Linfor3D User Manudl

IDL version 6.5.7
Matthias Steffen, Hans-GUnter Ludwig,

Sven Wedemeyer & Andrew J. Gallagher

FO0 version 0.7.5
Andrew J. Gallagher & Maftthias Steffen

March 31, 2022

2 CONTENTS
Contents
1 Introduction
1.1 TheIDL Version o v i i e
1.2 The FOO version o i e
1.3 Thedifferences e
1.4 Finalword e e
2 Getting started
2.1 Running the IDL version e
2.2 Runningthe F90 version
2.2.1 Getting a custom installation L oL
3 Basic Equations of Radiative Transfer

3.1 Transfer equation for the continuum intensity
3.2 Transfer equation for the line intensity
3.3 Transfer equation for the line depression
3.4 Contribution functions L e e e
35 GIreytest CaSe . . v v v v v v i e e e e e e e e e e e e e e e
Linfor3D and MPI
4.1 Readinginputdata
42 Writingdatatofile
4.3 Computing 1D continuous opacitieso .ol
4.4 Computing 3D continuous opacities v v .ttt e e e e
4.5 Computing all radiative transfer oL L o
45.1 DoRTinfull3D e
4.5.2 DoRT in 1D with Curve-of-growth computations
4.5.3 DoRT in 1D without Curve-of-growth computations
4.6 Limitations of LinforSD with MPl

Installing GDL and running Linfor3D
5.1 Running LinforBD with GDL
5.2 Running Linfor3D in parallel

Program Files

6.1 IDLprogramflow e e
6.2 Structures in Common Block linfordata
6.3 IDL/GDL Files e e e e e
6.4 FO90program flow e e e e
6.5 FO0Files e e

Parameter Input: linfor_setcmd.pro (IDL) linfor3d.setcmd (F90)

7.1 F90 specific flags and settings oL
7.1.1 outfile
7.1.2 printcobold
7.1.3 debug e
714 wiBX3 . e
7.1.5 dlflag ...
7.2 IDL specific flags and settings
7.2.1 pltflag . . . o
722 freeflag

723 ffpath. e

CONTENTS 3

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

Program execution flags IDL/F90) 40
7.3.1 runflag e 40
732 cvlflag e 41
733 cov2flag e e 41
734 cv3flag 41
7.3.5 mapsflag 41
7.3.6 cc3dflag 42
737 nlteflag 42
General paths 42
7.4.1 abupath e 42
742 opapath oL e e e e 43
743 gaspath e 43
744 eospath oL e 43
Model data e e e 43
751 context e e e e e e e e 43
7.52 rhdpath 44
753 modelid 44
754 parfs. . ..o e e e 44
7.5.5 xbepath3 e 44
7.5.6 xbcpathx e 44
7.5.7 xbepath e 44
7.5.8 abuid 45
7.5.9 abuidx 45
7.5.10 dmetal L e e e 45
7511 dalpha 45
7512 nxSKip .. .o e 46
7.5.13 nysKip e e e 46
More model information (MOST read from parameter file for CO’BOLD data) 46
7.6.1 opafile. e 46
7.6.2 gasfile e 46
7.63 eosfile 46
7.64 htauQ 47
7.6.5 qmol e e 47
7.6.6 Teff 47
T.0.T Grav e e e e e e 47
7.6.8 tsurffac L e 47
Model data - reading of “full’ files (CO®BOLD only) 48
7.7.1 isnapfull 1 . ..o 48
772 isnapfull 2 ..o 48
7.7.3 astepfull ... L e 48
BDymeanmodel L 49
T.8.1 mavg . .. e e e e e e 49
External 1D reference model 49
7.9.1 atmpath e e 49
7.9.2 atmfile e 49
Line data and radiative transfer 50
7.00.1 Linfs . . o 50
7.10.2 Tutaulo 50
7003 Tutau2 . . .o 50
7.004 dlutau e e e e e 50
7.10.5 Tetaul . .. oo 50

7.10.6 Ictau2o 50

CONTENTS

7.10.7 dlctauo e e 50
7.10.8 Hbrd 51
7009 VSIND . . . L e e e e e e e e e e e e 51
70010 XIMICX . . . v v o e e e e e e 51
70011 ximicl ..o 51
71012 xiMIC3 . .o 52
TA0 I3 XIMACK + o v v o e 52
7.0 14 ximacl e e e e e e e e e e 52
7.00.15Ximac3 . . . L e e e 52
70016 vEacX . . . 52
700017 vEacy . . . e e e e e e 52
70018 vfacz e e e e e e e e e 53
7.00.19micro e e e e 53
TA020XI2 « v v v e e e e e e e e 53
7021 Xih .o 53
TA022Xi-d .. L e 53
7.10.23dclam e 54
7.1024intmodel L e 54
7.102510ntlineo L 54
7.10.26nchunk L e e e e e e e 54
7.11 Angle quadrature schemes L Lo 55
7011 ntheta oL e e e e 55
TAL2 nphi e e e 55
TA13 mul . ..o 55
TA1.4 Kphi . . . oo 55
TA1S raybase e e 56
7.12 Curve-of-Growth computations e 56
TA2.1 COZ . v e e e e e 56
8 U T 56
7023 gflgmin Lo 57
7124 gfigmax oL e e 57
713 IDLExample o .. e e e e 58
7.14 FOOExample e e e 60
Line Data File: line.dat 64
8.1 Parametersin Line DataFile 64
1.1 clam. e 64
8.1.2 gfscale 64
8.2 LineDataFormats e 64
8.2.1 Continmumonly 64
8.2.2 Single line calculations, line data format <0 65
8.2.3 Single line calculations, line data format ‘1>, ... 66
8.2.4 Single line calculations, complete line data format 2> 68
8.2.5 Single line calculations, complete line data format ¢3> 69
8.2.6 Single line calculations, complete line data format ‘4> 70
8.2.7 Single line calculations, complete line data format <5 71
8.2.8 Single line calculations, complete line data format 6> 71
8.2.9 Single line calculations, complete line data format ‘7> 72
8.2.10 Multiple Line Calculations 73
8.3 Conversion of line broadening parameters 74
8.3.1 Quadratic Stark effect 74

8.3.2 Vander Waals broadening 75

CONTENTS

8.3.3 ABO van der Waals broadening formalism
8.3.4 Natural line broadening Lo L

9 Departure Coefficients

9.1
9.2

The xbe file e e
The xbc2 file e e

10 Output files

10.1
10.2
10.3

BIOSSAVE &+ v v v v v o e e e e e e e e e e e e
WIOTESIOTE & . v v v v v e e e e e e e e e e e e e e
Useful UIO Information 0 i i o e e e e e e e e e

11 Output file structures

11.1

11.3

11.4

linfor 3D_l.uiosave e e e e
11.1.1T ABU . . e e e e
11.1.2 ATOM e e
11.1.3 CMD e e e e
11.1.4 CONST e e
11.1.5 INFO e e e s
11.1.6 LINE e e

11.2.1 CONTF e e e e e e
11.2.2 IMUPHI e e
11.2.3 MAPS . . . e e e e
11.2.4 RESULT e e e e e
linfor 3D 3.ui0save e e e e e e e e e e
11.3.1 CONTE3D e e s s e e e
Lnfor_1X.uiosave e e e e

12 Plotting output

12.1
12.2
12.3

Plotting the synthesis e
Plotting contribution functions
Plotting the Curve-of-Growth L

13 Timing statistics

14 IONDIS

14.1
14.2

ATOMS o e e e
Molecules L e
142.1 Somedefinitions
1422 EBqUationS ot i e e e e e e e e e e e
14.2.3 Criterion for convergence it
1424 Initial QUESS o v e e e e e e e e e
14.2.5 Variablenames L e

15 ionopa

15.1
15.2
15.3
15.4
15.5
15.6
15.7

POUL o e e

0KaPDA e e e e e

76
77

78
78
79

80
80
83
83

85
85
85
85
85
85
87
87
88
88
90
91
92
94
94
94

95
95
96
97

98

100
100
101
102
102
104
105
106

6 LIST OF TABLES

15.8 pgas e e e e e 109
15.9 namj e e e e e 109
15.10€rac] e 109
15.11zeta o e 109
1512403t e e e 110
15.13dm e e 110
15.14dalpha e e 110
15.15avim e e e 110
15.16€he e e 111
15.17abupath e e e 111
15.18nami e e 111
15.19abui e 111
1S20Exampleo e 111
16 ionopa2 113
16.1 temp e e 113
16.2 Qin e 113
163 alam e e e 113
16.4 pe . . . e 113
16.5 PO . . e e 114
16.6 densnc e e e e e 114
16.7 okappa e e e e e e e 114
16.8 osigma e e 114
16.9 qflg e e 115
16.10namj e e e 115
16.11£rac] o e e e e e 115
16.12zeta e e 115
16.131N1t o e e 116
16.14dm e e 116
16.15dalpha e 116
16.16avm e e 117
16.17€he e 117
16.18abupath e 117
16.19nami e e 117
16.20abui e 117
16.21Example e e e e e e 118
List of Figures
1 Analytical Curve-of-Growth 19
List of Tables
1 Listofinstall options e 11
2 List of shared routines e 31
3 List of all structures in common blocks ’linfordata’ 32
4 Listof all IDL modules e 34
5 Listof all FO90 modules e 37
19 Listofatoms e e e 100
20 Small molecular network: 5 atoms, 8 molecules 101

21 Large molecular network:10 atoms, 14 molecules 102

1 Introduction

Linfor3D is based on the old code LINFOR (short for LINe FORmation code). There are two versions of
the code that are currently being developed side-by-side.

The first version of the code has been developed and tested from conception in IDL. This can also run
on certain versions of GDL (see Sect. 5). The bulk of the heavy computations are done inside Fortran
routines, which are called by the IDL code’s program flow.

The second version of the code is based on the first version, but is complete% written in Fortran. This
version has the advantage of being faster overall for a given compiler (e.g. Intel™ Fortran or GNU Fortran)
as it is capable of running in parallel with MPI (Message Passing Interface), which is discussed later.

Like the codes themselves this user manual is under construction, too. Nevertheless, it will be of sub-
stantial help while installing and running Linfor3D, creating new command and spectral line data files for
Linfor3D in either IDL or Fortran, and interpreting the output data.

To get a brief overview of how to install and run both versions of Linfor3D in their simplest forms, you
should read the “Getting started” section (Sect. 2) after this brief overview of both codes.

1.1 The IDL version

Here is a short break down of the limitations of the IDL/GDL version of the code:

e Geometry: This version is limited to spectrum synthesis from local hydrodynamical models
(solar-type convective atmospheres).

o Efficiency: No effort was yet taken to really improve the execution speed of this IDL/Fortran code.
In fact there are still some parts in the code which are unnecessary for the current operation. Their
execution should be controlled by additional flags in a future release.

o Parallel processing: The newer versions of Linfor3D (version 6.0.0 onwards) have been ported
so that it runs on GDL as well as IDL. This means that parallel processing — as an embarassingly
parallel job — is possible. See Sect. 5.2 for further information and updates. However, no effort has
been made to add parallel processing in to the internal program flow of Linfor3D.

1.2 The F90 version

The Fortran version is newer, and as such has been developed to remove some of the IDL versions’
limitations:

e Geometry: Like its IDL counterpart, this version is limited to spectrum synthesis from local hy-
drodynamical models (solar-type convective atmospheres).

o Effeciency: Efforts have been made to improve efficiency of the code’s execution where possible.
However, because both codes are reliant on the same modules that are resposible for the majority of
the heavy computing, certain deliberate inefficiencies had to be included, which affect the memory
usage, particularly when running in parallel. Once the two codes begin to diverge, this inefficiencies
can be readdressed and improved.

o Parallel processing: The Fortran version of the code has been developed with parallelization in
mind. As such, the code is parallelized over several dimensions that are automatically sorted ac-
cording to a priory decided by the code (this is discussed later).

1.3

1 INTRODUCTION

The differences

The F90 version of Linfor8D was written so that it closely follows its IDL counterpart. This was so that
both could continue to be developed together. As such, the more computationally expensive parts of
Linfor3D are still called by both versions. One reason behind this is so that bugs can be more easily found
and fixed. Another reason is that it is important to have a working code and a reference while efforts are
made to include new state-of-the-art physics, which is always in consideration.

At the moment there are some small differences in the behaviour of the two versions:

14

. Installing: The methods of installing the two codes differ slightly. The FOO version of the code as

a script - install that will deal with most machine-dependent issues this version may face. The
IDL version is installed from a more traditional Makefile (see Sect 2).

. Parallelization: While it is possible to run the IDL version of Linfor3D using an “embarrasingly

parallel” approach (although mostly through GDL because of licensing concerns, see Sect. 5), this
version of Linfor3D remains an inherently serial code. The F90 version was written to use with MPI
in mind (see Sect. 4).

. Memory: The F90 version of the code will use somewhat more memory during its execution than

the IDL counterpart, which is increased with increasing CPU numbers. This is because the F90
version of the code must load all data in to memory before it computes any radiate transfer. This is
so it can parallelize these computations. The code was designed to run on large cluster machines in
this mode. The IDL version only loads a single atmosphere to memory at a time and executes the
program flow sequentially. The F90 version will follow the same operation if only one CPU is used.

. Program flow information: You will notice as you experiment with Linfor3D that information that

is printed to screen is quite dynamic, especially in the new FO90 verion of the code. This is so that
the screen or a file is not overwhelmed with trivial information, or in the case of the F90 version, the
same print outs on every CPU. This version can also print much more detailed information about
the input data when CO®BOLD models are provided.

. Plotting: The IDL version of Linfor8D can be used to plot output in several ways depending on

how one sets up the parameter file (see Sect. 7). The F90 version does not do this. In all likelyhood,
this will not be a feature of this code.

Final word

It is important to stress that while the two codes will eventually deviate so much that the IDL version is
deprecated, the main objective to any and all development has always been user friendlyness. All post-
process libraries available to the community should continue to work in the same way, and there are no
plans to ever change this.

2 Getting started

This section deals with installing and executing the simplest form of Linfor3D.

WARNING: No efforts have been made to compile nor test Linfor3D in Apple 0sx©. As such, we can
offer no support for those that attempt to run Linfor3D on this OS.

2.1 Running the IDL version

First make sure that you have all files which are listed in Tables 4 and ??. These files should be put
together in a directory which can be accessed under IDL (or GDL using versions 6.0.0 onwards).

The routines responsible for the most computationally expensive parts of Linfor3D are called as external
Fortran routines by linfor_3D_ionopa.pro and linfor_dort.pro. In order to properly run Linfor3D,
the Linux path variable $IDL_SO should be defined. After unpacking Linfor3D, create a new sub-directory
within the directory tree called bin, then define IDL_SO:

> export IDL_SO=<LINFOR_DIRECTORY>/bin/

This needs to be added to your Linux login script to be consistently defined by your Linux OS.

Next you need to compile the Fortran libraries dort_idl.so and ionopa2_idl.so. The source code and
Makefiles are located inside the xmono directory. By default, the libraries are compiled using the Intel©
Fortran, IFORT, compilers as the Makefile is linked to Makefile_ifort. One can change the link to any
other Makefile in the directory. To compile simply enter the following command:

> make

If the shell variable $IDL_SO is properly defined, the two libraries should compile and be moved to the
bin sub-directory. If the compilation fails, please check this variable and that the directory it points to
exists and the compiler selected is available on your machine.

Now two files have to be edited and provided in order to run Linfor3D:

e linfor_setcmd.pro:
This file, which is an IDL script, defines the data structure cmd. This structure contains all necessary
information (except for spectral line data) like, e.g., paths and names of model file(s). See Sect. 7
for more details.

e line.dat:
This file contains all data for spectral line such as, e.g., oscillator strength and broadening param-
eters. The usual file name is 1ine.dat but it might be given another name which then has be to
entered in 1linfor_setcmd.pro. For a quick execution, examples of these line files in every file
format (see Sect. 8 for details on these formats) are supplied within the directory tree under the
Data subdirectory.

Finally, all IDL/GDL versions of Linfor3D require the “Universal Input Output” (UIO) IDL routine library
(written by B. Freytag) for I/O related to CO®BOLD files, and version 6.0.0 onwards requires them for
ALL I/O done during its execution.

This directory must be defined in the $IDL_PATH either in one’s BASH script or an IDL starup script.
After doing so, you can run Linfor3D by starting IDL or GDL (see Sect. 5) and type:

IDL> .r linfor_3D.pro

10 2 GETTING STARTED

Several output files are created. It is possible to load these files in IDL or GDL. See Sect. 10 for more
details.

Normally, one uses a bespoke 1infor_setcmd.pro file in a directory of their choosing. If this is the case
then one must start IDL or GDL in the proper sub-diretory and then type the following:

IDL> common linfordata, info, cmd, const, atom, abu, line, gas, eos, result
IDL> .com bespoke_linfor_setcmd.pro

% Compiled module: LINFOR_SETCMD.

