
ar
X

iv
:1

01
1.

26
84

v1
  [

as
tr

o-
ph

.S
R

]  
11

 N
ov

 2
01

0
Astron. Nachr. / ANXXX , No. XX, 1 – 7 (2011) /DOI please set DOI!

Magnetic fields of Ap stars as a result of an instability
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Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre-main-sequence
epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire main-
sequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We
suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong
toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscentof
the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields is actually between a few per cent up
to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible
with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time-scales of the
order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal
magnetic fields.
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1 Introduction

Chemically peculiar stars of types late B, A and early F are
often accompanied by magnetic fields. We will call them Ap
stars here collectively and will deal with the possible origin
of the magnetic fields observed at the surfaces of these stars.

The observations of magnetic Ap stars show a large di-
versity of field strengths, topologies, and rotational periods.
Only a fraction of roughly 10% of all A-type stars shows the
peculiarities and notable magnetic fields. Ap stars typically
rotate more slowly than normal A stars. The distributions
do overlap, but the Ap stars form a separate distribution and
are not just a slow tail of the period distribution of normal
A stars (Abt & Morrell 1995).

The magnetic fields have typically strengths of a few
kGauss and are not symmetric with respect to the rotation
axis. The variety of field strengths and geometries is large.
Measured fields are between 0.3 and 30 kG (Donati & Land-
street 2009). Especially the very slow rotators among the Ap
stars do not show any strong magnetic fields of above 7.5 kG
(Mathys 2008). An approximation of the magnetic fields by
dipoles leads to an axis of obliquity against the rotation axis.
This was shown to be large (inclined dipole) for the faster of
the Ap stars and smaller (aligned dipole) for the slower rota-
tors by Bagnulo et al. (2002). This picture was modified by
Mathys (2008) who found very large obliquity values also
for the extremely slowly rotating Ap stars.

There are also differing results on the evolutionary pic-
ture of magnetic intermediate-mass stars. Hubrig et al.
(2000) found the Ap star phenomenon to be much less fre-
quent among stars which have not completed the first 30%
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of their main-sequence life. This was challenged by Land-
street et al. (2007) who attributed at least part of the effect to
the difficulties in determining the ages of these stars. Young
intermediate-mass stars also show magnetic fields, and the
fraction of magnetic ones of the total number is roughly the
same as for Ap stars (about 7%, Wade et al. 2009), indi-
cating that Ap star magnetism persists from the pre-main-
sequence phase into the main sequence. In a study relating
the magnetic field strength to the age, Hubrig et al. (2009)
found a decrease of field strength with age where the stars
were between 0.3 and 14 Myr old, concluding that Herbig
Ae/Be stars are not the progenitors of Ap stars.

2 Ap star magnetism from Tayler instability

Nearly all magnetic-field configuration are prone to instabil-
ity eventually, if the field strength is large enough. Magnetic
fieldsB pertaining to electrical currentsj will become un-
stable unless they are force-free, i.e.B||j or are balanced
by other forces (Duez et al. 2010). Comprehensive studies
of toroidal magnetic fields were published by Vandakurov
(1972) and Tayler (1973). In many cases, non-axisymmetric
perturbations are the most unstable ones. The term kink-
instability refers to these cases. We will refer to the whole
class of current-driven instabilities by the term Tayler in-
stability and will not review the extensive research that has
been done on current-driven instabilities here.

Rotation stabilizes the magnetic fields. A rough estimate
tells that magnetic fields become unstable ifΩA ∼ Ω, where
ΩA = B/

√
µρ r sin θ is the Alfvén angular velocity andΩ

is the angular velocity of the domain storing the fields (Pitts
& Tayler 1985). At the expense of longer growth times,
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smaller fields can also become unstable. According to com-
putations by Arlt et al. (2007a) and Kitchatinov & Rüdiger
(2008), the magnetic fields stored in the solar tachocline
would be limited to a few hundred Gauss. They can be sta-
bilized further by adding a poloidal magnetic field, the sta-
bility limit then being about 1000 Gauss (Arlt et al. 2007b)
which still corresponds to fields withΩA ≪ Ω.

