Polygon Normals

Consider model of sphere:
• Polygons have a single normal
• We have different normals at each vertex even though this concept is not quite correct mathematically
Smooth Shading

• We can set a new normal at each vertex
• Easy for sphere model
 - If centered at origin \(\mathbf{n} = \mathbf{p} \)
• Now smooth shading works
• Note *silhouette edge*
Mesh Shading

• The previous example is not general because we knew the normal at each vertex analytically

• For polygonal models, Gouraud proposed to use the average of normals around a mesh vertex

\[n = \frac{n_1 + n_2 + n_3 + n_4}{|n_1| + |n_2| + |n_3| + |n_4|} \]
Gouraud and Phong Shading

• Gouraud Shading
 - Find average normal at each vertex (vertex normals)
 - Apply Phong model at each vertex
 - Interpolate vertex shades across each polygon

• Phong shading
 - Find vertex normals
 - Interpolate vertex normals across edges
 - Find shades along edges
 - Interpolate edge shades across polygons
Comparison

• If the polygon mesh approximates surfaces with a high curvatures, Phong shading may look smooth while Gouraud shading may show edges
• Phong shading requires much more work than Gouraud shading
 - Usually not available in real time systems
• Both need data structures to represent meshes so we can obtain vertex normals
Front and Back Faces

• The default is shade only front faces which works correct for convex objects
• If we set two sided lighting, OpenGL will shaded both sides of a surface
• Each side can have its own properties

back faces not visible back faces visible
Material Properties

• Define the surface properties of a primitive (separate materials for front and back)
 - Diffuse
 - Ambient
 - Specular
 - Shininess
 - Emission
Emissive Term

• We can simulate a light source in OpenGL by giving a material an emissive component
• This color is unaffected by any sources or transformations
Transparency

• Material properties are specified as RGBA values
• The A (also called alpha-value) value can be used to make the surface translucent
• The default is that all surfaces are opaque
Transparency
Computer Viewing
• 3D is just like taking a photograph (lots of photographs!)
OpenGL Orthogonal (Parallel) Projection

$x_{\text{min}}, y_{\text{min}}, -\text{near}$

View volume

$z = -z_{\text{max}}$

$(x_{\text{max}}, y_{\text{max}}, -\text{far})$

$z = -\text{near}$

near and far measured from camera
OpenGL Perspective Projection
Projections

Orthogonal/Parallel Perspective
Clipping

• Just as a real camera cannot “see” the whole world, the virtual camera can only see part of the world space
 - Objects that are not within this volume are said to be clipped out of the scene
Rendering
Rendering Process

1. Models
 - Instancing, modeling transformations
 - Scene (world coordinates)
 - Viewing transformations
 - Scene (viewing coordinates)
 - Projection, lighting
 - Scene (projected)
 - Rasterization
 - Image
Hidden-Surface Removal

• We want to see only those surfaces in front of other surfaces
• OpenGL uses a hidden-surface method called the z-buffer algorithm that saves depth information as objects are rendered so that only the front objects appear in the image
Rasterization

• If an object is visible in the image, the appropriate pixels must be assigned colors
 - Vertices assembled into objects
 - Effects of lights and materials must be determined
 - Polygons filled with interior colors/shades
 - Must have also determined which objects are in front (hidden surface removal)
Double Buffering
Immediate and Retained Modes

- In a standard OpenGL program, once an object is rendered there is no memory of it and to redisplay it, we must re-execute the code for creating it
 - Known as *immediate mode graphics*
 - Can be especially slow if the objects are complex and must be sent over a network
- Alternative is define objects and keep them in some form that can be redisplayed easily
 - *Retained mode graphics*
 - Accomplished in OpenGL via *display lists*
Display Lists

• Conceptually similar to a graphics file
 - Must define (name, create)
 - Add contents
 - Close

• In client-server environment, display list is placed on server
 - Can be redisplayed without sending primitives over network each time
Display Lists and State

• Most OpenGL functions can be put in display lists
• State changes made inside a display list persist after the display list is executed
• If you think of OpenGL as a special computer language, display lists are its subroutines
• Rule of thumb of OpenGL programming: Keep your display lists!!!
Hierarchy and Display Lists

- Consider model of a car
 - Create display list for chassis
 - Create display list for wheel

```c
glNewList( CAR, GL_COMPILE );
glCallList( CHASSIS );
glTranslatef( ... );
glCallList( WHEEL );
glTranslatef( ... );
glCallList( WHEEL );
...
glEndList();
```
Antialiasing

• Removing the Jaggies

```c
glEnable( mode )
```

- GL_POINT_SMOOTH
- GL_LINE_SMOOTH
- GL_POLYGON_SMOOTH
Texture Mapping
The Limits of Geometric Modeling

• Although graphics cards can render over 10 million polygons per second, that number is insufficient for many phenomena
 - Clouds
 - Grass
 - Terrain
 - Skin
Modeling an Orange

• Consider the problem of modeling an orange (the fruit)
• Start with an orange-colored sphere: too simple
• Replace sphere with a more complex shape:
 - Does not capture surface characteristics (small dimples)
 - Takes too many polygons to model all the dimples
Modeling an Orange (2)

• Take a picture of a real orange, scan it, and “paste” onto simple geometric model
 - This process is called *texture mapping*

• Still might not be sufficient because resulting surface will be smooth
 - Need to change local shape
 - Bump mapping
Three Types of Mapping

• Texture Mapping
 - Uses images to fill inside of polygons

• Environmental (reflection mapping)
 - Uses a picture of the environment for texture maps
 - Allows simulation of highly specular surfaces

• Bump mapping
 - Emulates altering normal vectors during the rendering process
Texture Mapping

geometric model

texture mapped
Environment Mapping
Bump Mapping
Where does mapping take place?