IDL> .r linfor_3D.pro

One of the most efficient ways to run Linfor3D is to create an IDL/GDL wrapper around one’s bespoke
setcmd program, as the following example depicts:

common linfordata, info, cmd, const, atom, abu, line, gas, eos, result
outfile = ’output.uiosave’

.compile bespoke_linfor_setcmd.pro

.run linfor_3D.pro

if keyword_set(cmd.cc3d_flag) then §

uio_save, filename = outfile, /verbose, $

info, cmd, const, atom, abu, line, result, maps, imuphi, contf, contf3d §$
else $

uio_save, filename = outfile, /verbose, $

info, cmd, const, atom, abu, line, result, maps, imuphi, contf

exit

This runs the bespoke Linfor3D script and saves the entire output as a tailored save file, as well as the
default uiosave files usually output by Linfor3D that splits the contents of the structures mostly defined in
linfordata.

A brief description of the changes made for all Linfor3D releases (up to the version you are running) is
given in readme_<version> given in the top directory of your Linfor3D installation.

2.2 Running the F90 version

The £90/ subdirectory contains all modules necessary to compile Linfor3D. Currently, the code
will compile using the GNU OpenMPI and Intel© parellel studios X MPI Fortran compilers;
mpifort,mpif90,mpiifort, respectively. The Intel© compiler must be newer than the 2017 version.
If one wishes to use the Intel© compiler suite, we highly recommend that the user install the latest ver-
sion, which is available to most linux and UNIX-based systems via Intel© oneAPI. The instructions for
downloading and installing Intel© oneAPI can be found in this link. The install file — install — will
expect one of these compilers on your machine so that it can compile Linfor3D. By default it will look for
the faster Intel© compilers first. One can also force the install script to use a particular compiler using
the install -c <compiler name> option. If it cannot find any compiler the script will exit. No efforts
have been made to compile this code on the Apple© OSX.

Installation is similar to installing CO®BOLD:

> install

The install file is used to create a bespoke Makefile then that is used to compile the code using all
available CPUs. Several architecture-defined I0 related flags' that should be defined by the computer
Linfor3D is installed on.

'The 10 framework UIO — written and developed by B. Freytag — requires bespoke compiler flags to properly extract infor-
mation from the binary UIO formatted input files.

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/installation/install-using-package-managers.html#install-using-package-managers

2.2 Running the F90 version 11

Once properly compiled create a new working directory, copy or link the executable to this directory and
copy linfor3d.setcmd from Data/. Edit this file so that all input files and directories can be found.
This file is extremely similar to 1infor_setcmd.pro discussed above in Sect. 2.1.

The code can be executed with the following command:

> ./linfor3d.x

Unlike its IDL companion, the F90 version of Linfor3D is capable of executing on multiple CPUs. To run
the same set up on multiple CPUs one must execute the code with the following command:

> mpirun -np <NCPU> linfor3d.x

where NCPU is the number of CPUs requested by the user at execution. The parallelization module will
then use this to parallelize the job over the number of CPUs allocated by the user.

If you wish to compile a fresh copy of Linfor3D type:

> make fresh

To remove all compiled modules and objects while leaving the module links and Linfor3D executable type:
> make clean

To uninstall Linfor3D simply type:

> make uninstall

This will completely remove all compiled objects and modules, and also remove the Makefile itself. One
can the install once again as before using the install file.
2.2.1 Getting a custom installation

In addition to the basic installation illustrated in Sect. 2.2, install can also install a more custom version
of Linfor3D using the options now tabulated.

Command Description

install -h Returns the complete help guide to terminal. No code is compiled.

install -d Compiles Linfor3D with some useful debug options. Will stop all optimization.
Not recommended for normal use.

install -m Compiles the code without using the F90-only dort_module module flags, es-

sentially compiling the same version of dort. £90 as is compiled for use with the
IDL version of the code. Not recommened.

install -D Compiles Linfor3D with a large amount of debug options, including all warnings.
For use only for development. Not recommended for normal use.

install -c <ARG> | Compiles Linfor3D with a user specified compiler.

install -s Will compile the Makefile on a single CPU. Normally install looks at the machine
architecture and makes the install on as many CPUs as possible to speed up the
compilation time.

install -1 <ARG> | The default Makefile created by install links the default location of xmono direc-
tory to the Linfor3D directory tree. This option uses the directory expressed in
<ARG> instead.

install -x <ARG> | The Makefile created calls the executable 1infor3d.x as standard. This option
changes the executable name to what is expressed inside <ARG>.

Table 1: A list of options that can be included in install to create a
custom Linfor3D compilation.

12 3 BASIC EQUATIONS OF RADIATIVE TRANSFER

3 Basic Equations of Radiative Transfer

3.1 Transfer equation for the continuum intensity

dIfl —_ Cc jC c c
a__K/II/l-'-K/IS/I (1)
together with the definition of the optical depth along the ray
d7{=-«{ds, ()
reads
=L 7o
d7
The solution of Eq. (3) is
o
9 = f S exp{—(r' —Drd T + I5(Th) exp{—(zh — 9} @)
7

where T‘/’l is the continuum optical depth at the lower boundary. The emergent continuum intensity is:

1579 =0) = j; ! S exp{-t'}dr" + Ij(le) exp{—rlj}. 5)

Defining
ui=17-59 ©6)
we have the transport equation
du dSq
= (N

c —YaT c
dT/1 dT/l

The solution for ¢ is found by replacing S by d §¢/d 74 in Eq.(4):

ey = [a4) expl(eh — 1) @®)
AT = » dTi p T T/l T uﬂ T/l exp T/l T/I

The emergent intensity can also be obtained from Eq.(8):

o . T dSS(r)
55 = 0) = §4(15 = 0) +f 4’

i exp{—-7'}d7 + uﬁ(‘rﬁ) exp{—‘rlj}. ©)
0 T/l

Now we define a fixed central wavelength, 1y, with the corresponding fixed (universal) optical depth
scale 7, which is equidistant in log 79 and may used alternatively for all integrations. On this optical
depth scale, Eq.(4) becomes

70
I(10) = f
7o

giving the continuum intensity at wavelength A as a function of optical depth 7. Note the factor &}/«
under the integral. The intensity at the lower boundary, I;(Tg), can be computed from the diffusion ap-
proximation,

S5(th) expl—(75(r) — T4 dt) + () expi- (T5xh) — Ty@))l, (10)

okn | ;.’S\

dSq
K d7o

but the boundary term may also be neglected, at least for the emergent intensity, because the exponential
factor is usually very small. For the emergent intensity we have from Eq.(5):

I5(th) = S5(th) + K—O), (11)

b

To K<
(19 = 0) = fo = S5(rg) expl-ti(rphd g + Ii(rg) exp{-Ti(p)]. (12)
0

3.2 Transfer equation for the line intensity 13

Similarly, Eq.(8) becomes

uy(to) = f 0 d—T;(Tf)) exp{—74(tp) — T5(T0) AT + u(rh) exp{—Ty(rg) — T5(T0)} - (13)

Note the absence of the factor &}/« under the integral in this case. uj(rg) is obtained from the diffusion

approximation,
C

i k& dS¢
Uy (1) = = (7). (14)

The emergent intensity can be computed from Eq.(13) as:

I(to = 0) = S5(r0 = 0) + fo ’ d—T;(T'O) exp{—75(rp)}d 7y + uiy(rh) expl-74(h)}. (15)

In the latest version of Linfor3D, the continuum intensity is calculated from Eqgs.(8) and (9), at 3 different
wavelengths: 1y — A4, Ay, and Ag + A, where AA is specified by the parameter dclam. We ensure that the
derivative d S /d 7o fulfills the condition

2 dS; ’ 7’ Cc C
f d—(Tﬂ)dT/1=S/l(Tz)—S,1(T1)- (16)
T Ta

The reason for using Eqs.(8) and (9) instead of Eq.(5) is that the quantity uj(‘r) is needed to compute the
line depression source function (see Sect. 3.3). We have checked that the usual transfer equation, Eq.(5),
gives numerically very closely the same results for the emergent continuum intensity as Eq.(9).

3.2 Transfer equation for the line intensity

In the presence of lines, the transfer equation at wavelength A reads

drt
d—;=—(K3+Zkﬁ]lﬁ+KflSS+ZK§Sﬁ. (17)
¢ ¢

The line source functions Sfl may be different from the LTE continuum source function §¢. With the
definition of the total optical depth

dTA:—(Ki+ZK§}dSEdT3+dT£, (18)
¢

and the total source function

ST NSl SienSt_ 1ep

Si= = = Se, 19
S A E R T 4
where ot , o
F_Z'ZK/IS/I _ng/l _ZKK/IS/l (20)
/l_ [b - Kc 9 - KCSC bl
2K j 1921
we can write
ary
EIIA—SA. (21)

In LTE, §, = §9. The solution of Eq.(21) is

7
Ity =0) = f Sa(th) expl—7,}d) + I4(7h) exp{-75}. (22)
0

14 3 BASIC EQUATIONS OF RADIATIVE TRANSFER

In analogy to Eq.(12), we can also obtain the emergent line intensity by integration on the universal optical
depth scale 7q:

b .
T K©

I(t9=0) = fo —ﬁ(l +1) S a(th) exp{-Ta(rp)yd) + I5(h) exp{-ta(th)}, (23)
O

or, substituting S , from Eq.(19),
Tb c
£ _ _ 0 K/l Crt ’ ’ /b b

I[(tg=0) = | K—c(l +B) S5 exp{—Ta(ry)tdry + I3(7) exp{—Ta(7y)}. (24)

0

Integration on the log 1 scale (zo = log 7g) gives:

Zb C
14(z5) = f In(10) To(ZO) 2 (1+B)S5(z0) expl—Ta(zp)dzy + I5(zh) exp{-Ta(zf)} (25)
% O
where zj is the minimum log optical depth. Alternatively, in analogy to Eq.(9) we obtain:
4 T dS, ’ ’ ’ o b b
L(ta=0)=S(1a=0)+ d_U(T’l) exp{—7}d 7 + u (7)) exp{-7,}, (26)
0

where we have defined
uy =15~ Sy, (27)

which in the diffusion approximation may be written as

/ 2dsS
uy@h) = —m) or (e = 4 e 0 (28)
On the universal optical depth scale 7o we obtain from Eq.(26:
£ Tg dS, ’ ’ ’ . b b
(1o =0)=8,(19 =0) + f d_‘l'()(TO) exp{—Ta(t)td 7y + u)(7) exp{—1a(rp)}, (29)
0

In LTE, where S = §¢, the integral in Eq.(29) differs from the integral in Eq.(15) only by the exponential
factor which involves the total optical depth 7, instead of the continuum optical depth 7. The absolute
line depression is then calculated as

Dy=I5x=0)-I{(r=0). (30)

In the current version of Linfor3D, Eq.(25) is used if the parameter intline is set to —1, and Eq.(26) is
used if intline is set to —2.

3.3 Transfer equation for the line depression

We may analyse the transfer equation for the absolute line depression defined in Eq.(30):

dp, dI5 dI ol at
ETE TR T P DEDILE o
or
dD, ¢ ¢ A
W:—[K§+Z[:Kﬁ DA"‘(IEZ[: KA—ZZIKASA (32)
or

dD, b
— _D, -
ar, =S, (33)

3.4 Contribution functions 15

where the line depression source function is

n <0\ " e
=T (13-5%) = T+n (5 -5+ 55-59). Y
InLTE, S = §¢, and
n
S = 1+n(1;—53). (35)

The solution of Eq.(33) is
)
Dty =0) = f SP) expi-7,}d 7, (36)
0

neglecting the boundary term. Integration on the fixed 7 scale:

b

Dy(t9=0) = L ’ %(1 + n)Sﬁ)(T{)) exp{—Ta(t()}d ;. (37)
0

Substituting S 9 from Eq.(34) gives

b
70
Da(ro = 0) = fo

where K;, K6, 1, Ij, S fl, and 7, are defined as a function of 7¢g. We can also write

okn | A?S‘.

n (15 - S_ﬁ) exp{-7a(rp)}d), (38)

b
To K . s , ,
Di(to=0) = f KJ n (u; +(S9 - sﬁ)) exp{-Ta(ry)}d g, (39)
0 0
where
N e <ty _ cc =B
_1+n(Sﬂ S =589 50 (40)

is the NLTE correction to the line depression source function. Integration on the log 7y scale (z9 = log 1)
gives:

% K5 —
Di(z5) = f In(10) To(zp) K—;l n (ui +(S9 - Si)) exp{—-Ta(z()}dz. 41
Fed 0

In the current version of Linfor3D, Eq.(41) is used to compute the line depression if the parameter intline
is set to 1, while Eq.(36) is used if intline = 2.
3.4 Contribution functions

The Continuum Intensity Contribution Function for a ray with inclination angle u = cos 6, azimuthal angle
¢, and wavelength A is simply the horizontal average of the integrand of Eq.(12)

, 1 [k . .

C;(TO’ Hs ¢9 /l) = - <_;l S/l(TO//'l) exp{_T/l(TO//'l)}>) (42)
H KO X,y

such that

b b

. o . ’ ’ % ’ c ’ ’
IE(TOZO,ﬂJ’J):fO Ci(to, 1, ¢, D d 7 ZL In(10) 7o(z) € (T0(z), . . D d 2. (43)

Note that now (tg/u) is the optical depth along the line-of-sight, and 7¢ is the corresponding vertical
optical depth (a formal quantity in the presence of horizontal inhomogeneities).
The Continuum Flux Contribution Function at wavelength A is consequently

21 1
C%(To,/l)=j(; ﬁu'cf(To,u',¢',l)d#'d¢', (44)

16 3 BASIC EQUATIONS OF RADIATIVE TRANSFER

such that
‘ 7 it
Fi(t9=0,2) =f C(t(,) d T =f In(10) 70(z() C(70(2(), A) d () - (45)
0 0

Note that the horizontal averaging in Eq.(42) works only because the transfer equation is integrated on
the fixed universal optical depth scale, 79. The contribution functions Cj (7o, 1o, $o, o) and Ci(7o, Ao) are
saved in contf.cfc3i and contf.cfc3f, respectively. Corresponding contribution functions are also
computed for the (3D) model and saved in contf.cfcli and contf.cfclf, respectively, and for the
external 1D reference atmosphere (contf.cfcxi and contf.cfcxf).

Similarly, we can also write down the Line Intensity Contribution Function as the horizontal average
of the integrand of Eq.(24):

1 C
Ci(to, i, ¢, A) = " <K—f (1+p8)S5(ro/1) eXp{—U(To/,u)}> ; (46)
Xy

Ko

such that the intensity at a given wavelength in the line profile is

Tg zg
I(t0 = 0,18,4, 1) = f Clt),p, ¢, D d) = f In(10) 70(z) Ch(to(zp), it 6, D d 2y . (47)
0 0

The Line Flux Contribution Function at wavelength A is

2 1
CL(t0,) = f f W Clro, i, ¢,)dp’ d g’ (48)
0 0
such that
{ Tg 14 Zg 14
Fi(9=0,2) = f Chrh,)dt) = f In(10) 70(z)) C4(to(zh), 1) d 2§ - (49)
0 0

Cf(To,,uo,m,/lo) and C?(To,/lo) are stored in contf.cfl3i and contf.cfl3f, respectively, and
similarly for the 1D atmospheres in contf.cf11i, contf.cfl1f, contf.cflxi, and contf.cflxf.

Formally, a Line Depression Contribution Function could be defined as

~ : 1 [KS . :
€7 =Ci-Ci=7 <i—; S (o/p) expi-§(zo/w} (1 - (1 +B) exp{—rﬁ(ro/u>})> . (50)
X,y

such that the absolute line depression at any wavelength in the line profile is

b b

To . 20 -
D1(To=0’,u,¢,/1)=f0 CP(thp, ¢, DA =f0 In(10) 70(z)) CP (x0(z4)s s b, D) A 2 - (5D

Note however, that C ? does not have the desired physical meaning, because the factor
A-1+p exp{—rﬁ}) (i) becomes negative when Tfl is small (Tfl is the optical depth due to the line opac-
ity only), and (ii) it is non-zero also in layers where the line opacity vanishes. For this reason, C‘? is not
considered useful and hence is not computed in the current version of Linfor3D.

A much better way to define the Line Depression Contribution Function is to consider Eq.(39) and to
define it as

D 1 Kfl c c
Cr (o, , ¢,) = o\ (nusro/w) + (= B) S§(xo/p)) expi-a(ro/w)}) . (52)
0 XY

Note that this contribution function vanisches whereever the line opacity (n, 8) is zero. For the flux
spectrum we define, as before,

21 1
CP(19,2) = fo fo W CP(ro, i, ¢,) dp d g’ (53)

3.5 Grey test case 17

Then the absolute line depression at any wavelength in the line profile is

Tg ZS
Di(ro = 0.,) = f CP (e, 16,) d T} = f In(10) ro()) CP (oo 6. D2y, (54)
0 0

and
b b

70 20
Dr(t9 = 0,1) = f CR(th, D d1) = f In(10) 7o(z) CR(T0(zH), 1) d 7 » (55)
0 0

for the intensity and flux spectrum, respectively.