The stability against non-axisymmetric perturbations is
additionally enhanced if differential rotation is present. Ac-
cording to the analysis by Rüdiger & Kitchatinov (2010),
a weak differential rotation of a few per cent is already
enough to increase the stability limit for them = 1 mode
by a factor of three, wherem is the azimuthal wave number.
The computations were global in the horizontal direction
and local in the radial direction. We will look at the global
three-dimensional behaviour in the following study.

Since the magnetic fields of Ap stars are virtually con-
stant in time, it is interesting to find stable magnetic field
configurations which are not Tayler unstable and could
thus provide the constant fields observed. Braithwaite &
Nordlund (2006) have computed such equilibria for a non-
rotating star. They are twisted tori in which the poloidal
component is the main contributor to the magnetic energy.
More complex structures of surface magnetic fields were
found by Braithwaite (2008).

We are going another way here: the idea is that the ob-
served surface magnetic fields of Ap stars arenot the man-
ifestation of initially stable magnetic-field configurations,
but that they are the result of unstable magnetic fields. We
explore the possibility that the observed fields are remnants
of the Tayler instability of toroidal fields in the stellar inte-
rior.

3 Numerical model

The simulations employ a spherical shell to mimic the ra-
diative envelope of an Ap star. The computational domain
extends from an inner radius ofri = 0.5 to an outer ra-
dius ofro = 1 in normalized units. We need to emphasize
though that the simulations are not meant to cover the very
outer zones of the star which are characterized by low den-
sity and considerably different physics as compared to the
bulk of the purely radiative zone. The system is simplified
to the Boussinesq approximation which ignores variations
of the background densityρ in space and time. It does al-
low for small density deviations from the background value
thus permitting also simulations of convection with which
we are not concerned here. The solutions are obtained with
the spherical spectral MHD code by Hollerbach (2000).

The simulations are carried out in non-dimensional
units, where lengths are measured in terms of the stellar
radiusR∗, times in diffusion times,τdiff = R2

∗/η with η
being the magnetic diffusivity, and thus velocities and mag-
netic fields in terms ofη/R∗ and

√
µρ η/R∗, respectively,

whereµ is the magnetic permeability. The following non-
dimensional equations evolve the velocityu, the magnetic

field strengthB, and the temperature deviationΘ from a
given background temperature profileT0:

∂u

∂t
= −(u · ∇)u+ (∇×B)×B + R̃a rΘ

−∇p+ Pm△u, (1)
∂B

∂t
= ∇× (u×B) +△B, (2)

∂Θ

∂t
= −u · ∇Θ − u · ∇T0 +

Pm

Pr
△Θ, (3)

wherep is the pressure, the Prandtl number Pr is the ratio
of the viscosityν to the thermal diffusivityχ, Pr = ν/χ
while the magnetic Prandtl number Pm is the ratio ofν to
the magnetic diffusivityη, Pm = ν/η. The ratio ofPm to
Pr is often called the Roberts numberq. The densityρ and
the permeabilityµ are set to unity. The background temper-
ature profile follows

T0 =
rori/r − ri
ro − ri

(4)

accounting for an entirely conductive heat transport with up-
per and lower boundary values of 0 and 1, respectively.

The initial velocity field is a differential rotation accord-
ing to

Ω(s) =
Rm√
1 + s q

, (5)

wheres = r sin θ is the distance from the rotation axis and
Rm is the magnetic Reynolds number defined by

Rm =
R2

∗Ω∗

η
, (6)

whereΩ∗ is the angular velocity of the star. Lines of con-
stantΩ are parallel to the rotation axis and cause the least
amount of hydrodynamically induced meridional flows in
which we are not interested here. We assume that the star
has undergone a rotational braking before entering the main
sequence (Stȩpień 2000). Since this braking has affectedthe
surface of the star, a differential rotation near the ZAMS
may be a good model for at leatst some of the young
intermediate-mass stars. We are usingRm = 20 000, q = 4,
andPm = 1 in all computations. There is a single simula-
tion employingRm = 40 000.