- Mapping techniques are implemented at the end of the rendering pipeline
 - Very efficient because few polygons pass down the geometric pipeline
Is it simple?

• Although the idea is simple---map an image to a surface---there are 3 or 4 coordinate systems involved
Texture Mapping

parametric coordinates

texture coordinates

world coordinates

screen coordinates
Basic Strategy

• Three steps to applying a texture
 1. specify the texture
 • read or generate image
 • assign to texture
 • enable texturing
 2. assign texture coordinates to vertices
 • Proper mapping function is left to application
 3. specify texture parameters
 • wrapping, filtering
Texture Mapping
Based on parametric texture coordinates specified at each vertex
Homogeneous Coordinates
A Single Representation

If we define $0 \cdot P = 0$ and $1 \cdot P = P$ then we can write

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \alpha_3 v_3 = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0] \begin{bmatrix} \nu_1 & \nu_2 & \nu_3 & P_0 \end{bmatrix}^T$$

$$P_T = P_0 + \beta_1 v_1 + \beta_2 v_2 + \beta_3 v_3 = [\beta_1 \, \beta_2 \, \beta_3 \, 1] \begin{bmatrix} \nu_1 & \nu_2 & \nu_3 & P_0 \end{bmatrix}^T$$

Thus we obtain the four-dimensional *homogeneous coordinate* representation

$$v = [\alpha_1 \, \alpha_2 \, \alpha_3 \, 0]^T$$

$$p = [\beta_1 \, \beta_2 \, \beta_3 \, 1]^T$$
Homogeneous Coordinates

The general form of four dimensional homogeneous coordinates is
\[p = [x \ y \ z \ w]^T \]

We return to a three dimensional point (for \(w \neq 0 \)) by
\[
\begin{align*}
x & \leftarrow x/w \\
y & \leftarrow y/w \\
z & \leftarrow z/w
\end{align*}
\]

If \(w = 0 \), the representation is that of a vector

Note that homogeneous coordinates replaces points in three dimensions by lines through the origin in four dimensions
Homogeneous Coordinates and Computer Graphics

• Homogeneous coordinates are key to all computer graphics systems
 - All standard transformations (rotation, translation, scaling) can be implemented by matrix multiplications with 4 x 4 matrices
 - Hardware pipeline works with 4 dimensional representations
 - For orthographic viewing, we can maintain $w=0$ for vectors and $w=1$ for points
 - For perspective we need a *perspective division*
• Consider two representations of a the same vector with respect to two different bases. The representations are

\[\mathbf{a} = [\alpha_1 \alpha_2 \alpha_3] \]
\[\mathbf{b} = [\beta_1 \beta_2 \beta_3] \]

where

\[\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 = [\alpha_1 \alpha_2 \alpha_3] [\mathbf{v}_1 \mathbf{v}_2 \mathbf{v}_3]^T \]
\[= \beta_1 \mathbf{u}_1 + \beta_2 \mathbf{u}_2 + \beta_3 \mathbf{u}_3 = [\beta_1 \beta_2 \beta_3] [\mathbf{u}_1 \mathbf{u}_2 \mathbf{u}_3]^T \]
Representing second basis in terms of first

Each of the basis vectors, u_1, u_2, u_3, are vectors that can be represented in terms of the first basis

$u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3$
$u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3$
$u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3$
Matrix Form

The coefficients define a 3 x 3 matrix

\[M = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} \\
\gamma_{21} & \gamma_{22} & \gamma_{23} \\
\gamma_{31} & \gamma_{32} & \gamma_{33}
\end{bmatrix} \]

and the basis can be related by

\[a = M^T b \]

see text for numerical examples
Change of Frames

• We can apply a similar process in homogeneous coordinates to the representations of both points and vectors.