The Equivalent Width Contribution Function is computed as

C¥ (o, 1,) = L CP(r0, s,) A, (56)
and
_ ; Tg W, s ’
Wi, ¢) = (Ij(/l,(]ﬁ,/l))ﬁ C/ (Tp, 1, $)d 7y (57)
_ 1 Zg ’ w ’ ’
- T fo In(10) 7o(z)) C (ro(cf). . 6 4
where

Jy it 9.) d

IS, ¢, D)y = . (58)
! [Drtat, .)Tt A d
For the flux spectrum we have
C?’(To)=fC?(TO,/1’)d/1', (59)
A
and
B 1 S o
Wro= (FS()) fo Cr(m)dy (60)
1 2 , o
T (P fo In(10) 70(z9) CF (ro(z)) d 7§
with
[, Dr()d
(F) = 61

[, Dr()/FS)d X

Irrespective of the parameter intline, the structures contf.cfd3i and contf.cfd3f hold the
contribution functions C? (10, 10, ¢g, A0) and C? (19, A0), while C}/V(To, 10, ¢p) and C}}:V(T()) are stored in
contf.cfw3i and contf.cfw3f, respectively.

3.5 Grey test case

If cmd. context is set to "grey’, a 3D (n, = n, = 10) hydrostatic atmosphere is constructed, instead of
reading a 3D model. The temperature stratification on the Rosseland optical depth scale is given by

1 1/4
T (TRross) = Tefr (5 + Z TRoss) (62)

and the source function is linear in Tross:

o 1 3
S (TRoss) = ; T:ff (E + Z TRoss) . (63)

18 3 BASIC EQUATIONS OF RADIATIVE TRANSFER

The Eddington-Barbier relation is strictly correct in this case. For any inclination u = cos 6, the emergent
continuum intensity is given by

o 4 (1 3
I(w) = p T (5 + le) (64)
In particular, at disk-center (u = 1) the continuum intensity is
50
Leu=1) =3 —Tg, (65)
and the flux is .
FC:2irf pl(uydp =0 Th. (66)
0

Comparison of the results obtained from Linfor3D for continuum intensity and flux for
TEFF = 5000.00, GRAV = 316.200

LUTAUL = -8.0000000, LUTAU2 = 2.0000000, DLUTAU = 0.0300000
OPAFILE = ’t50009250mm30 marcs_idmean3xRT3.opta’,

GASFILE ’gas_cifist2006m30_a®4_15.e0s’,

EOSFILE = ’eos_cifist2006 m30_a®4_15.eo0s’

with the above theoretical results yields (Linfor3D 3.1.3):

ratio ntheta
numerical / analytical 1 2 3 -3 4
I.(linfor3D)/I.(Eq.(65) | 1.0005573 1.0005573 1.0005573 1.0005573 1.0005573
F.(linfor3D)/F.(Eq.(66) | 1.0004105 1.0148776 1.0079553 1.0004507 1.0050481

If the ratio i of line opacity, «, and continuum opacity, «. is constant with optical depth (n = «/«.),
the intensity in the line is simply

o, (1
If(ﬂ): ;Teﬁ‘ (_

3 u
5+32) (67)

1+n

the absolute line depression is

L)L =TTt 2
Dilu) = 160 = 1) = - T 1 (68)
and the relative line depression at disk-center is
3 71
Di(p=1/lu=1)== : 69
1w =D/I(u=1) 5T+ (69)
The absolute line depression for flux is
1
DF:FC—F5:27rf ,uDI(,u)d,uerTgfflL, (70)
0 21+ n
and the relative line depression for flux is
1 7
Dp/F.= - ——. 71
FlFe=3 17 , (71)

The ratio between the relative line depression in flux and at disk-center is therfore 5/6, and the same ratio
holds for the equivalent widths.
The local absorption line profile is now defined by

n(a,v) = no H(a,v), (72)

3.5 Grey test case 19

where v = (1 — Ag)/Adp, and @ = Ady/2/Adp (Adp: Doppler width, Ady: full width at half maximum
of the Lorentzian damping profile). The ’Voigt function’ H(a,v) is normalized such that (for o <« 1),
H(a,v = 0) ~ 1. Assuming that 19, @, and Adp are constant, we can compute the emergent line profile
from Eq. (69) or (71). At disk-center, we have

3 noH(a,v)
D =D/I.(u=1)=Rj==- ———, 73
(w=1D/I.(u=1) I 5 0 Ha,0) + 1 (73)
and for flux | "
DF/FC:RF:_UO—(Q’U) (74)

2 noH(a,v)+1°
Clearly, the emergent line profiles are no longer Voigt profiles due to saturation effects.
The (reduced) disk-center equivalent width is obtained from numerical integration of the emergent
line profile:

+00
W, = f Ri(v,mo,) dv, (75)

(&9

and Wr = 5/6 W;. An ’analytical’ Curve-of-Growth, W(1o; @ = 0.01) is shown in Fig. 1.
The equivalent width in [mA] is obtained from the reduced equivalent width by
Ay,

W, [mA] = 1000 1y[A] (76)

100.00

10.00

1.00

\W
T IIIIIII|

0.10

0.01

¥

| | | | | | |

01 0.10 1.00 10.00 100.00 1000.00 10000.00
eta0

Figure 1: Analytical Curve-of-Growth showing the (reduced!) equivalent width (integrated from v = —100
to v = +100) as a function of 19, assuming @ = 0.01. Black: disk-center, red: flux. The dashed lines
have slopes 0.5 and 1.0. Diamonds show the numerical results obtained with Linfor3D (integration from
v=-50tov=+50).

The results of a number of test calculations are listed below. The wavelength resolution was chosen to
be 1/10 of the Doppler width: 64 = 0.1 A9 Avp/c. The wavelength range was set to =50 Doppler widths;
Avp = 6 km/s, @ = 0.01. The line file used for the test calculations is shown below.

20 3 BASIC EQUATIONS OF RADIATIVE TRANSFER

alam Vdop etad avgt dlam ddlam

7 7

Test grey sf Vdop=2.D-5, eta®=1.0D-2, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D-2 1.0D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D-1, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D-1 1.0D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D0®, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D0 1.60D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D1, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D1 1.0D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D2, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D2 1.0D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D3, avgt=1.D-2
1 7

4000.000 2.0D-5 1.0D3 1.0D-2 4.00D0 0.80D-2
Test grey sf Vdop=2.D-5, eta®=1.0D4, avgt=1.D-2

1 7
4000.000 2.0D-5 1.0D4 1.6D-2 4.00DO® 0.80D-2
clam gfscale

-4000.000 1.0

For the following tabulations we have defined
AW = log,q W(linfor3D) — log,q Wi(Eq.(75), (77)

and
5
AWF = log,q Wr(linfor3D) — log,, 3 Wi(Eq.(75), (78)

These results are obtained with intline=1:

no AW, AWp

[dex] ntheta=—3 ntheta=3 ntheta=4
1.0E-02 | +0.000342 +0.000336 —0.002949 —0.001690
1.0E-01 | +0.000331 +0.000327 —0.002958 —0.001698
1.0E+00 | +0.000269 +0.000271 -0.003014 -0.001755
1.0E+01 | +0.000072 +0.000081 —0.003203 —0.001942
1.0E+02 | —0.000820 -0.000807 —0.004088 —0.002831
1.0E+03 | —0.005441 -0.005432 -0.008714 —0.007456
1.0E+04 | —0.021428 —-0.021421 -0.024704 —0.023446

These results are obtained with intline=-2:

1m0 AW AWp

[dex] ntheta=—3 ntheta=3 ntheta=4
1.0E-02 | +0.000334 +0.000328 —0.002957 —-0.001698
1.0E-01 | +0.000324 +0.000320 —0.002965 —-0.001706
1.0E+00 | +0.000261 +0.000263 —-0.003022 -0.001762
1.0E+01 | —0.000063 +0.000074 -0.003211 —0.001950
1.0E+02 | —0.000825 —0.000814 -0.004097 —0.002838
1.0E+03 | —0.005447 -0.005438 -0.008720 —0.007463
1.0E+04 | —0.021432 —0.021425 -0.024708 —0.023450

21

4 Linfor3D and MPI

This section will briefly detail what aspects of the Linfor3D program flow runs in parallel and what aspects
do not. Reasons as to why are also given.

Considerable effort has been put into writing the FO0 version of Linfor3D so that it can be executed in
parallel. It was written and developed using the GNU OpenMP MPI libraries. Consequently, the code
has only been tested using mpifort and mpif90. While it is most likely that the code will compile
and run using the Intel© MPI compiler with the correct corresponding compiler flags, mpiifort, we
have not tested this, as this compiler is expensive for personal use and is most commonly found on High
Performance Computing (HPC) centre cluster or super computer machines. Moreover, the current version
of build has not been designed with mpiifort in mind and does not currently recognise it as a valid
compiler. This could be changed.

There are two stages when the program flow parallelizes the execution. Once when the continuous opac-
ities for 3D model atmospheres are computed with the IONDIS opacity package, and again when all
radiative transfer is computed.

4.1 Reading input data

At present all input data is read in to Linfor3D sequentially, and only to the MASTER CPU. The reason for
this is to maintain parity with the IDL version of the code, i.e. use of the IONDIS package and the radiative
transfer modules inside dort. £90 in their present condition. Almost all data stored during execution is
only available on the MASTER CPU. This also saves massive amounts of memory-per-CPU. As the code
deviates from its IDL counterpart, it may be necessary to improve this inefficiency and further parallelize
the code. This is a low priority.

4.2 Writing data to file

Only the MASTER CPU writes data to file using the UIO package. Until input data is read in parallel
there is no need for this to change. This is a very low priority.

4.3 Computing 1D continuous opacities

During execution of a standard setup, Linfor3D uses the IONDIS package to compute continuous opacities
for two 1D models; the (3D) model and the 1D external model. As this is done so quickly, it was not even
considered to be written in a non-sequential way. If input data becomes CPU dependent, this will most
likely have to change. This is a very low priority.

4.4 Computing 3D continuous opacities

The execution of the IONDIS package for a 3D atmosphere can be time consuming in Linfor3D. It depends
on the parameters of the input 3D atmosphere(s). Consequently, Linfor3D executes the IONDIS package
in a parallel way when it is made available. The code creates smaller domains — or subdomains — within
each 3D cube, dividing over horizontal x and y dimensions according to the number of CPUs that have
been assigned to the execution. Therefore, the number of subdomains is quivalent to the number of CPUs.
The vertical z dimension is not considered as opacities are computed from the bottom of the 3D cube to
the top in 1D columns.

The following diagram depicts how the parallelization scheme creates subdomains when four CPUs are
assigned to a single snapshot. This is known as 2D domain decomposition.

22 4 LINFOR3D AND MPI

~L s

‘ ~]

2

The size of the x and y indexes have each decreased by a factor of 2. As a result each CPU only performs
a quarter of the number of the computations a lone CPU would have to during a sequential (or IDL)
execution.

As a priority, Linfor3D divides the number of snapshots over the available number of CPUs as equally
as possible. This is because they are the most time consuming “dimension” dealt with by the IONDIS
package. The remaining CPUs are then divided across the x and y dimensions of every 3D cube as was
just explained. To summerize, Linfor3D parallelizes over three dimensions; the number of snapshots
(nsnap), the x (nx) and y (ny) horizontal dimensions.

The following example demonstrates how the parallelization scheme behaves when it is given a domain
consisting of a single snapshot — or 3D cube — which consists of 28 x 28 grid points. There are 8 CPUs
over which the parallelization scheme has to divide the domain in to subdomains:

Subdomain index scheme for IONOPA:

n_CPU = 8, n_snap = 1, x-grid = 28, y-grid = 28

CPU | snapshots | x-grid | y-grid
ID | ssl ss2 ds | x1 x2 dx | yl y2 dy
0 | 1 1 1 | 1 14 14 | 1 7 7
1| 1 1 1| 1 14 14 | 8 14 7
2 | 1 1 1 | 1 14 14 | 15 21 7
3 | 1 1 1| 1 14 14 | 22 28 7
4 | 1 1 1 | 15 28 14 | 1 7 7
5 | 1 1 1| 15 28 14 | 8 14 7
6 | 1 1 1 | 15 28 14 | 15 21 7
7 | 1 1 1| 15 28 14 | 22 28 7

As you can see, the parallelization scheme has divided the horizontal dimensions as equally as it can. The
next example represents a more typical run of Linfor8D whose domain now consists of 20 snapshots, and
28 x 28 horizontal grid points. The parallelization scheme was given 16 CPUs to create 16 subdomains:

4.5 Computing all radiative transfer 23

Subdomain index scheme for IONOPA:

n_CPU = 16, n_snap = 20, x-grid = 28, y-grid = 28

CPU | snapshots | x-grid | y-grid
ID | ssl ss2 ds | x1 x2 dx | yl y2 dy
0 | 1 5 5 | 1 14 14 | 1 14 14
1 | 10 5 | 1 14 14 | 1 14 14
2 | 11 15 5 | 1 14 14 | 1 14 14
3 | 16 20 5 | 1 14 14 | 1 14 14
4 | 1 5 5 | 1 14 14 | 15 28 14
5 | 6 10 5 | 1 14 14 | 15 28 14
6 | 11 15 5 | 1 14 14 | 15 28 14
7 | 16 20 5 | 1 14 14 | 15 28 14
8 | 1 5 5 | 15 28 14 | 1 14 14
9 | 6 10 5 | 15 28 14 | 1 14 14
10 | 11 15 5 | 15 28 14 | 1 14 14
11 | 16 20 5 | 15 28 14 | 1 14 14
12 | 1 5 5 | 15 28 14 | 15 28 14
13 | 6 10 5 | 15 28 14 | 15 28 14
14 | 11 15 5 | 15 28 14 | 15 28 14
15 | 16 20 5 | 15 28 14 | 15 28 14

As expected, the parallelization scheme has divided the snapshots as equally as possible into four subdo-
mains. The remaining CPUs are assigned to the horizontal grid points for a total of 16 unique subdomains
over which the IONDIS package computes in parallel.

4.5 Computing all radiative transfer

The primary reason that Linfor3D was ported to Fortran was so that the “heavy-duty” computations could
take advantage of the MP| modules. The most time consuming parts of a typical Linfor3D run is the ex-
ecution of dort.£90 for the 3D model atmospheres and for the 1D model atmospheres when dort . £90
is expected to compute curves—of—growth. However, because dort. f90 performs several different op-
erations depending on the type of atmosphere and the set up requirements requested by the user, it was
necessary to write an equally adaptive parallization scheme for each atmosphere type. Appropriately,
the execution of this parallelization scheme differs enough that each one is described below in separate
sections.

4.5.1 DoRT in full 3D

The execution of dort.£90 using full 3D model atmospheres is made up of four dimensions; the number
of 3D model atmospheres (nsnap), the number of rays (nmuphi), the number linelists inside the input
line file (kline), and the number of wavelength points over which to perform the radiative transfer com-
putations (nlam). The parallelization scheme sets priorities on how these dimensions are divided into
subdomains. The number of subdomains is equivalent to the number of CPUs assigned to a job execution.
The highest priority is given to nsnap, followed by nrays, then kline and finally nlam. For example, if
8 CPUs are assigned to compute spectra containing 401 lambda points, for a single snapshot, with 13 rays
for a single line list, the parallelization scheme will return the following set up:

Subdomain index scheme for 3D DoRT:

24 4 LINFOR3D AND MPI

n_CPU = 8, n_snap = 1, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 1 1] 1 7 7 | 1 1 1| 1 100 100
1] 1 1 1] 8 13 6 | 1 1 1| 1 100 100
2 | 1 1 1] 1 7 7 | 1 1 1| 101 200 100
3 | 1 1 1] 8 13 6 | 1 1 1 | 101 200 100
4 | 1 1 1] 1 7 7 | 1 1 1| 201 300 100
5 | 1 1 1] 8 13 6 | 1 1 1 | 201 300 100
6 | 1 1 1] 1 7 7 | 1 1 1| 301 401 101
7 | 1 1 1] 8 13 6 | 1 1 1 | 301 401 101

Here, it is shown that as there are few data points in the dimensions with highest priorities, there are enough
remaining CPUs to divide computations over wavelength. A more typical run would be to compute a series
of snapshots and perhaps more than a single line list. In this example there are 20 snapshots, 13 rays, 7
lines, and 401 wavelength points. There are 16 CPUs assigned to this job:

Subdomain index scheme for 3D DoRT:

n_CPU = 16, n_snap = 20, n_rays = 13, kline = 7, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 5 5 | 1 7 7] 1 4 4| 1 401 401
1| 10 5 | 1 7 7| 1 4 4 | 1 401 401
2 | 11 15 5 | 1 7 7] 1 4 4| 1 401 401
3] 16 20 5 | 1 7 7| 1 4 4 | 1 401 401
4 | 1 5 5 | 8 13 6 | 1 4 4| 1 401 401
5 | 6 10 5 | 8 13 6 | 1 4 4 | 1 401 401
6 | 11 15 5 | 8 13 6 | 1 4 4| 1 401 401
71 16 20 5 | 8 13 6 | 1 4 4 | 1 401 401
8 | 1 5 5 | 1 7 7| 5 7 3| 1 401 401
9 | 6 10 5 | 1 7 7| 5 7 3| 1 401 401
10 | 11 15 5 | 1 7 7| 5 7 3| 1 401 401
11] 16 20 5 | 1 7 7] 5 7 3] 1 401 401
12 | 1 5 5 | 8 13 6 | 5 7 3| 1 401 401
13 | 6 10 5 | 8 13 6 | 5 7 3] 1 401 401
14 | 11 15 5 | 8 13 6 | 5 7 3| 1 401 401
15] 16 20 5 | 8 13 6 | 5 7 3] 1 401 401

As a result of the increased number of data points in each dimension, the whole domain is much larger
than the previous example. Even with 4 times as many CPUs, the parallelization routines cannot assign
any CPUs to running the wavelength range in parallel.