Magnetic fields are measured in terms of Lundquist
numbers, which is the same as the non-dimensional Alfvén
velocity in our system of units,

B =
RBphys√

µρ η
. (7)

The initial magnetic field is a poloidal field of strengthB0 =
300 which is entirely confined in the computational domain.
This condition is not a requirement for the instability, butit
ensures that the radial fields finally measured on the surface
of the star are not relics of the initial-field configuration.

In time-dependent simulations, the magnetic diffusivity
η is far from the stellar one and typically represents a value
between the microscopic diffusivity of the plasma and the
turbulent diffusivity resulting from, e.g., averaged convec-
tive motions. Of the quantities entering (7),η is the one
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Table 1 The simulations described in this Paper. In the
symmetry column, S means symmetric and A means an-
tisymmetric with respect to the equator.Btop is the di-
menionless maximum magnetic field at the surface, while
ttop − tpert is the time when this maximum occurs, mea-
sured as a difference to the instance of perturbation in dif-
fusion times.

Initial
Run symmetry R̃a Btop ttop − tpert

NLA0 u: S,B: A 0 1075 0.00296

NLS0 u: A, B: S 0 167 0.00494

NLA-1E9 u: S,B: A −1 · 10
9 199 0.00582

NLS-1E9 u: A, B: S −1 · 10
9 64 0.00914

NLS-5E9 u: A, B: S −5 · 10
9 60 0.00842

which is known least. It is therefore best to eliminateη by
Rm and thus retrieve the physical magnetic fields by com-
paring its Alfvén speed with the rotational velocity,

Bphys =
√
µρΩ∗R∗

B

Rm
. (8)

The boundary conditions for the flow are stress-free at both
ri andro. There is no imposed velocity, neither in the bulk
of the computational domain nor at the boundaries. Vacuum
conditions are employed at bothri andro for the magnetic
field. Such conditions may look odd at the inner boundary,
but it is a fairly good way of getting the least amount of ar-
tifacts from the inner boundary which, as such, does not ex-
ist in reality. Perfect-conductor conditions are much worse,
since they cause strong currents near the inner boundary as
soon as the magnetic field tends to fill the whole stellar in-
terior fromr = 0 to ro which is prevented by the boundary
conditions.

Note that the use of spherical harmonics allows the
implementation of exact vacuum conditions which are not
straight-forward in grid codes. The boundary conditions for
the temperature fluctuations areΘ(ri) = 0 andΘ(ro) = 0.

The velocity and the magnetic field are expressed by two
scalar potentials each. These and the temperature fluctua-
tions are decomposed in Chebyshev polynomials in the ra-
dial direction and in spherical harmonics for the horizontal
directions. The potentials are thus functions of the Cheby-
shev degreek, the Legendre degreel, the azimuthal wave
numberm, and the timet. The spectral truncations were at
kmax = 40 Chebyshev polynomials and all spherical har-
monics up tolmax = 60 andm running from−l to l.

An implicit scheme integrates the diffusive terms in
spectral decomposition, whereas the nonlinear terms are
treated on a collocation grid in real space. We implemented
a variable time-step determined by the Courant-Friedrich-
Levy (CFL) criterion from the velocity and the Alfvén ve-
locity of the magnetic field. An additional safety factor of
0.2 is applied to the maximum possible time-step accord-
ing to the CFL criterion. Since a new time-step requires ex-
pensive inversions of the time-stepping matrices for all five
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Fig. 1 Magnetic field fluctuations as functions of time for
the run NLA0 with R̃a = 0 and a perturbation which is
antisymmetric inB.

variables, we update the time-step only every 100 integra-
tion steps. This is certainly a compromise but turned out to
ensure – together with the safety factor of 0.2 – enough sta-
bility to run the code through the injection and growth of
the unstable mode.