• Consider two frames

\[
(P_0, v_1, v_2, v_3)
\]

\[
(Q_0, u_1, u_2, u_3)
\]

• Any point or vector can be represented in each
Representing One Frame in Terms of the Other

Extending what we did with change of bases

\[u_1 = \gamma_{11} v_1 + \gamma_{12} v_2 + \gamma_{13} v_3 \]
\[u_2 = \gamma_{21} v_1 + \gamma_{22} v_2 + \gamma_{23} v_3 \]
\[u_3 = \gamma_{31} v_1 + \gamma_{32} v_2 + \gamma_{33} v_3 \]
\[Q_0 = \gamma_{41} v_1 + \gamma_{42} v_2 + \gamma_{43} v_3 + P_0 \]

Defining a 4 x 4 matrix

\[
M = \begin{bmatrix}
\gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \\
\gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \\
\gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \\
\gamma_{41} & \gamma_{42} & \gamma_{43} & 1
\end{bmatrix}
\]
Working with Representations

Within the two frames any point or vector has a representation of the same form

\[a = [\alpha_1 \; \alpha_2 \; \alpha_3 \; \alpha_4] \text{ in the first frame} \]
\[b = [\beta_1 \; \beta_2 \; \beta_3 \; \beta_4] \text{ in the second frame} \]

where \(\alpha_4 = \beta_4 = 1 \) for points and \(\alpha_4 = \beta_4 = 0 \) for vectors

and

\[a = M^T b \]

The matrix \(M \) is 4 x 4 and specifies an affine transformation in homogeneous coordinates.
Affine Transformations

• Every linear transformation is equivalent to a change in frames
• Every affine transformation preserves lines
• However, an affine transformation has only 12 degrees of freedom because 4 of the elements in the matrix are fixed and are a subset of all possible 4 x 4 linear transformations
Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame

$\mathbf{P}, \mathbf{Q}, \mathbf{R}$: points in an affine space
$\mathbf{u}, \mathbf{v}, \mathbf{w}$: vectors in an affine space
α, β, γ: scalars
$\mathbf{p}, \mathbf{q}, \mathbf{r}$: representations of points
 - array of 4 scalars in homogeneous coordinates
$\mathbf{u}, \mathbf{v}, \mathbf{w}$: representations of points
 - array of 4 scalars in homogeneous coordinates
Object Translation

Every point in object is displaced by same vector
Translation Using Representations

Using the homogeneous coordinate representation in some frame

\[p = [x \ y \ z \ 1]^T \]
\[p' = [x' \ y' \ z' \ 1]^T \]
\[d = [dx \ dy \ dz \ 0]^T \]

Hence \(p' = p + d \) or

\[x' = x + dx \]
\[y' = y + dy \]
\[z' = z + dz \]

note that this expression is in four dimensions and expresses that point = vector + point
Translation Matrix

We can also express translation using a 4 x 4 matrix T in homogeneous coordinates $p' = Tp$ where

$$T = T(d_x, d_y, d_z) = \begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together.
Rotation (2D)

• Consider rotation about the origin by θ degrees
 - radius stays the same, angle increases by θ

$$x = r \cos (\phi + \theta)$$
$$y = r \sin (\phi + \theta)$$

$x' = x \cos \theta - y \sin \theta$
$y' = x \sin \theta + y \cos \theta$

$x = r \cos \phi$
$y = r \sin \phi$
Rotation about the z-axis

- Rotation about z axis in three dimensions leaves all points with the same z
 - Equivalent to rotation in two dimensions in planes of constant z

 $x' = x \cos \theta - y \sin \theta$
 $y' = x \sin \theta + y \cos \theta$
 $z' = z$

- or in homogeneous coordinates

$\mathbf{p}' = R_z(\theta) \mathbf{p}$
Rotation Matrix

R = R_z(θ) =

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Scaling

Expand or contract along each axis (fixed point of origin)

\[x' = s_x x \]
\[y' = s_y y \]
\[z' = s_z z \]
\[p' = S p \]

\[
S = S(s_x, s_y, s_z) = \begin{bmatrix}
 s_x & 0 & 0 & 0 \\
 0 & s_y & 0 & 0 \\
 0 & 0 & s_z & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Reflection

corresponds to negative scale factors

\[s_x = -1 \quad s_y = 1 \]

\[s_x = -1 \quad s_y = -1 \]

\[s_x = 1 \quad s_y = -1 \]
Concatenation

• We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices.

• Because the same transformation is applied to many vertices, the cost of forming a matrix \(M = ABCD \) is not significant compared to the cost of computing \(Mp \) for many vertices \(p \).

• The difficult part is how to form a desired transformation from the specifications in the application.
General Rotation About the Origin

A rotation by \(\theta \) about an arbitrary axis can be decomposed into the concatenation of rotations about the \(x \), \(y \), and \(z \) axes

\[
R(\theta) = R_z(\theta_z) \ R_y(\theta_y) \ R_x(\theta_x)
\]

\(\theta_x, \theta_y, \theta_z \) are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but with different angles
Rotation About a Fixed Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
\[M = T(-p_f) \, R(\theta) \, T(p_f) \]
Shear

- Helpful to add one more basic transformation
- Equivalent to pulling faces in opposite directions
Shear Matrix

Consider simple shear along x axis

$x' = x + y \cot \theta$
$y' = y$
$z' = z$

$$H(\theta) = \begin{bmatrix}
1 & \cot \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$
Quaternions

• Extension of imaginary numbers from two to four dimensions
• Requires one real and three imaginary components i, j, k
 \[q = q_0 + q_1 i + q_2 j + q_3 k \]
• Quaternions can express rotations on sphere smoothly and efficiently. Process:
 - Model-view matrix \rightarrow quaternion
 - Carry out operations with quaternions
 - Quaternion \rightarrow Model-view matrix