4.5 Computing all radiative transfer 25

4.5.2 DoRT in 1D with Curve-of-growth computations

When the user requests Curve—of—Growth computations in the SETCMD input file, the parallelization
scheme stops any parallelization over the wavelength dimension. As Linfor3D computes the 1D spec-
tra for either the external 1D model atmosphere, 1DX, or the average 3D model atmosphere(s), (3D), the
program flow must decide whether it (a) is running a 1D atmosphere with several snapshots or whether it
(b) computes spectra for an external model atmosphere.

The following example shows how a (3D) model atmosphere would divide the provided 8 CPUs into 8
subdomains as equally as possible. The domain contains 3 model snapshots, 13 rays, a single line list and
401 wavelength points.

Subdomain index scheme for <3D> DoRT:

n_CPU = 8, n_snap = 1, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 1 1] 1 2 2] 1 1 1] 1 401 401
1 | 1 1 1 | 3 4 2| 1 1 1 | 1 401 401
2 | 1 1 1] 5 6 2| 1 1 1] 1 401 401
3 | 1 1 1 | 7 8 2| 1 1 1 | 1 401 401
4 | 1 1 1 | 9 10 2 | 1 1 1 | 1 401 401
5 | 1 1 11 11 12 2 | 1 1 1 | 1 401 401
6 | 1 1 1] 13 13 1 | 1 1 1 | 1 401 401
7 | 1 1 1] 13 13 1] 1 1 1] 1 401 401

As there are only 13 dimensions to divide into 8 subdomains, there are two domains that repeat themselves.
Finally, when the 1DX atmosphere is computed on 8§ CPUs, the same subdomains are created:

Subdomain index scheme for 1DX DoRT:

n_CPU = 8, n_snap = 1, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 1 1 | 1 2 2 | 1 1 1| 1 401 401
1| 1 1 1| 3 4 2| 1 1 1| 1 401 401
2 | 1 1 1 | 5 6 2 | 1 1 1| 1 401 401
3 | 1 1 1| 7 8 2| 1 1 1| 1 401 401
4 | 1 1 1 | 9 10 2 | 1 1 1| 1 401 401
5] 1 1 1] 11 12 2 | 1 1 1| 1 401 401
6 | 1 1 1] 13 13 1| 1 1 1| 1 401 401
7 | 1 1 1] 13 13 1| 1 1 1| 1 401 401

In the following example, the user has assigned 8 CPUs (subdomains) to compute spectra for 3 snapshots,
with 13 rays, for a single line list, over 401 wavelenghts.

26 4 LINFOR3D AND MPI

Subdomain index scheme for <3D> DoRT:

n_CPU = 8, n_snap = 3, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 2 2| 1 3 3] 1 1 1| 1 401 401
1| 3 3 1] 1 3 3] 1 1 1 | 1 401 401
2 | 1 2 2| 4 6 3| 1 1 1| 1 401 401
3] 3 3 1| 4 6 3| 1 1 1| 1 401 401
4 | 1 2 2| 7 9 3] 1 1 1| 1 401 401
5 | 3 3 1| 7 9 3] 1 1 1 | 1 401 401
6 | 1 2 2] 10 13 4 | 1 1 1 | 1 401 401
7 | 3 3 1] 18 13 4 | 1 1 1| 1 401 401

However, the 1DX atmosphere consists of a single model to compute spectra for. So the parallelization
scheme treats this differently than the (3D) model atmospheres:

Subdomain index scheme for 1DX DoRT:

n_CPU = 8, n_snap = 1, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 1 1] 1 2 2 | 1 1 1| 1 401 401
1] 1 1 1] 3 4 2| 1 1 1| 1 401 401
2 | 1 1 1] 5 6 2| 1 1 1 | 1 401 401
3 | 1 1 1] 7 8 2| 1 1 1| 1 401 401
4 | 1 1 1] 9 10 2 | 1 1 1| 1 401 401
5 | 1 1 1] 11 12 2 | 1 1 1 | 1 401 401
6 | 1 1 1] 13 13 1| 1 1 1| 1 401 401
7 | 1 1 1] 13 13 1| 1 1 1 | 1 401 401

Linfor3D cannot currently run multiple wavelength subdomains for a 1D atmosphere if the user requests
Curve—of—Growth calculations. This can slow radiative transfer computations quite substantially.

4.5.3 DoRT in 1D without Curve-of-growth computations

If the user deactivates Curve—of—Growth computations (cog = 0) then the lambda dimension can also be
parallelized. As an example, if Linfor8D was requested to compute spectra for 3 snapshots over 13 rays,
for a single line list, over a wavelength range containing 401 wavelength points, the code may create the
following subdomains:

Subdomain index scheme for <3D> DoRT:

n_CPU = 8, n_snap = 3, n_rays = 13, kline = 1, nlambda = 401

4.6 Limitations of Linfor3D with MPI 27

CPU | snapshots | nrays | kline | lambda
ID | ssl ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 3 3 | 1 7 7] 1 1 1| 1 100 100
1| 1 3 3 | 8 13 6 | 1 1 1| 1 100 100
2 | 1 3 3 | 1 7 7| 1 1 1| 101 200 100
3 | 1 3 3 | 8 13 6 | 1 1 1| 101 200 100
4 | 1 3 3 | 1 7 7| 1 1 1| 201 300 100
5 | 1 3 3] 8 13 6 | 1 1 1 | 201 300 100
6 | 1 3 3 | 1 7 7| 1 1 1| 301 401 101
7 | 1 3 3] 8 13 6 | 1 1 1| 301 401 101

In this case it cannot divide the 3 snapshots over equally over the 8 subdomains (CPUs), Linfor3D splits
the rays and and lambda points next. When the 1DX model atmosphere is computed, the snaps dimension
issetto 1:

Subdomain index scheme for 1DX DoRT:

n_CPU = 8, n_snap = 1, n_rays = 13, kline = 1, nlambda = 401

CPU | snapshots | nrays | kline | lambda
ID | ssl1 ss2 ds | rl r2 dr | ks ke dk | 11 12 dl
0 | 1 1 1| 1 7 7] 1 1 1| 1 100 100
1 | 1 1 1 | 8 13 6 | 1 1 1] 1 100 100
2 | 1 1 1 | 1 7 7] 1 1 1| 101 200 100
3 | 1 1 1| 8 13 6 | 1 1 1| 101 200 100
4 | 1 1 1 | 1 7 7| 1 1 1 | 201 300 100
5 | 1 1 1 | 8 13 6 | 1 1 1 | 201 300 100
6 | 1 1 1 | 1 7 7| 1 1 1 | 301 401 101
7 | 1 1 1| 8 13 6 | 1 1 1| 301 401 101

4.6 Limitations of Linfor3D with MPI

This version of F90 Linfor3D was written to mostly follow the program flow of the IDL counterpart. This
was so that the two most computationally expensive parts of Linfor3D could be used in the same manner in
both versions, as was previously mentioned. Naturally, this leads to certain issues that cannot be resolved
in the short term. The largest issue concerns the memory requirements as the CPU number increases.

Each CPU requires certain information when computing the radiative transfer or opacities. While the
flowfield remains on the MASTER CPU only, some of that data is copied to local arrays on unique CPUs.
These arrays only exist during the execution of dort.£90, but nevertheless the code will require larger
amounts of memory during these executions. As the IONDIS package uses domain decomposition, the
resulting local arrays remain roughly the same size as the global arrays on the MASTER CPU. For the
moment, dort . £90 does not allow for domain decomposition. Certain full 3D input arrays — such as the
temperature, velocities, and continuous opacities — from the MASTER CPU must be copied to each CPU
to properly execute dort . £90.

28 4 LINFOR3D AND MPI

It is therefore highly recommended that the user does not run large Linfor3D jobs” with more than half
of all available CPUs on their personal computer unless it has more than 16Gb of RAM. For example,
a compute with 16 CPUs and 16Gb of RAM can run Linfor3D fairly safely on 4 to 8 CPUs so long as
the horizontal dimensions of the 3D model atmospheres have less than 50 grid points each. Whenever
possible, run Linfor3D in MP| mode on a cluster machine or a super computer. One can still run Linfor3D
safely in sequential mode on a personal computer like is done in the IDL version.

2A large job represents nlam > 20, kline > 1

29

S Installing GDL and running Linfor3D

While SourceForge constantly update their libraries, to this date, the version of GDL supplied via their
download libraries is not complete enough to successfully run Linfor3D. (This was last checked on
10/01/2017). Therefore, one needs to download the current CVS version of GDL.

Linfor3D has only been successfully tested on CVS versions of GDL 0.9.4 and 0.9.5. We are
currently testing Linfor3D with GDL versions 0.9.6 and 0.9.7, however, so far we have been unsuccessful
in getting Linfor3D to run with them.

To install the CVS version of GDL after download * follow these basic instructions. Before installation,
you will need to make sure that you have the latest version of cmake and eigan3 version 3.2.7 onwards
(see GDL install notes*.

Once this is done, as root, create a directory in /usr/local called gdl and extract it to a named sub-
directory of your choice. (This means that one can get later versions of GDL without deleting previous
versions.) Finally make a sub-directory within that directory called build:

/ $> mkdir /usr/local/gdl

/ $> mkdir /usr/local/gdl/tarball

/ $> mv <gdl.tarball> /usr/local/gdl/tarball
/ $> cd /usr/local/gdl/

gdl/ $> tar -xzvf ../tarball/<gdl.tarball>
gdl/ $> cd gnudatalanguage

gnudatalanguage/ $> mkdir build
gnudatalanguage/ $> cd build

Run cmake within the build directory (if libraries are missing during the cmake procedure, install them
as necessary and rerun cmake, making sure that you remove the CMakeCache.txt file beforehand). Then,
once the procedure has successfully finished “make” the build (using all the computer cores, N, available):

build/ $> cmake ..
build/ $> make -j <N>

Once complete, add a symbolic link of the gdl command (<gdl directory>/src/gdl) to
/usr/local/bin/ and run gdl. To check the compatibility of the build, run the command “make check”
from the build directory.

5.1 Running Linfor3D with GDL

Installing and running Linfor3D under GDL does not differ from running under IDL. However, for those
who wish to exploit its new ability of running on GDL (e.g. use with HPC centres, etc.) a small change
must be made in the routine monocubic.pro. Line 165 contains the following:

iout=(0 > long(interpol(findgen(n)+1.0,xin,xout))) < n

This must be replaced with the following more formal syntax, because of the minute differences in which
GDL and IDL handle array information:

iout=(0 > long(interpol(findgen(n)+1.0,xin, [xout]))) < n

This change will not effect any part of the IDL version of Linfor3D, but prevents a fatal error when running
Linfor3D under GDL. To make sure this condition is always upheld, and to make sure that user changes
do not affect the output from Linfor38D, 1infor_monocubic.pro was added to the Routines list in March
2022. Linfor3D will compile this version of monocubic during normal execution.

3 Available at http://gnudatalanguage.cvs.sourceforge.net/
“http://gnudatalanguage.sourceforge.net/

http://gnudatalanguage.cvs.sourceforge.net/viewvc/gnudatalanguage/
http://gnudatalanguage.sourceforge.net/

30 5 INSTALLING GDL AND RUNNING LINFOR3D

Finally, copy your IDL_PATH and IDL_STARTUP to GDL_PATH and GDL_STARTUP, and add in the PRO
library from the GDL install to the start of the GDL_PATH. If this is properly done, Linfor3D will run
without error by using the start guide in Sect. 2.

5.2 Running Linfor3D in parallel

The most important new feature of Linfor3D, now that it runs on GDL, is its ability to run in parallel
without the concerns of IDL licenses. This means that completion times for jobs run sequentially can be
split into much quicker jobs by, e.g. snapshot or wavelength interval (for large wavelength ranges), which
can later be combined. Therefore, for the first time, one can compute large wavelength ranges or complex
molecules in hours, not days or weeks. This requires you to create elaborate BASH or TCSH scripts that
use EOFs to edit linfor_setcmd. pro.

6.1 IDL program flow 31

6 Program Files

In this section all the program files making up the two versions of Linfor3D are listed. While the two
codes work independently, and the user is free to choose which version of the code they wish to run, it
should be noted that there are some Fortran-based routines and modules that both versions of the code
share. All of those routines are found in the subdirectory <LINFOR_DIRECTORY>/xmono/:

File name Type Description

dort.F90 M/S Does all radiative transfer

cubint_module. f90 M Performs a cubic interpolation/ integration
ha_convol_module.f90 M Used by cubint_module. £90

ionopa2.£f90 S Control routine for the IONDIS opacity package
iondis.f90 S Computes pressures and densities

opalam. f90 S Computes opacities

abuini. £f90 S Initializes the IONDIS package

Table 2: List of routines shared by F90 and IDL/GDL versions of
Linfor3D: the table shows the file name, the type (Subroutine or
Module, and its description.

In the first three subsections below, an overview of the program flow, the structures in common block
linfordata, and a list of its programs are provided for the IDL/GDL version of Linfor3D. The final two
subsections describe the program flow in the F90 version of Linfor3D, followed by a list of its modules
with a brief description.

6.1 IDL program flow

Basically, the calling sequence is as follows (incomplete listing of linfor_3D.pro):
e Read input parameters (linfor_setcmd.pro)
e Initialize atomic data (1infor_atom.pro)
e Read line data: (linfor_rdline.pro)
¢ Initialize ionopa abundances, opacity tables and EOS tables
e Set constants (linfor_init)
e Define £f, type linfor_flowfield (linfor_flowfield__define.pro)
e Define £1, type linfor_flowfield: (linfor_flowfield define.pro)
e Define £x, type linfor_flowfield: (linfor_flowfield__define.pro)
e Define ss, type linfor_spectrum: (l1infor_spectrum__define.pro)
e Define s1, type linfor_spectrum: (1infor_spectrum define.pro)
e Define sx, type linfor_spectrum: (1infor_spectrum__define.pro)
e Read model data into ff structure (linfor_rduio.pro)

e Recompute model on refined z-grid (linfor _regrid.pro)

32

6.2

6 PROGRAM FILES

Compute ionopa quantities (pe, kappa, zeta) and monochromatic tau for 3D model
(linfor_ionopa_3d.pro)

Construct 1D reference atmosphere from ff, store in £1: (1infor_refatm.pro)

Compute ionopa quantities (pe, kappa, zeta) and monochromatic tau for 1D reference atmosphere
(linfor_ionopa_3d)

Do radiative transfer calculations for 3D model (1infor_dort.pro)

Do radiative transfer calculations for averaged 3D atmosphere (1infor_dort.pro)

Store results for later evaluation (linfor_eval, ss, sl, nf, kl)

Make Plots of line profiles and bisectors (Linfor plotl.pro)

Do radiative transfer calculations for 1D reference atmosphere (linfor _dort.pro)

Store results for later evaluation (1infor_evalx.pro)

Create postcript file(s) (Linfor_plot2.pro)

Generate output files linfor 3D_1.uiosave and linfor_3D_2.uiosave (uio_save.pro).
(Generate 1linfor_3D_3.uiosave if cc3d_flag=1.)

(Generate linfor_3D_1X.uiosave if run_flag=-3.)

Free pointers to structures £f, £1, £x, ss, s1, and sx if free_flag = 1 (see Sect. 7.2)
(linfor_flowfield_free.pro)

Structures in Common Block linfordata

Table 3 shows a list of the structrues in common block ‘linfordata’ used by the linfor_3D package.

Structure Defined in Description

atom linfor_atom.pro Atomic weights & ionization potentials

const linfor_init.pro Physical & model constants

cmd linfor_setcmd.pro Input parameters controlling program execution
line linfor_rdline.pro Line data derived from ‘line.dat’

gas linfor_init.pro GAS tables initialized by ‘tabinter_rdcoeff’

eos linfor_init.pro EOS tables initialized by ‘tabinter_rdcoeff’
result linfor_init.pro Basic results for computing abundance corrections

Table 3: List of all structures in common block ‘linfordata’: the table shows the name of the structure, the
routine where it is defined, and a description. A brief description of the arrays/sub-structures contained
within each structure is given in Sect. 10.