4 Results

All the simulations are first evolving the axisymmetric ini-
tial conditions in a three-dimensional domain. The energy
in the non-axisymmetric modes remains about 30 orders of
magnitude smaller than the energy in them = 0 mode.
The differential rotation winds up the initial poloidal mag-
netic field very quickly. At the same time, Maxwell stresses
grow and diminish the differential rotation. The whole pro-
cess reaches a maximum toroidal field after a time which
can be estimated bytgrow =

√
µρR∗/B0. In our case with

B0 = 300, this corresponds to a dampig time for the differ-
ential rotation oftdamp = 0.0033 diffusion times. Note that
this time-scale does not depend on the Reynolds number. In
a system of coupled equations of motion and induction, a
stronger differential rotation also means stronger magnetic
fields and thus stronger Maxwell stresses changing the dif-
ferential rotation.

An earlier stability analysis delivered the maximum
field strength of the axisymmetric configuration, be-
yond which the system becomes unstable under non-
axisymmetric perturbations (Arlt & Rüdiger 2010). In the
present study, we inject a non-axisymmetric perturbation
into the system attpert = 0.003 diffusion times which is
when the axisymmetric configuration is already supercriti-
cal. The perturbation has the topology of aP 1

2 (cos θ) cosφ
spherical harmonic for the antisymmetric cases (‘A’ in Ta-
ble 1) and that of aP 1

2 (cos θ) cosφ spherical harmonic for
the symmetric cases (‘S’ in Table 1) in the poloidal potential
of the magnetic field. This also corresponds to an antisym-
metric and a symmetric magnetic field perturbation, respec-
tively. The simulations presented here are listed in Table 1.
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Fig. 2 Magnetic field fluctuations as functions of time
for the run NLA-1E9 withR̃a = −109 and a perturbation
which is antisymmetric inB.
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Fig. 3 Magnetic field fluctuations as functions of time for
the run NLS0 withR̃a = 0 and a perturbation which is
symmetric inB.

The nonlinear evolution of the instability of a pertur-
bation which is antisymmetric in the magnetic field (run
NLA0; resulting in a symmetric flow perturbation) is shown
in Fig. 1 forR̃a = 0 in terms of the rms magnetic field com-
ponentsBrms

r =
√
〈B′2

r 〉 etc. The maximum radial mag-
netic fieldBmax

r , determined only on the outermost surface
of the collocation grid, is also shown. The surface is located
at a distance of∆r = 5 · 10−5 from the outer radial bound-
ary. It is interesting to note that the maximum surface ra-
dial field supercedes the rms values of the internal fluctuat-
ing magnetic field. The corresponding run NLA-1E9 with
R̃a = −109 is shown in Fig. 2. The emerging fields are
lower in general, and the maximum is reached at a later
time. The maximumBr at the surface remains almost con-
stant for the rest of the simulation.

Figures 5 and 6 show the surface magnetic fields of
the simulations NLA0 and NLA-1E9, respectively. Both are
taken at the moment when the radial surface field reaches its
maximum; these are att− tpert = 0.00296 diffusion times
for NLA0 and att − tpert = 0.00582 for NLA-1E9. The
m = 1 mode is evidently the dominating one for NLA-1E9,

0.005 0.010 0.015 0.020 0.025
DIFFUSION TIMES

1

10

100

1000

M
A

G
N

. F
IE

L
D

 F
L

U
C

T
U

A
T

IO
N

S

rms B’
rms B_r’
rms B_theta’
rms B_phi’
max B_r’ at surface

Fig. 4 Magnetic field fluctuations as functions of time for
the run NLS-1E9 with̃Ra = −109 and a perturbation which
is symmetric inB.

while the run withR̃a = 0 shows much smaller azimuthal
scales. Stable stratification seems to cause smoother surface
fields in general, regardless of the symmetry of the perturba-
tion, and also weaker magnetic fields. A purely antisymmet-
ric solution has to showBr = 0 in the equatorial plane of
the rotating sphere, thereby excluding an obliquity of90◦.
It is thus interesting to excite a symmetric mode by a sym-
metric perturbation, and to test whether maximum obliquity
can be achieved.