6.3

IDL/GDL Files

Table 4 shows a list of all source files necessary to run Linfor3D.
All IDL/GDL versions of Linfor3D require the UIO library to handle the I/O of the CO®BOLD files, and
version 6.0.0 and above requires them for ALL I/O done during the program flow.

6.3 IDL/GDL Files

33

File name Type Description

linfor_3D.pro S main program

linfor_flowfield__define.pro S Definition of flow field structure
linfor_spectrum__define.pro S Definition of spectrum structure
linfor_raysys__define.pro S Definition of ray system structure

linfor_atom.pro S Defines atomic data

linfor_setwts.pro S Defines weights for angle quadrature (deprecated after

version 6.2.7)

linfor_setwts_lobatto.pro S Replacement for linfor_setwts.pro. Further ex-
planations given in Sect. 7.11
linfor_setwts_dblgaus.pro S Additional definition for angle quadrature. See
Sect. 7.11
linfor_setwts_dblrdau.pro S Additional definition for angle quadrature. See
Sect. 7.11
linfor_setwts_special.pro S Special definition for angle quadrature. See Sect. 7.11
linfor_setcmd.pro S Command file, parameter input
linfor_rdxatm.pro S Reads 1D reference atmosphere,
calling linfor_rdatmos, linfor_rdatlas9,
linfor_rdmarcs, rd150 or l1infor_rdfalmod
linfor_rdatlas9.pro S Reads ATLLAS9 1D atmosphere (atm.dat)
linfor_rdmarcs.pro S Reads MARCS 1D atmosphere (atm.dat)
linfor_rdfalmod.pro S Reads FAL 1D atmosphere (atm.dat)
linfor_rdatmos.pro S Reads ATMOS 1D atmosphere (atm.dat)
linfor_rdf15.pro S Reads a sequence of FOR15 snapshots
from 2D Kiel hydro simulations (FOR15)
linfor_rdsav.pro S Reads 3D snapshot from Copenhagen code (savfs)
linfor_rduio.pro S Reads 3D snapshot from CO°BOLD uio output files
linfor_rdvog.pro S Reads 3D snapshot from Voegler MHD code
linfor_findff.pro S Finds cached flow fields
linfor_rdline.pro S Reads line data (line.dat)
linfor_init.pro S Initializes ionopa, EOS, Opacities, several constants
linfor_bisector.pro S Computes line bisector positions
called by linfor_plotl and linfor_plot2
linfor_convol.pro S Convolves line profile with Gauss kernel
called by 1infor_plotl and linfor_plot2
linfor_dort.pro S Computes spectrum from flow field
(main RT module calling several lower level routines)
linfor_eval.pro S Evaluates mean spectrum, “abundance corrections”
linfor_evalx.pro S Evaluates reference spectrum, “abundance correc-
tions”
linfor_incline.pro S Inclines 3D flow field, called by linfor_ztau
linfor_ionopa_3d.pro S Calculates electron pressure, ionization fractions,
and monochromatic optical depth for given flow field
linfor_rad3.pro S Integration of RT equation
linfor_refatm.pro S Define 1D reference atmosphere from 3D flow field
linfor_regrid.pro S Cut out surface layers from original model, re-define
grid
linfor_tauinfo.pro S Prints information about optical depth scales
linfor_ztau.pro S Prepares bundle of (inclined) rays on monochromatic
tau
linfor_monocubic.pro F Performs monotonic piecewise cubic interpolation.

34 6 PROGRAM FILES

rdl50.pro S Reads the LHD 150 file format.

linfor_plot®.pro S Plots flow field

linfor_plotl.pro S Plots spatially resolved line profiles

linfor_plot2.pro S Plots averaged line profiles

(linfor_plot3.pro) S Plots monochromatic granulation images

alpha_line.pro F Computes a-parameter for VOIGT function

etal.pro F Computes 1779, the opacity at line center of metal lines

rrca.pro F Computes mean square orbital radius of electron
(Unsold)

vdop .pro F Computes (thermal+turbulent) Doppler velocity [c;]

linfor_timing.pro S Prepares and gathers timing statistics

linfor_timing_print.pro S Print timing statistics

uio_save.pro S UIO formatted save procedure

uio_restore.pro S UI0 formatted restore procedure

Table 4: List of all IDL modules: the table shows the file name,
the type (Subroutine or Function, and its description.

6.4 FI90 program flow

The F90 call makes use of a series of modules, each pertaining to a specific area of the run time of
Linfor3D.

e Initialize MPI (1infor_parallel. £90)

e Initialize the timing features (linfor_timing.f90)

e Initialize UIO (linfor_uio. £90)

e Read input parameters (1infor_input.£90)

e Initialize atomic data (1infor_input.£90)

e Read line data (1infor_input. £90)

o Initialize ionopa2, atmosphere parameters, opacity tables and EOS tables (1infor_io. £90)
e Set constants (linfor_input.£90)

e Set up the angle quadratures (1infor_raybase.£90)

e Read 1DX model data (1infor_rdatm. £90)

e Define and populate the 1DX flowfield (£x) type (linfor_rdatm. £90)

e Read 1DX departure coefficients (linfor_nlte.£90)

e Read 3D model data (1infor_rdatm. £90)

e Recompute model on refined z-grid (1infor_rdatm. £90)

e Define and populate 3D flowfield (£3) type (1infor_rdatm. £90)

e Compute (3D) models based on the 3D model data (1infor_rdatm.£90)
e Define and populate (3D) flowfield (£1) type (1infor_rdatm.£90)

e Read 3D departure coefficients (linfor_nlte. f90)

6.5 F90 Files 35

6.5

Define and populate global (3D) flowfield (fa) type (1infor_rdatm.£90)

Compute ionopa quantities (pe, kappa, zeta) and monochromatic 7 for 1DX input model
(linfor_ionopa.£90)

Compute ionopa quantities (pe, kappa, zeta) and monochromatic 7 for (3D) models
(linfor_ionopa.f90)

Compute ionopa quantities (pe, kappa, zeta) and monochromatic 7 for 3D models
(linfor_ionopa. £90)

Define 3D spectrum (s3) type (1infor_dort.£90)

Do radiative transfer calculations for 3D models (1infor_dort. £f90)
Define (3D) spectrum (s1) type (linfor_dort. f90)

Do radiative transfer calculations for (3D) atmospheres (1infor_dort.£90)
Define 1DX spectrum (sx) type (1infor_dort.£90)

Do radiative transfer calculations for 1DX atmosphere (linfor_dort.£90)
Store results for in output data types (1infor_evaluation. £90)

Generate output files (1infor_wrdata.£90).

F90 Files

Table 5 shows a list of all source files necessary to run Linfor3D.
All F90 versions of Linfor3D require the UIO library to handle the I/O of the CO°BOLD files, and
versions 6.0.0 require them for ALL I/O done during the program flow.

36

6 PROGRAM FILES

File name Type Description

base:

linfor_main.F90 P main program.

var_input.£90 M contains input data types.

var_charlen. £90 M sets character string lengths throughout Linfor3D.

debug:

linfor_debug. £90 P developer module used to output UIO-formatted data
for use with the IDL environment.

eos:

gasinter_routines.F90 M responsible for reading in the interpolating the
equation-of-state to extract hydrodynamical properties
such as temperature and pressure. Taken verbatim from
COSBOLD.

gfx:

linfor_gfx.f90 M Deals with most print-to-screen statements.

io:

linfor_flowfield.£f90 M deals with the flowfield allocation and array population
for most atmosphere types. In particular for CO°BOLD
models.

linfor_input. f90 M deals with almost all input data (line, cmd, atom, abu-
file, etc.).

linfor_io.f90 M responsible for most of the generic IO done by Lin-
for3D.

linfor_rdldx.f90 M reads in all 1D external model atmospheres.

linfor_rd3d.f90 M control module that calls the appropriate module to
read the particular 3D model.

linfor_rdcobold. £90 M reads in CO®BOLD model atmospheres.

linfor_rdstagger.£f90 M reads in STAGGER model atmospheres.

linfor_wrdata.f90 M writes all output to UIO-formatted files.

var_const.f90 M contains all constant information and the const data
type.

var_output.f90 M contains the output data types.

var_snaps.f90 M contains data type necessary to read in CO°BOLD 3D
full files.

math:

linfor_box.£f90 M contains several routines to manipulate various proper-
ties of the flowfield.

linfor_functions.f90 contains several functions and subroutines to deal with
general mathematical procedures and array manipula-
tion.

linfor_raybase. 90 M sets up the angle quadratures.

mpi:

linfor_parallel.f90 M sets up and defines the parallelization schemes used by
Linfor3D.

var_mpi.f90 M contains data pertaining to the global param-
eters and information that is passed on to
linfor_parallel. £90.

nlte

linfor_nlte.£f90 M controls the departure coefficient modules.

linfor_rdxbc. f90 M reads the xbc and xbc2 formatted departure coefficient

modules.

6.5

F90 Files

opta

linfor_ionopa.f90 M controls every call to ionopa2.£90.

var_xkaroslin. £90 M contains older versions of the xkaros series of subrou-
tines that use a linear interpolation scheme.

opta_par_module.f90 M contains arrays pertaining to opta_routines.F90.
Taken verbatim from CO°BOLD.

opta_routines.F90 M control modules for handling and manipulating data
from CO°BOLD opacity tables. Taken verbatim from
CO°BOLD.

var_ionopa.£90 M contains data types and local and global arrays used by
linfor_ionopa.£90.

rad

linfor_dort.£90 M control module that sets up all calls to dort.F90.

linfor_eval. f90 M evaluates the output data from dort.F90 and allocates
and populations output data types.

var_dort.f90 M Contains a data type used by linfor_dort.f90.

time

linfor_timing.f90 M deals with all timing aspects of Linfor3D.

uio

uio_base_module. f90 M These modules are taken verbatim from CO°BOLD
and are responcible for

uio_filedef _module.f9¢ M almost all 10 throughout a typical Linfor8D execution.

uio_bulk_module. f90 M

uio_mac_module.F90 M

Table 5: List of all F90 modules: the table shows the file name, the
type (Program or Module, and its description.

37

38 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7 Parameter Input: linfor_setcmd.pro (IDL) linfor3d.setcmd (F90)

The input parameters (except for those defined in 1ine.dat, see Sect. 8) are basically specified by editing
the routine linfor_setcmd.pro in IDL or linfor3d. sectcmd when using the F90 version of Linfor3D.
In this way, the user defines the structure cmd (see Table 3). The order of entries is irrelevant. Parameters
which are not required may be omitted and set by default in both codes.

A detailed explanation of the various input parameters and their possible values is given in the following
sections. An example of the IDL setcmd file follows in Sect. 7.13 and an example of the F90 setcmd file
follows in Sect. 7.14.

7.1 FI0 specific flags and settings

While the information below can be pertinant to both versions of the code, and is defined in an iden-
tical fashion, the following optional input is only considered in the F90 execution when set within
linfor3d.setcmd:

7.1.1 outfile
function : file allocation
required : optional
type : character
values . ‘output.uiosave’ (default ‘Linfor3D.uiosave’)

One sets this parameter to save the entire output to file. By default it is saved as Linfor3D.uiosave.
This contains all input and output structures that can be loaded into IDL, Python and Fortran.

7.1.2 printcobold
function : execution flag
required : optional
type . integer
values ;0 (default), 1

When set to 1 Linfor3D will print extra information concerning the EOS, opta tables and full files
to screen. By default this is set to 0, as this information is usually superfluous to a typical Linfor3D run.

7.1.3 debug
function : execution flag
required : optional
type : integer
values ;0 (default), 1

This is only used to determine how the parallelization scheme executes on the allocated number of
CPUs. When debug=1 no calls to ionopa.f90 or dort.f90 are made. Rather, the parallelization
scheme outputs further information on how mpirun -np <NCPU> has been allocated by the paral-
lelization scheme, given the number of CPUs, <NCPU>. This is mostly used for development purposes.

7.2 IDL specific flags and settings 39

Therefore, it can be ignored in most normal scenarios.

7.1.4 wr3x3
function : execution flag
required : optional
type : integer
values . 0,1 (default)

This switches off writing the 3x3 model atmospheres.

7.1.5 d1 flag
function : execution flag
required : optional
type : integer
values : 0,1 (default)

Tells Linfor3D whether it should compute the (3D) models for spectrum synthesis.

7.2 1IDL specific flags and settings

There are certain features available in the IDL version that is not available or deprecated in the FO0 version,
such as the plotting ability.

7.2.1 pltflag
function : plotting of bisectors
required : always
type : integer
values : —-1,0,1

The parameter plt_flag controls if line bisctors should be plotted or not (0: no, 1: yes). If plt_flagis
set to —1, all plotting is suppressed.

7.2.2 free flag

function : free pointers in structures at end of program
required : always

type : integer

values 0,1

If free_flag = 1, then each run of Linfor3D allocates fresh memory for the structures ££, £1, £x, ss,
s1, and sx. In this case the corresponding pointers are removed at the end. If you want to examine the
structures after the end of execution, you must have free_flag = 0. If you want to run the program
several times in a row with different input parameters, you should set free_flag = 0 in order to avoid
additional memory allocation for each run.

7.2.3 ff_path
function : directory to be used for reading and writing cached flow fields
required : always
type : string

values : e.g. ‘/data/mst/ffcache/’

40 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.3 Program execution flags (IDL/F90)

The user can control the program execution by setting the flags run_flag, nlte_flag, cvl_flag,
cv2_£flag, cv3_flag, maps_flag, cc3d_flag, rdbb_flag, which are explained in more detail below.

7.3.1 run_flag
function : program mode
required : always
type : integer
values o =3,-2,-1,0, 1,2, 3 (usually 3)

This parameter determines the general function of Linfor3D:

IMPORTANT: The F90 version of the code currently only runs using flags = -3, and 3. Flags =
1 or 2 will most likely never be included inside the FOO version.

Setting run flag = -3 allows you to compute the external 1D atmosphere only. While a snap-
shot is still required to run Linfor3D correctly, no 3D or (3D) data is computed or written to file. The
results are stored in the structure ‘linfor_1X.uiosave’. N.B. mode is only available from version 6.1.0
onwards.

Setting run_flag = -2 allows you to compute 3x3 file for the external reference model only.

Setting run flag = -1 allows you to restore old results, and replace the results of the previous
1D external atmosphere with those of a different 1D external atmosphere.

Setting run_flag = O (similar to run_flag = -1) allows you to quickly compare the 3D spectra with
another external 1D reference atmosphere. Finally, the results are saved in files ‘linfor _3D_1.uiosave’
and ‘linfor_3D_2.uiosave’. Rarely used setting.

Setting run flag = 1 is used for plotting the structure of the input model on the original grid.
No radiative transfer calculations are done.

Setting run flag = 2 is used for plotting the structure of the input model on the reduced (re-
fined) grid. No radiative transfer calculations are done.

Setting run_flag = 3 is the usual case. After construction of the 3D atmosphere on the reduced
(refined) grid and of the 1D mean atmosphere, the line formation calculations are done, and the
results are plotted (‘linfor_plotl’: spatially and temporally resolved line profiles and bisectors,
‘linfor_plot2’: surface and time averaged line profiles and bisectors). Finally, the results are saved in
files ‘linfor_3D_1.uiosave’ and ‘linfor_3D_2.uiosave’.

7.3 Program execution flags (IDL/F90)

run_flag value

control of program flow

-3

load 3D models, (compute 1D ref. spectrum), save results

-2 compute 1D 3x3 external atmosphere
-1 restore results, (compute 1D ref. atmosphere & spectrum),
save results
0 restore results, (compute 1D ref. atmosphere & spectrum),
plot2, save results
1 compute 3D, 1D atmospheres (1), plot®1, stop
2 compute 3D, 1D atmospheres (1,2), plot0®2, stop
3 compute 3D, 1D atmospheres (1,2), line formation,
plotl, plot2, save results
7.3.2 cvl_flag
function enforce (pu,) =0
required always
type integer
values 0,1

The parameter cvl_flag controls whether or not the x-component of the velocity field is adjusted to

ensure zero mass flux in x-direction. (0: no, 1: yes). Default 0

7.3.3 cv2 flag
function enforce (pu,) = 0
required always
type integer
values 0,1

The parameter cv2_flag controls whether or not the y-component of the velocity field is adjusted to

ensure zero mass flux in y-direction. (0: no, 1: yes). Default 0

7.34 cv3_ flag
function enforce (pu,) =0
required always
type integer
values 0,1

The parameter cv3_flag controls whether or not the z-component of the velocity field is adjusted to

ensure zero mass flux in z-direction. (0: no, 1: yes). Default O

7.3.5 maps_ flag

function
required

type
values

controls output of intensity maps
always
integer
0,1,2

42 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

The parameter maps_flag controls the output of intensity maps which are provided in the IDL structure
MAPS:

value meaning

0 : Continuum images only. Create map ICLAMO.

1 : Continuum images (ICLAMO) plus images at the centre of the wavelength window
(ICLAM1), all at wavelength A =clam;

2 : Continuum images (ICLAMO) plus images (ICLAM2) at all wavelengths within the

wavelength window of width 2 - dlam around the central wavelength clam:
Ai = clam — dlam + i - ddlam (see Sect. 8);

7.3.6 cc3d flag

function : output of 3D contribution function
required : always

type : integer

values 0,1

The parameter cc3d_flag controls whether the 3D continuum intensity contribution function should be
saved in structure contf3d or not (0: no, 1: yes).

7.3.7 nlte_flag

function : output of 3D contribution function
required : always

type : integer

values 0 0,1,2,3

The parameter nlte_flag controls whether the line transfer is performed in LTE (nlte_flag=0) or in
NLTE (nlte_flag=1, 2, 3). The NLTE options work only for lines with available departure coeflicients,
which are read from a separate data file (see below).

value meaning

0 : Continuum and lines in LTE.

1 Continuum in LTE, line source function in LTE, line opacity in NLTE
2 : Continuum in LTE, line opacity in LTE, line source function in NLTE,
3 Continuum in LTE, line opacity and source function in NLTE

7.4 General paths

7.4.1 abupath

function : directory where ‘.abu’ files and ‘atom.dat’ are located
required : always

type : string

values : e.g. ‘/home/mst/ABU/’

If abupath is not specified in the command file, the path is taken from environment variable
‘$LINFOR3D_ABU’.

7.5 Model data

43

7.4.2 opapath

function : directory with opacity tables (.opta files)
required : always

type : string

values : e.g. ‘/home/mst/RHD/opa/dat/’

We recommend setting the environment variable $OPTABLES

7.4.3 gaspath
function : directory with GAS tables (gas_*.eos files)
required : always
type : string
values : e.g. ‘/home/mst/RHD/eos/dat/’

7.4.4 eospath

function : directory with EOS tables (eos_*.eos files)
required : always

type : string

values : e.g. ‘/home/mst/RHD/eos/dat/’

We recommend setting the environment variable $EOSTABLES for these two paths.

7.5 Model data

7.5.1 context

function : source of input model
required : always
type . string
values : e.g. ‘cobold’
value meaning
‘cobold’ : 3D CO°BOLD
‘copenhagen’ : N&S 3D code
‘kiel’ . Kiel 2D HDW-Code
‘muram’ : MURAM 3D MHD Code
‘grey’ : construct grey 3D (n, = n, = 10)

hydrostatic atmosphere for test purposes

The TRress grid of the grey atmosphere is defined by the parameters cmd.lutaul, cmd.lutau2,
cmd.dlutau. The atmospheric parameters must be specified as cmd.Teff and cmd.grav. The opacity
table must be specified as cmd.opafile, and the equation of state as cmd.eosfile and cmd.gasfile.

44 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.5.2 rhdpath
function : directory with 2D/3D model atmospheres (.end, .full files)
required : always
type : string
values : e.g. ‘/data/mst/model/’

7.5.3 modelid

function : name of 2D/3D model file
required : always

type : string

values : e.g. ‘gt57944n66_3Dgz.end’

Note: A list of files can be specified by using wildcards, e.g. ‘chro3D04*. full’.

7.54 parfs
function : full path to parameter file (rhd.par)
required : COSBOLD only
type : string
values : e.g. ‘/data/mst/model/par/gt57944n66.par’

7.5.5 xbcpath3

function : full path to 3D xbc or xbc2 files (*.xbc/*.xbc2)

required : optional
type : string
values : e.g. ‘/data/mst/NLTE3D_data/model/’

7.5.6 xbcpathx

function : full path to 1DX(external) xbc or xbc2 files (*.xbc/*.xbc2)

required : optional
type : string
values : e.g. ‘/data/mst/NLTE3D data/model/’

7.5.7 xbcpath

function : full path to 3D and 1DX xbc or xbe2 files (*.xbc/*.xbc2)

required : optional
type : string
values : e.g. ‘/data/mst/NLTE3D_data/model/’

Note: departure files are necessary for NLTE line formation calculations. xbcpath is superseeded by
xbcpath3 and xbcpathx.

7.5 Model data

45

7.5.8 abuid
function Model abundance mixture to be used in the ionopa (or ionopa?2) routine
required always
type string
values ‘kiel’, ‘cifist2006°, ‘special’

abuid identifies the solar abundance mix which is then modified according to dmetal and dalpha (see
below). The corresponding tables, kiel.abu, cifist2006.abu, or special.abu must be located in
directory abupath. Version 6.2.2 onwards use ionopa2, which requires two abundance mixture files:
The model abundance mixture, abuid (above); and the spectrum abundance mixture, abuidx (below).

7.5.9 abuidx
function Spectrum abundance mixture to be used in ionopa2 routine
required always (version 6.2.2 onwards)
type string
values ‘kiel’, ‘cifist2006°, ‘special’

Linfor3D has an additional way it computes ionopa quantities (pe, kappa, zeta) and the monochro-
matic tau scale. When abuid=abuidx (or if abuidx is not defined), these quantities are computed
as they were in previous versions of Linfor3D. When abuid contains the solar abundance mixture
of the CO’BOLD model and abuidx contains the desired abundance mixture of the spectrum syn-
thesis then ionopa2 computes the quantities twice to compensate for the change in abundance.

7.5.10 dmetal

function
required

type
values

metallicity [M/H] (log,,) to be used in ionopa-routines
always

float

e.g.0.0,-0.5, -2.0

The logarithmic abundance of all elements beyond Li (N > 3) is changed by dmetal.

7.5.11 dalpha

function
required

type
values

alpha enhancement to be used in ionopa-routines
always

float

e.g.0.0,+04

The logarithmic enhancement factor to be applied to all a-elements.

Linfor3D considers O, Ne, Mg, Si, S, Ar, Ca, and Ti as a-elements.

46 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.5.12 nx_skip

function : sampling of model in x-direction
required : if context=‘cobold’,’kiel’,‘muram’
type : integer

values o 1,4,10; -1

If both nx_skip and ny_skip (see Sect. 7.5) are negative, the original data are re-binned from (nx,ny) to
(nx/abs(nx_skip) ,ny/abs(ny_skip)). In the usual case that both nx_skip and ny_skip are positive,
the original data are re-sampled, skipping by nx_skip in x, and by ny_skip in y-direction (nx/nx_skip,
and ny/ny_skip should preferably be an integer). If nx_skip and ny_skip have different signs, an error
message is printed and the program is stopped. The value 1 has no effect.

7.5.13 ny_skip

function : sampling of model in x-direction
required : if context=‘cobold’,’kiel’, ‘muram’
type : integer

values o 1,4,10; -1

For details see description of nx_skip (Sect. 7.5).

7.6 More model information (MOST read from parameter file for CO°BOLD data)

The majority of parameters in this section are ignored in the case of CO°BOLD data and instead read from
the specified CO®BOLD parameter file. Please read this section carefully to avoid errors in your synthesis.

7.6.1 opafile

function : name of opacity file (binned opacity tables)
required : not needed if context="‘cobold’

type : string

values : e.g. ‘g2v.opta’

7.6.2 gasfile

function : name of GAS file (P,T — p,e,...)

required : notneeded if context=‘cobold’
type : string
values : e.g. ‘gas.mm@0_1.eo0s’

7.6.3 eosfile

function : name of EOS file (p,e —» P, T,...)
required : notneeded if context=‘cobold’
type : string

values : e.g. ‘eosm00_1.eos’

7.6 More model information (MOST read from parameter file for CO°BOLD data) 47

7.6.4 htau(
function : opacity scale height [cm] at top of 3D model
required : always
type : float
values . e.g. 60.0E5; default = 0.0

A default value of 0.0 tells Linfor3D to take this parameter from the parameter file (set at sect. 7.5 —
parfs —e.g. rhd.par).

7.6.5 qmol
function : mean molecular weight of neutral gas
required : not needed if context="‘cobold’
type : float
values : e.g. 1.301855

Important Note: This parameter has been deprecated in Linfor3D version 6.2.6 onwards.

7.6.6 Teff
function : effective temperature of 3D model
required : notneeded if context=‘cobold’
type : float
values : e.g.5770.0

7.6.7 grav
function : surface gravity [cm/s?] of 3D model
required : not needed if context="‘cobold’
type : float
values :e.g. 27500.0

7.6.8 tsurffac

function : surface temperature (r = 0) of 3D model is tsurffac-T.q
required : always

type : float

values :e.g. 0.727903; default = 0.0

A default value of 0.0 tells Linfor3D to take this parameter from the parameter file (set at sect. 7.5 —
parfs —e.g. rhd.par). This only affects Linfor3D version 6.2.6 onwards. Versions of Linfor3D older
than this do not read this parameter from setcmd if context=‘colbold’.

48

7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.7 Model data - reading of ‘full’ files (CO°BOLD only)

The parameters in this section are only needed for reading snapshot from CO®BOLD data files.

7.7.1 isnap_full 1
function first snapshot to be read from full file(s)
required only needed if context=°‘cobold’
type integer
values 1

7.7.2 isnap_full 2
function last snapshot to be read from full file(s)
required only needed if context="‘cobold’
type integer
values 1

7.7.3 istep_full
function step for reading snapshots from full file(s)
required only needed if context=°‘cobold’
type integer
values 1

7.8 (3D) mean model

7.8 (3D) mean model

49

7.8.1 mavg
function mode of averaging 3D T-structure on Tress
required always
type integer
values 1,4

value meaning

1 : T@py(TRoss) = (T3D(TRoss))

4 . T(3D)(TRoss) = <T§D(TROSS)>1/4

7.9 External 1D reference model

7.9.1 atmpath
function : directory with 1D model atmospheres
required : always
type : string
values : e.g. ‘/home/mst/atm/’
7.9.2 atmfile
function : name of 1D reference model
required : always
type : string
values : e.g. ‘NONE’, ‘dxgt579g44n59.150’, ‘falc.at9’, ‘falc.mod’, ‘<3D>’

Note: No external 1D reference atmosphere will be used if atmfile=‘NONE’. In this case the parameter
atmpath has no meaning. If atmfile=‘<3D>’ the external model atmosphere is replaced by a global

(3D) model atmosphere constructed by averaging the individual (3D) snapshots.

Linfor3D has the capability to read in several types of external 1D model atmospheres. The way it
determines the type of model atmosphere is with the file extension. For example, ‘.150’ is determined as
an LHD model atmosphere. This is determined at the linfor_rdxatm.pro routine level. The result of
that will invoke one of several routines to properly read the model atmosphere. Here is a list of 1D model
atmospheres accepted by Linfor3D, the routine name that reads the model, and what the external model

atmosphere file extension should be:

Model atmosphere Invoked routine File extension
LHD : rdl50.pro : “.150°
Kiel ATMOS : linfor_rdatmos.pro : ‘.atm’
ATLAS9 : linfor_rdatlas9.pro : ‘.at9 or ‘al2’
MARCS : linfor_rdmarcs.pro : ‘.mod’
FAL* : linfor_rdfalmod.pro : ‘. fal’

“Fontenla, Avrett, Loeser models (1993, ApJ 406, 319)

Finally, should you wish to compute a (3D) model again, for different parameters, such as micro-
turbulence, the routine d3a21dx.pro will convert a standard (3D) model (which is saved as an idlsave)
to a properly formatted ATLLAS9 model accepted by Linfor3D. However, this model is only compatable

with Linfor3D and the routine is only available with Linfor38D version 6.2.6 onwards.

50 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.10 Line data and radiative transfer

7.10.1 linfs

function : name of line data file
required : always

type : string

values : e.g. ‘Li67.1line’

Note: If 1infs is not specified, the default value ‘line.dat’ is assumed.

7.10.2 lutaul

function : smallest log Tress covered by sub-model (refined z-grid)
required : always

type : float

values : e.g —7.0D0

7.10.3 lutau2

function : largest log Tross covered by sub-model (refined z-grid
required : always

type : float

values : e.g.2.0D0

7.10.4 dlutau

function : z-spacing of sub-model corresponds roughly to Alog Tress =dlutau
required : always

type : float

values : eg.8.0D-2

7.10.5 Ictaul

function : smallest log 7¢on: used for RT integration
required : always

type : float

values : e.g.—7.0D0, > lutaul

7.10.6 Ictau2

function : largest log Ton: used for RT integration
required : always

type : float

values : e.g2.2.0D0, < lutau2

7.10.7 dictau

function : resolution in log Tcone used for RT integration
required : always
type : float

values : eg. 80D-2

7.10 Line data and radiative transfer 51

7.10.8 Hbrd

function : controls broadening of hydrogen lines
required : always

type : integer

values : 0,1,2,3,4

value meaning

Cayrel & Traving (1960), default

Resonance broadening: AG , Stark broadening: G
Resonance broadening: BPO, Stark broadening: G
Resonance broadening: A08 , Stark broadening: G
Resonance broadening: A08 , Stark broadening: SH

AG : Ali & Griem (1966, Phys. Rev. 144, 366),

BPO: Barklem, Piskunov and O’Mara (2000, A&A 363, 1091),

AO08 : Allard et al. (2008, A&A 480, 581),

G : Griem (1960, ApJ 132, 883), with corrections to approximate the Vidal, Cooper & Smith (1973,
ApJS 25, 37) profiles.

SH : Stehlé & Hutcheon (1999 A&AS, 140, 93)

B WO = O

Note 1: option Hbrd = 2 has an effect only on Ha, HS, and Hy, and Hbrd = 3 affects only He; all
other hydrogen lines are treated according to option Hbrd = 1, unless Hbrd = 0.

Note 2: option Hbrd = 4 is not currently working (as of version 6.2.4 — check the readme file in
the later versions of Linfor3D for updates on this).

7.10.9 vsini
function : Sets vsini value for all spectra in linfor_plot2.pro only
required : always
type : float
values : eg 1.0

7.10.10 ximicx

function : isotropic Gaussian microturbulence velocity [km/s] for external
1D reference model (added quadratically to thermal velocity)

required : always

type : float

values : eg 1.0

7.10.11 ximicl

function : isotropic Gaussian microturbulence velocity [km/s] for (3D)
mean models (added quadratically to thermal velocity)

required : always

type : float

values : eg 1.0

52 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.10.12 ximic3

function : isotropic Gaussian microturbulence velocity [km/s] for 2D/3D models
(added quadratically to thermal flow velocity)

required : always

type : float

values : eg 1.0

7.10.13 ximacx

function : Isotropic Gaussian macroturbulence velocity [km/s] for external
1D reference model (additional line broadening after line formation)
required : always
type : float
values :eg 1.6

7.10.14 ximacl

function : Isoptropic Gaussian macroturbulence velocity [km/s] for (3D)
mean models (additional line broadening after line formation)

required : always

type : float

values : eg 1.6

7.10.15 ximac3

function : Isotropic Gaussian macroturbulence velocity [km/s] for 2D/3D models
(additional line broadening after line formation)

required : always

type : float

values :eg 1.6

7.10.16 vfacx

function : the x-component of the hydrodynamical velocity field of the
2D/3D models is multiplied by this factor

required : always

type : float

values : eg.00,1.0

7.10.17 vfacy

function : the y-component of the hydrodynamical velocity field of the
2D/3D models is multiplied by this factor

required : always

type : float

values : eg.00,1.0

7.10 Line data and radiative transfer 53

7.10.18 vfacz

function : the z-component of the hydrodynamical velocity field of the
2D/3D models is multiplied by this factor

required : always

type . float

values : eg.00,1.0

7.10.19 micro

function : controls microturbulence in 1D Curve-of-Growth
required : always

type : integer

values 0,1

Determines whether or not different microturbulence values should be used when computing the 1D
Curve-of-Growth. 0: only one value, given by ximicx and ximicl, respectively; 1: sequence of
microturbulence values defined by parameters xi_a, xi_b, xi_d (see below).

7.10.20 xi_a
function : determines start value for microturbulence sequence
required : always
type : float
values :e.g. 0.0, default: 0.5
7.10.21 xib
function : determines end value for microturbulence sequence
required : always
type . float
values : e.g. 2.0, default: 1.5
7.10.22 xid
function : determines intervals of microturbulence sequence
required : always
type : float
values :e.g. 0.1, default: 0.125

The microturbulence sequence is computed as xi(i) = xi0 * (xi_a + 1 * xi_d), i=0 .. im, where xi0 is
ximicx and ximicl, respectively, and im= (xi_b - xi_a)/ xi_d.

54 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.10.23 dclam

function : determines the variation of the continuum
required : always

type : float

values : e.g. 20.0, default: 0

if dclam=0, the continuum is treated as constant (default). Otherwise, the continuum is computed at 3
wavelength points, clam-dclam, clam, clam+dclam, where clam is the central wavelength (in A) of the
computed spectral range (see Sect. 8), and dclam is half the width of the specified spectral range (in A).
The continuum is computed by parabolic interpolation inside the spectral window. If the spectral range of
the specified synthetic spectrum (which is defined by the parameters of the line file (see Sect. 8) exceeds
afew A, dclam should be set to match half the total spectral range.