Figures 3 and 4 show the corresponding rms magnetic
fields for symmetric perturbations. The fields emerging are
typically weaker and tend to reach their maximum about
20–30% later than the fields emerging from an antisym-
metric perturbation. Both symmetries have been shown to
be unstable in the analysis by Arlt & Rüdiger (2010) near
t = 0.003. However, a look at the surface plots in Figs. 7
and 8 tells us that there is no pure symmetry anymore after a
certain time; the plots were made at the times of maximum
surface field, i.e.t − tpert = 0.00494 diffusion times for
NLS0 and att − tpert = 0.00914 diffusion times for NLS-
1E9, respectively. Numerical noise is apparently growing
and delivering a substantial contribution from the antisym-
metric mode. We conclude that antisymmetric configura-
tions are more likely to become visible on the stellar surface
than symmetric ones. This of course excludes an obliquity
of precisely90◦.

The field strengths appearing at the surface are quite
substantial. They range from 4% to 76% of the maximum
toroidal field strength inside the computational domain. The
corresponding field strengths are between 1 kG and 29 kG
according to (8) for stars with radii between1.5R⊙ and
2.5R⊙ and a rotation period of 10 days. This is a nice match
with the observed surface magnetic fields. For longer rota-
tion periods, the dimensionless field strengths correspondto
smaller physical field strengths.

The next question concerns the time it takes a real star
to show substantial fields on their surfaces, as a result of
the Tayler instability of internal toroidal fields. Questions

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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Fig. 5 Surface plot of the magnetic field from the simulation NLA0 att − tpert = 0.00296. The contours representBr

while the arrows showBθ andBφ. For the sake of clarity, a smaller number of arrows is plotted as compared to the actual
number of collocation points in the simulation.

Fig. 6 Surface plot of the magnetic field of the simulation NLA-1E9 at t− tpert = 0.00582. The contours representBr

while the arrows showBθ andBφ.

about time-scales are always difficult to answer from non-
linear simulations since the magnetic Reynolds number will
always be much smaller than the stellar one. This either
means that the angular velocity in the simulation is way too
small, or the magnetic diffusivity is much larger than the
microscopic value in stars. It is thus necessary to run sim-
ulations at various magnetic Reynolds numbers to see how
the results scale with Rm.

While a full exploration of this dependence goes beyond
the scope of this paper, we ran a simulation like NLS0, but
with Rm = 40, 000 and obtain a time of maximum surface

field of ttop− tpert = 0.00242. The results indicate attop−
tpert ∼ Rm−1 dependence. That has the advantage that the
emergence time is simply a multiple of the angular velocity
Ω:

tphys =
C

Rm

R2
∗

η
=

C

Ω
, (9)

whereC = 98 is the result of fitting the two points with
a power law. A 10-day rotation period of the star results in
an emergence after0.43 yr for NLS0, while it is ten times
longer for a 100-day rotation period. The longest emergence

www.an-journal.org c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Fig. 7 Surface plot of the magnetic field from the simulation NLS0 att − tpert = 0.00494. The contours representBr

while the arrows showBθ andBφ.

Fig. 8 Surface plot of the magnetic field from the simulation NLS-1E9 at t − tpert = 0.00914. The contours represent
Br while the arrows showBθ andBφ.

delays seen in the simulations are about 8 yr with a strongly
stable stratification.

5 Discussion

We simulated the nonlinear, three-dimensional evolution of
the Tayler instability in a spherical shell. The instability pro-
vides magnetic field configurations of mostly large scales
with a preference to modes which are nonaxisymmetric and
antisymmetric with respect to the equator. The field strength
of the maximum radial magnetic field at the stellar surface
was found to be between 1 and 29 kG which is what is

observed on most Ap stars. The emergence of the remnant
fields from the instability at the surface of the star is delayed
by several tens of stellar rotations. This estimate holds only
if ttop − tpert ∼ Ω−1, however. In reality, it is a lower limit
for the emergence delays.