7.10.24 intmode

function : mode of integration in routines ms_int_tau and ms_int_exp
required : always

type : integer

values 0,1

Determines the mode of integration in routines ms_int_tau and ms_int_exp, which can be linear (0) or
monotonic and cubic (1, standard).

7.10.25 intline

function : mode of integrating the line transfer equation
required : always

type . integer

values 0 1,2,-1,-2

Determines the method of integrating the line transfer equation (see Section 3 for details). Default value
isintline=1.

value meaning
1 : Line depression on fixed log 7 scale (Eq. 41)
2 : Line depression on monochromatic 7 scale (Eq. 36)
-1 : Line intensity on fixed log t scale (Eq. 25)
-2 : Line intensity on monochromatic 7 scale (Eq. 26)

7.10.26 nchunk

function : rad.transfer is done in n_chunk “’slices”
required : always

type . integer

values :oeg 2

Default is nchunk = 1, i.e. the whole model is processed as one block. For large models, it may be
necessary to split the computation into several ‘chunks’ to save memory.

7.11 Angle quadrature schemes 55

7.11 Angle quadrature schemes

By default, Linfor3D requires the following information to compute the transfer equation over several ray
angles.

7.11.1 ntheta

function : number of f-angles for which spectrum is computed
required : always

type : integer

values : 0,1,2,3,(-3),4,6,8

0: Intensity spectrum, > O: Intensity and flux spectrum;

7.11.2 nphi
function : number of ¢-angles for integration of flux spectrum
required : always
type : integer
values . no restriction, typically 4
7.11.3 mul
function : view angle u = cos6
required : always
type : float
values : 00..1.0

If the parameter ntheta=0, then the spectrum and intensity maps are computed for inclination angle mu®
(= cos bp).

mu®= 1.0 corresponds to vertical rays, i.e. disk center view.

mu®= 0.0 corresponds to the very limb, but a value of mu0=0.0 will clearly not work.

7.11.4 kphi
function : view angle
required : always
type : integer
values :0,1,2,3

The parameter kphi determines the direction from which the model is viewed:

value meaning

0 : rays emerge parallel to the x-axis, i.e. the model is viewed somewhere
on the ‘equator’ between the left limb and disk center.

1 : rays emerge parallel to the y-axis, i.e. the model is viewed somewhere
on the ‘meridian’ between the lower limb and disk center.

2 : rays emerge anti-parallel to the x-axis, i.e. the model is viewed somewhere
on the ‘equator’ between the right limb and disk center.

3 : rays emerge anti-parallel to the y-axis, i.e. the model is viewed somewhere

on the ‘meridian’ between the upper limb and disk center.

Other (integer) values of kphi are allowed, but give no new results; increasing kphi by one in-

56 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

creases phi by /2.

However, since the release of Linfor3D version 6.3.0, several new schemes have been introduced for the
user to select:

Name meaning

Lobatto : quadrature through routine linfor_setwts_lobatto.pro
Double Gauss : quadrature through routine linfor_setwts_dblgaus.pro
Double Gauss-Radau : quadrature through routine linfor_setwts_dblrdau.pro
Custom-made : quadrature through routine linfor_setwts_special.pro

These new quadrature schemes can be used by selecting them in the setcmd:

7.11.5 raybase
function : quadrature scheme
required : always
type : string
values : ‘lobatto’, ‘dblgaus’, ‘dblrdau’, and ‘special’

If the raybase option is missing from the setcmd then the default lobatto is selected. For the user, little
has changed. One must still select the number of ¢ and ¢ angles to use, like before. The only exception to
this, is when the user elects to use a custom angle quadrature scheme.

To use the special case, a file called ’special.xmu’ that contains the list of mu-angles and corre-
sponding weights must be made available in the working directory. Examples of this file can be found in
the Data subdirectory of the Linfor3D directory tree.

7.12 Curve-of-Growth computations

As standard, Linfor8D computes a Curve-of-Growth (CoG) for the 1D external and (3D) model atmo-
spheres. The range in abundance, and the sampling of the range were fixed within Linfor3D. Version 6.2.5
onwards now includes the option to tailor the Curve-of-Growth, or deactivate the computations.

7.12.1 cog
function : Tailors the Curve-of-Growth computations
required : always
type : integer
values : —-1,0,1

Default is cog = 1. cog = 0 deactivates the CoG computations (speeds up computations of large line
lists). cog = -1 activates a tailored CoG. Requires the three following parameters, otherwise Linfor3D
computes a standard CoG (like cog = 1).

7.12.2 icg
function : sets index from default to user defined
required : yes, if cog=-1
type : integer
values : e.g. 51,101

7.12 Curve-of-Growth computations 57

7.12.3 gflgmin

function
required

type
values

sets minimum A log g f value over which to perform CoG computations

yes, if cog=—1
float
e.g. 3.0

7.12.4 gflgmax

function
required

type
values

sets maximum A log g f value over which to perform CoG computations
yes, if cog=—1

float

e.g. +2.5

If these properties are not included in linfor_setcmd, the default settings are invoked; icg= 51,
gflgmin= —1.0, gflgmax= +1.5.

All of the options defined in Sect. 7 are checked by linfor_checkcmd.pro and are set to default values
in the event that they are missing from setcmd.

58 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.13 IDL Example

pro linfor_setcmd
common linfordata

; Program execution flags:
nlte_flag: 0, $; 0/ 1/ 2/ 3: LTE or NLTE for lines with xb

run_flag: 3, § ; execution mode: -3, -2, -1, 0, 1, 2, 3
cvl_flag: 1, $; 0 / 1: enforce <rho*v1>(z)=0 off / on
cv2_flag: 1, $; 0 / 1: enforce <rho*v2>(z)=0 off / on
cv3_flag: 0, $; ® / 1: enforce <rho*v3>(z)=0 off / on
plt_flag: 1, $; -1 /0 / 1: plotting off / bisectors off / on
maps_flag: 1, $; create maps ICLAMO® .. ICLAMm, m=map_flag
cc3d_flag: 0, $; 0 / 1: output of CC3(nx,ny,nx) off / on
rdbb_flag: 0, § ; 0 / 1: Read magnetic field, write SIR output
0, § ; free pointers in structures at end of program

free_flag:

; General paths:
abupath: getenv(’LINFOR3D_ABU’), §
; Path to abu files and atom.dat
; 1f not set, abupath is read from environment variable LINFOR3D_ABU
ff path: 'NONE’, § ; directory with cached flow fields
; "NONE’: do not use cached flow fields

opapath: getenv(’OPTABLES’), § ; directory with opacity tables

gaspath: getenv(’EOSTABLES’), $

; directory with GAS tables
; directory with EOS tables

eospath: getenv(’EOSTABLES’), $

; Model data:

context: ’cobold’, $

rhdpath: ’/data/models/d3gt579g44n59/bigsel/’, $; directory with model data
modelid: ’d3gt57g44n59.*.full’, § ; data file name

parfs: ’/data/models/d3gt57g44n59/rhd.par’, $; parameter file
xbcpath: ’/data/models/d3gt579g44n59/NLTE3D/’, § ; directory of

; departure coefficients
abuid: "cifist2006’, §$; model abundance mixture, e.g. ’cifist2006’
abuidx: ’special’, $; spectrum abundance mixture, e.g. ’special’
dmetal: 0.0, $; logl® scaling for metal abundances (Z>3)
dalpha: 0.0, $; logl® scaling for alpha elements

; (0, Ne, Mg, Si, S, Ar, Ca, Ti)

nx_skip: 5, ny_skip: 5, § ; sampling in x, y (kiel, cobold only)
; more information (all read from parameter file for COS5BOLD)
opafile: ’undefined’, $

gasfile: ’undefined’, $

eosfile: ’'undefined’, §

teff: 5770.0, grav: 27500.0, §$; grey, copenhagen, muram only
htau0: 0.0E0, § ; tau scale height; special ® and negative

tsurffac: 0.0E0, $; Surface temperature = tsurffac*Teff

; Reading of ’'full’ files (CO5BOLD only):

isnap_full_1: 1, $; first snapshot to be read from full file(s)
isnap_full_2: 9, § ; last snapshot to be read from full file(s)
istep_full: 2, $; step for reading snapshots from full file(s)

7.13 IDL Example 59

; <3D> mean model:

mavg: 4, $; 1: T-average, 4: T 4-average for defining <3D> atmosphere

; External 1D reference model:

atmpath: ’/data/models/d3gt57g44n59/1hdmodels/’, $; directory of 1D

; reference model

atmfile: ’dxgt57g44n59.150’, $; name of reference model

; "NONE’ : no reference model
; Line data / radiative transfer:

linfs: ’line.dat’, $; File with line data

lutaul: -7.0DO, lutau2: 2.0DO, dlutau: 8.0D-2, $; tau scale defining vertical
; model extent and resolution
Ictaul: -7.0D®, lctau2: 2.0DO, dlctau: 8.0D-2, $; universal tau scale for

; integration of RT equation

ntheta: 3, nphi: 4, § ; number of theta and phi angles
mu®: 0.40, kphi: 0, § ; view angle if ntheta=0 (cos theta,kphi*pi/2)
n_chunk: 1, $; RT is done in n_chunk "slices"

; Curve-of-Growth control

cog: 1, $; -1/ 0 / 1: Custom CoG / CoG off / default CoG calculations
icg: 51, $; number of points to compute COG over (used when cog = -1)
gflgmin: -1.0, $; minimum delta log(gf) (used when cog = -1)

gflgmax: +1.5, $; maximum delta log(gf) (used when cog = -1)

; Balmer line computation control
Hbrd: 3,5% ; option for H line broadening
; 0 - (default)
; Cayrel&Traving (self res.
; 1 - Ali-Griem (self res.

+ Griem (Stark)
+ Griem (Stark)
+ Griem (Stark)
+
+

A

; 2 - BPO (self res.

; 3 - Allard 08 (self res. Griem (Stark)

; 4 - Allard 08 (self res.) Stehle (Stark)

; using properly convolved tabulated

; profiles
vsini: 1.80, $; v sini (plot2); same for all spectra
ximicx: 1.00, $; microturbulence [km/s], 1D-REF atmosphere
ximicl: 1.00, § ; microturbulence [km/s], 1D-AVG atmosphere
ximic3: 0.00, $; microturbulence [km/s], 3D-RHD atmosphere
ximacx: 1.60, $; macroturbulence [km/s], 1D-REF atmosphere
ximacl: 1.60, $; macroturbulence [km/s], 1D-AVG atmosphere
ximac3: 0.00, $; macroturbulence [km/s], 3D-RHD atmosphere
vfacx: 1.00, § ; fudge factor for 3D x-velocity
vfacy: 1.00, § ; fudge factor for 3D y-velocity
vfacz: 1.00, $; fudge factor for 3D z-velocity
micro: O, $; compute microturbulence sequence (0/1)
xi_a: 0.0, $; microturbulence sequence start [km/s]
xi_b: 2.0, $; microturbulence sequence stop [km/s]
xi_d: 0.1, $; microturbulence delta sequence [km/s]
dclam 0.0, $; variation of continuum from clam-dclam .. clam+dclam [A]
intmode: 1, $; integration mode (linfor_msint)
intline: 1 $; line integration: depth (1,2) / I (-1,-2)

end

60 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

7.14 F90 Example

; Linfor3D Fortran 90 only variables

; Output filename (optional)

outfile = ’'linfor3D.uiosave’

; Printing options for UIO print outputs

printcobold = 0 ; 0 UIO print out is supressed
; 1 UIO if fully output

; Debug mode

debug =0 ; (0 / 1) debugging model (off / on)
; Used for parallelization scheme debugging
; No serious computations are done.

; Program execution flag

run_flag = 3 ; -3 - Compute the external 1D model atmosphere only
; -2 - Generate a 3x3 file for the external model atmosphere only
; -1 - Restore old results and compare with new 1D external model
; (IDL-version only -- PLOTTING)
; 0 - Restore old results, replace 1D external model
; (IDL-version only)
; 1 - Plotting input model structure on original vertical grid
; (IDL-version only -- PLOTTING)
; 2 - Plotting input model structure on refined vertical grid
; (IDL-version only -- PLOTTING)
; 3 - Compute RT for 3D, <3D>, and 1DX model atmospheres
; (Default)

; NLTE execution flag

nlte_flag = 1 ; read XBC file departure coefficients
; ® - No XBC files read. Everything is computed in LTE
; (Default)
; 1 - Continuum & source function are LTE, line opacities are NLTE
; 2 - Continuum & line opacities are LTE, source function is NLTE
; 3 - Continuum, source function & line opacities are NLTE

; Other program execution flags

wr3x3_flag =

1 ; (0 / 1) write the 1DX and global <3D> 3x3 models
wrtst_flag = 0 ; (0 / 1) write linfor_timing.txt
di_flag =1 ; (0 / 1) create <3D> & global <3D> models for dort
cvl_flag =1 ; (0 / 1) enforce <rho*v1>(z)=0 off / on
cv2_flag =1 ; (0 / 1) enforce <rho*v2>(z)=0 off / on
cv3_flag =1 ; (0 / 1) enforce <rho*v3>(z)=0 off / on
maps_flag = 1 ; create maps ICLAM® .. ICLAMm, m=map_flag
cc3d_flag =1 ; (0 / 1) Output of CC3(nx,ny,nx) off / on
rdbb_flag = ® ; (0 - 2) Read magnetic field, write SIR output

7.14 F90 Example

; Path to abu files and atom.dat

abupath = ’./’ ; directory containing the .abu file
; if ’LINFOR3D_ABU’ then linfor3d looks at the shell
; variable $LINFOR3D_ABU

’

opapath = ’OPTABLES’ ; directory with opacity tables
gaspath = "EOSTABLES’ ; directory with GAS tables
eospath = ’EOSTABLES’ ; directory with EOS tables

; === IMPORTANT ===

; if the above paths are not set, they are read from system environments.
; Not set means missing or

; = 'OPTABLES’, = ’EOSTABLES’, = ’'LINFOR3D_ABU’, = ’NONE’, = "’
; Input data
context = ’cobold’
rhdpath = ’7/snaps/d3gt579g44n59/bigsel/’ ; directory with model data
modelid = ’d3gt57g44n59.%*.full’ ; data file name(s)
parfs = ’7/snaps/d3gt57944n59/scripts/rhd.par’ ; parameter file
xbcpath = ’7/snaps/d3gt57g44n59/xbc/’ ; directory of matching

; departure coefficients
abuid = ’'cifist2006’ ; model abundance mixture 1 (Atmosphere abundances)
abuidx = ’special’ ; model abundance mixture 2 (Synthesis abundances)
dmetal = 0.0 ; logl® scaling for metal abundances (Z>3)
dalpha = 0.0 ; logl® scaling for alpha elements

; (0, Ne, Mg, Si, S, Ar, Ca, Ti)

nx_skip = 5
ny_skip = 5 ; sampling in x, y (kiel, cobold only)

; > 1 samples, < -1 interpolates
; = 0,1 does nothing

; more information (all read from parameter file for CO5BOLD)

opafile = ’undefined’

gasfile = 'undefined’

eosfile = ’undefined’

teff = 5770.0

grav = 27500.0 ; grey, copenhagen, muram only

htau® = 0.0E0 ; tau scale height; special ® and negative
= 0.0E0 ; Surface temperature = tsurffac*Teff

tsurffac

; <3D> mean model

; External 1D reference model

62 7 PARAMETER INPUT: LINFOR_SETCMD.PRO (IDL) LINFOR3D.SETCMD (F90)

atmpath = ’7/snaps/d3gt57g44n59/1lhdmodels/’ ; directory of 1D
; reference model
atmfile = ’t5780g44mm®Oml3al®obl2_marcs.150’ ; name of reference model
; ’NONE’ - no reference model

; Line data / radiative transfer

linfs = ’line.dat’ ; File with line data

lutaul = -7.0D+0

lutau2 = 2.0D+0

dlutau = 8.0D-2 ; tau scale defining vertical

; model extent and resolution

lctaul = -7.0D+0

lctau2 = 2.0D+0

dlctau = 8.0D-2 ; universal tau scale for integration of RT equation
ntheta = 3

nphi =4 ; number of theta and phi angles

mu® = 1.00

kphi =0 ; view angle if ntheta=0 (cos theta,kphi*pi/2)
n_chunk = 1 ; RT is done in n_chunk "slices"

raybase = ’'lobatto’ ; mu-quadrature method

; Curve-of-Growth control

cog = 1 ; (-1 /0 / 1) Custom CoG / CoG off / default CoG calculations
icg = 51 ; number of points to compute COG over (used when cog = -1)
gflgmin = -1.0 ; minimum delta log(gf) (used when cog = -1)

gflgmax = +1.5 ; maximum delta log(gf) (used when cog = -1)

; Balmer line computation control

Hbrd = 3 ; Option for H line broadening

; 0 - (default) Cayrel & Traving (self res.) + Griem (Stark)
;1 - Ali-Griem (self res.) + Griem (Stark)
;2 - BPO (self res.) + Griem (Stark)
;3 - Allard 08 (self res.) + Griem (Stark)
;4 - Allard 08 (self res.) + Stehle (Stark)
; using properly convolved tabulated
; profiles
; RT controls
ximicx = 1.00 ; microturbulence [km/s], 1D-REF atmosphere
ximicl = 1.00 ; microturbulence [km/s], 1D-AVG atmosphere

ximic3 = 0.00 ; microturbulence [km/s], 3D-RHD atmosphere

7.14 F90 Example

vfacx = 1.00
vfacy = 1.00
vfacz = 1.00
micro =
xi_a
xi_b
xi_d

S B ==
[

intmode
intline =

[l
—_ =

dclam = 10.0e-1

fudge factor for 3D x-velocity
fudge factor for 3D y-velocity
fudge factor for 3D z-velocity

compute microturbulence sequence (0/1)
microturbulence sequence start [km/s]
microturbulence sequence stop [km/s]
microturbulence delta sequence [km/s]

integration mode (linfor_msint)
line integration - depth (1,2) / I (-1,-2)

; variation of continuum from clam-dclam ..

clam+dclam [A]

63

64 8 LINE DATA FILE: LINE.DAT

8 Line Data File: line.dat

There are several different formats (for historical reasons) to specify line data which are described in
Sect. 8.2.
Note that all formats were extended in version 1.5.0 and now do have to contain the two lines

clam gfscale
2000.0 1.0

at the end. These parameters are explained in Sect. 8.1. Some helpful remarks concerning the conversion
of line broadening parameters are given in Sect. 8.3.