This is certainly a too simple way of getting the time de-
lays between the instability and flux emergence at the sur-
face, but we can conclude that the time necessary to ob-
serve the remnant fields are shorter than evolutionary time-
scales. By contrast, Arlt & Rüdiger (2010) argued that the
flux rise is of diffusive nature and obtained delays of sev-
eral Myr. The present study indicates that the time-scale

c© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
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will be shorter. As a consequence, if magnetic fields would
appear on Ap stars at later times during their evolution, it
must be by other factors which influence the stability limits
of the potentially stored toroidal fields. Since the instabil-
ity as well as the rise of fields to the surface are very fast,
it is highly unlikely that the phenomenon itself is seen in
progress.

As the instability drains energy from the magnetic field,
the growth quickly halts and the remaining magnetic field
suffers only from the flows excited by the instability and
from Ohmic diffusion which is very slow. The rms veloc-
ities are about three times weaker than the rms magnetic
fields shown in Figs. 1–4 and do not cause quick changes of
the surface structure. This gives the impression of stationary
magnetic fields, while the period of instability is very short
and most likely missed by observations.

The finding by Mathys (2008) that the very slow rotators
are not hosting any fields above 7.5 kG would be compat-
ible with the fact that an originally slower rotation of the
pre-main-sequence star has not allowed very strong toroidal
fields to build up, since the instability limit is lower for slow
rotation, whence the smaller remnant fields from the Tayler
instability.

The drawback of the present approach is the Boussinesq
approximation which is actually valid for small deviations
from the adiabatic temperature gradient. The imitation of
a very stable stratification by a highly negativẽRa is still
telling us qualitative features of the emergence of surface
fields, but quantitatively, we need to be careful with emer-
gence times and flux. The same also holds for computations
in the anelastic approximation. First computations of the
scenario in a fully compressible spherical shell are on the
way.

Normal A stars would thus still be hosting considerable
toroidal fields. The emergence times of stable magnetic-
field configurations are very long and probably beyond
100 Myr (Mestel & Moss 2010). Since they rotate typi-
cally faster than Ap stars, normal A stars may have a higher
threshold for the Tayler instability and could thus be able to
keep strong toroidal magnetic fields in their interiors with-
out showing substantial fields on the surface. The implica-
tion would be, however, that as soon as the stars start to
become giants, their radii grow, and the rotation periods in-
crease substantially. The fields will no longer be stabilized
and must become unstable. This would imply that nearly
all stars on the giant branch having intermediate-mass stars
as progenitors should show magnetic fields. These are of
course much weaker because of the larger radius and the
steep decrease of field strength with radius, especially for
higher modes than dipoles. The giant EK Eri has been con-
sidered a descendant of an Ap star (Stȩpień 1993; Dall et
al. 2010), i.e. the star would have shown surface magnetic
fields through nearly all its life. However, the magnetic
fields may have been emerging only when the star evolved
away from the main sequence and became a slow rotator,
and the progenitor would actually be a normal A star. Since

the star has a relatively low mass among the “A-star descen-
dants” its age of roughly 1 Gyr may be even compatible
with the diffusive emergence of fields discussed by Mestel
& Moss (2010) though.

The critical question now is how Ap stars are discrimi-
nated from normal A stars in an early stage of stellar evolu-
tion. This problem cannot be solved in the context of this
Paper, but it is suggested that it is differences in the ro-
tational evolution during the pre-main-sequence phase that
decides whether stars evolve into normal A stars or Ap stars.
It would not be necessary to think of a presence or absence
of magnetic fields during star formation. These “primordial”
fields are most likely processed during the Hayashi phase
and will be highly modified.
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