A basic IDL program for creating a properly formatted line can be found in linfor wrline.pro,
within the Routines sub-directory within the Linfor3D directory tree.

8.1 Parameters in Line Data File

8.1.1 clam
function : continuum wavelength in A, also center of wavelength window
required : always
type : float
values : e.g., 2000.0

clam defines the wavelength where the continuum opacities are computed, and also defines the cen-
ter of the window for which spectrum synthesis is done. The window extends from A4 =clam-dlam to
A =clam+dlam, depending on the value of dlam specified for the particular line.

From Version 3.1.2, a negative clam indicates that the continuum source function is to be set to the
wavelength-integrated Planck-Function, S = o T*/x, and the continuum opacity is set to the Rosseland
mean opacity, Keont = KRoss--

8.1.2 gfscale
function : global scaling factor for oscillator strengths
required : always
type : float
values :oeg, 1.0

Note: The value 1 has no effect. Useful when 1ine.dat contains more than one transition.

8.2 Line Data Formats

8.2.1 Continuum only

It is possible to do pure continuum calculations. In this case, the 1ine.dat file looks like this.

Example:

Some text header

1 1

Continuum, 2000 A
1 -1

clam gfscale

2000.0 1.0

8.2 Line Data Formats 65

Description of entries:

Row 1: Header (identifies the meaning of the columns for data in row 5)
Row 2: Two integers, kline and ktotal; both of them must be 1

Row 3: String, identifier of the continuum calculation

Row 4: Two integers, nbl = 1, incode = —1

Row 5: Description for data in row 6

Row 6: clam and gfscale (see Sect.8.1)

All the line parameters remain undefined.

8.2.2 Single line calculations, line data format ‘0’

For a single unblended line, the simplest form of the ‘line.dat’ file looks like this.

Example:

Mult namj ei alam gflg dlgC6 drrcal dlam ddlam
1 1

Fe I, 5500 A, 0.00 eV

1 0

0000 2600 0.000 5500.0 -6.000 1.0 10.0 5.5D-1 5.5D-3
clam gfscale

2000.0 1.0

Description of entries:

Row 1: Header (identifies the meaning of the columns for data in row 5)
Row 2: Two integers, kline and ktotal
kline: number of line calculations requested in this file
ktotal: is the total number of spectral lines including blends
in this case kline = 1, ktotal = 1
Row 3: String, identifier of the (first) line calculation
Row 4: Integer nbl, integer array incode(nbl)
nb: number of blend components for this line calculation (= 1)
incode: integer array identifying the input format for each of the blend components (= 0)
Row 5: Line data in format ‘0’ (7 + 2 columns):
C1: Multiplet number (for information only)
C2: Identifier of atom or ion (e.g. 2601 mean Fell)
C3: Excitation potential of lower level in [eV]
C4: Central wavelength of blend component
C5: loggf value of blend component
C6: Alog Cs: Enhancement factor for van der Waals line broadening
C7: Ar?/ a%: Difference of mean square electron orbital radii
C8: AA [A]: Line profile is computed from g — A4 to Ag + Ad
C9: 51 [A]: Spacing of wavelength points for spectrum synthesis
(C10: Wy [mA]: total equivalent width of this blend, see below)
Row 6: Description for data in row 6
Row 7: clam and gfscale (see Sect.8.1)

In this case, the Stark broadening (due to collisions with electrons) is neglected (C4 = 0). Radiative
damping (yraq) is treated in the classical approximation.

66 8 LINE DATA FILE: LINE.DAT

In the case of a single blended line the ‘line.dat’ file looks as follows:

Example:

Mult namj ei alam gflg dlgC6 drrcal dlam ddlam
1 2

Fe I, 0.00 eV + Fe II, 3.00 eV, 2000 A

2 060

9999 2600 0.000 2000.0 -6.441 1.0 10.0

9999 2601 3.000 2000.0 -4.550 1.0 10.0 1.5D-1 1.5D-3
clam gfscale

2000.0 1.0

Note that it is not necessary that the blend components belong to the same ion. Here kline = 1, ktotal = 2,
nbl = 2, incode = [0, 0]. Note that only the last of the rows describing the blend need entries C8 and C9.

With a slight modification, it is possible to enter an equivalent width (W, in [mz&]) in column
C10. For this purpose, nbl must be negative, with |nbl| being the number of blend components. The
gf value producing this equivalent width Wy is returned in result.gflg01 (average 3D atmosphere) and
result.gflg0x (1D reference atmosphere).

Example unblended line:

Mult namj chik alam gflg dlgC6 drrcal dlam ddlam weo
1 1
N I Fictitious Line 1: / 0.000 5500.0 -7.6914 1.60 10.00 75.00 /
-1 0
9999 700 0.000 5500.0 -7.6914 1.00 10.00 3.00E-01 3.00E-03 75.00
clam gfscale
2000.0 1.0

Example blended line:

Mult namj chik alam gflg dlgC6 drrcal dlam ddlam Wwe
1 2
Fe I, 0.00 eV + Fe II, 3.00 eV, 2000 A
-2 00

9999 2600 0.000 2000.0 -6.441 1.0 10.0

9999 2601 3.000 2000.0 -4.550 1.0 160.0 1.50D-1 1.50D-03 100.00
clam gfscale

2000.0 1.0

8.2.3 Single line calculations, line data format ‘1’

For a single unblended line, the this form of the ‘line.dat’ file looks like this.

Example:
Mult namj ei alam gflg dlgC6 lu diu lo dio dlam ddlam
1 1
O I ApJ Line 2: 92 6300.30 0.000 -9.773
1 1
92 800 0.000 6300.30 -9.773 1.6 1 0.0 2 0.0 4.D-1 4.D-3
clam gfscale
2000.0 1.0

Description of entries:

8.2 Line Data Formats 67

Row 1: Header (identifies the meaning of the columns for data in row 5)
Row 2: Two integers, kline and ktotal
kline: number of line calculations requested in this file
ktotal: is the total number of spectral lines including blends
in this case kline = 1, ktotal = 1
Row 3: String, identifier of the (first) line calculation
Row 4: Integer nbl, integer array incode(nbl)
nb: number of blend components for this line calculation (= 1)
incode: integer array identifying the input format for each of the blend components (= 1)
Row 5: Line data in format ‘1’ (10 + 2 columns):
C1: Multiplet number (for information only)
C2: Identifier of atom or ion (e.g. 2601 mean Fell)
C3: Excitation potential of lower level in [eV]
C4: Central wavelength of blend component
C5: loggf value of blend component
C6: Alog Cg: Enhancement factor for van der Waals line broadening
C7: LU: Orbital quantum number of valence electron of lower level
C8: DIU: excitation energy [eV] of parent term for lower level
C9: LO: Orbital quantum number of valence electron of upper level
C10: DIO: excitation energy [eV] of parent term for upper level
Cl1: Aa [A]: Line profile is computed from dg — Ad to 4y + A
C12: 64 [A]: Spacing of wavelength points for spectrum synthesis
(C13: Wy [mA]: total equivalent width of this blend, see below)
Row 6: Description for data in row 6
Row 7: clam and gfscale (see Sect.8.1)

In this case, Ar_2/a(2) is computed from LU, DIU, LO, DIO (Function rrca). As before, the Stark
broadening (due to collisions with electrons) is neglected (C4 = 0). Radiative damping (yraq) is treated in
the classical approximation.

In the case of a single blended line the ‘line.dat’ file looks as follows:

Example:
Mult namj ei alam gflg dlgC6 1lu diu lo dio dlam ddlam
1 3
O I ApJ Line 1: 67 6158.17 10.741 -1.140
3 111
67 800 10.741 6158.15 -1.985 1.0 1 0.0 2 0.0
67 800 10.741 6158.17 -1.140 1.0 1 0.0 2 0.0
67 800 10.741 6158.19 -0.553 1.0 1 0.0 2 0.0 4.D-1 4.D-3
clam gfscale
2000.0 1.0

Here kline = 1, ktotal = 3, nbl = 3, incode = [1, 1, 1]. Note that only the last of the rows describing the
blend need entries C11 and C12. .

As in the case of format ’(’, it is possible to enter an equivalent width (W, in [mA]) in column
C13. For this purpose, nbl must be negative, with |nbl| being the number of blend components. The gf
value producing this equivalent width Wy is returned in result.gflg01 (average 3D atmosphere) and
result.gflg®x (1D reference atmosphere).

Example unblended line:

68 8 LINE DATA FILE: LINE.DAT

Mult namj ei alam gflg dlgC6 lu diu lo dio dlam ddlam WO
1 1
O I ApJ Line 2: 92 6300.30 0.000 -9.773
-1 1
92 800 0.000 6300.30 -9.773 1.0 1 0.0 2 0.0 4.D-1 4.D-3 7.00
clam gfscale
2000.0 1.0
Example blended line:
Mult namj ei alam gflg dlgC6 lu diu lo dio dlam ddlam WO
1 3
O I ApJ Line 1: 67 6158.17 10.741 -1.140
-3 111
67 800 10.741 6158.15 -1.985 1.0 1 0.0 2 0.0
67 800 10.741 6158.17 -1.140 1.0 1 0.0 2 0.0
67 800 10.741 6158.19 -0.553 1.0 1 0.0 2 0.0 4.D-1 4.D-3 10.00
clam gfscale
2000.0 1.0

8.2.4 Single line calculations, complete line data format ‘2’

For a single unblended line, the this form of the ‘line.dat’ file looks like this.

Example:

Mult namj ei alam gflg dlgC6 drrcal dlgC4 C4lg dlggr Crad dlam
1 1

Si I AA Line 5: 16 5948.540 5.0823 -1.130 390.603 11.80 -1 86

1 2

16 1400 5.0823 5948.540 -1.130 1.0 390.63 0.0 11.80 0.0 -1.0 5.D-1
clam gfscale
2000.0 1.0

Description of entries:

Row 1: Header (identifies the meaning of the columns for data in row 5)
Row 2: Two integers, kline and ktotal
kline: number of line calculations requested in this file
ktotal: is the total number of spectral lines including blends
in this case kline = 1, ktotal = 1
Row 3: String, identifier of the (first) line calculation
Row 4: Integer nbl, integer array incode(nbl)
nb: number of blend components for this line calculation (= 1)
incode: integer array identifying the input format for each of the blend components (= 2)
Row 5: Line data in format ‘2’ (11 + 2 columns):
C1: Multiplet number (for information only)
C2: Identifier of atom or ion (e.g. 2601 mean Fell)
C3: Excitation potential of lower level in [eV]
C4: Central wavelength of blend component
C5: loggf value of blend component
C6: Alog Cg: Enhancement factor for van der Waals line broadening
C7: Ar?/ aé: Difference of mean square electron orbital radii
C8: Alog C4: Enhancement factor for Stark line broadening
C9: —log C4: Stark broadening constant.

ddlam

5.D-3

8.2 Line Data Formats 69

if —log C4 = 0, then use Griem (Phys. Rev. 165, 258, 1968)
and Cowley (Obs. 91, 139, 1971) approximation
if —log C4 < O (typically —log C4 = —1.0), then C4 =0
C10: Alog yraq: Enhancement factor for natural line broadening
C11: Cpaq: Natural line broadening (1078y14q)
if Crag < 0, use classical formula (y;.q = 2.22 - 103/22) [rad/s], where A is in A.
Cl12: AA [A]: Line profile is computed from A9 — Adto g + Ad
C13: 64 [A]: Spacing of wavelength points for spectrum synthesis
(C14: W, [mA]: total equivalent width of this blend, see below)
Row 6: Description for data in row 6
Row 7: clam and gfscale (see Sect.8.1)

In the case of a single blended line the ‘line.dat’ file looks as follows:

Example:
Mult namj ei alam gflg dlgC6 drrcal dlgC4 C4lg dlggr Crad dlam ddlam
1 2

Si I / Si IT blend: 16 5948.540 5.0823 -1.130 390.03 11.80 -1 86
2 22

16 1400 5.0823 5948.540 -1.130 1.0 390.03 0.0 11.80 0.0 -1.0

16 1401 0.0823 5948.530 -3.130 1.0 90.00 0.0 13.80 0.0 -1.0 5.D-1 5.D-3
clam gfscale
2000.0 1.0

Here kline = 1, ktotal = 2, nbl = 2, incode = [2,2,2]. Note that only the last of the rows describing the
blend need entries C12 and C13.

As in the cases of format ’0” and ’1°, it is possible to enter an equivalent width (W in [mA]) in
column C14. For this purpose, nbl must be negative, with |nbl| being the number of blend components.
The gf value producing this equivalent width Wy is returned in result.gflg01 (average 3D atmosphere)
and result.gflg0x (1D reference atmosphere). No examples are given since the necessary modification
the the data format should be obvious.

8.2.5 Single line calculations, complete line data format ‘3’

This data format has a maximum of 17 columns. It differs from format ‘2’ only in the way the van der
Waals broadening parameters are specified. Columns C7 with Ar?/ a(z) is replaced by the four columns:

C7: LU: Orbital quantum number of valence electron of lower level
C8: DIU: excitation energy [eV] of parent term for lower level

C9: LO: Orbital quantum number of valence electron of upper level
C10: DIO: excitation energy [eV] of parent term for upper level

as in format ‘1’. The remaining columns are as in format ’2’, but shifted by +3:

C11: Alog C4: Enhancement factor for Stark line broadening
C12: —log Cy4: Stark broadening constant.
if log C4 = 0, then use Griem (Phys. Rev. 165, 258, 1968)
and Cowley (Obs. 91, 139, 1971) approximation
if —log C4 < O (typically —logC4 = —1.0), then C4 =0
C13: Alog yraq: Enhancement factor for natural line broadening
C14: Ciyq: Natural line broadening (IO‘Syrad)
if Craq < 0, use classical formula (yraq = 2.22 - 10'5/42) [rad/s], where A is in A.

70 8 LINE DATA FILE: LINE.DAT

C15: Ad [A]: Line profile is computed from 1p — Al to g + A4
C16: 64 [A]: Spacing of wavelength points for spectrum synthesis
(C17: Wy [mA]: total equivalent width of this blend, see below)

As in the cases of format *0’, *1°, and ’2’ it is also possible to enter an equivalent width (Wj in
[mA]), now in column C17. For this purpose, nbl must be negative, with |nbl| being the number of blend
components. The gf value producing this equivalent width Wy is returned in result.gflg01 (average
3D atmosphere) and result.gflg0x (1D reference atmosphere).

8.2.6 Single line calculations, complete line data format ‘4’

This data format has a maximum of 14 columns. It differs from format 2" only in the way the van der
Waals broadening parameter is specified. Column C7 with Ar?/ a% is replaced by the parameter —log Ce.

C7: —log Ce: negative logarithmic van der Waals broadening parameter Cg
The remaining columns are as in format *2’.

C8: Alog C4: Enhancement factor for Stark line broadening
C9: —log C4: Stark broadening constant.
if log C4 = 0, then use Griem (Phys. Rev. 165, 258, 1968)
and Cowley (Obs. 91, 139, 1971) approximation
if —log C4 < O (typically —log C4 = —1.0), then C4 = 0 (no Stark broadening)
C10: Alog yraq: Enhancement factor for natural line broadening
Cl11: Cpaq: Natural line broadening (1078y,4q)
if Crag < 0, use classical formula (y;.q = 2.22 - 10"3/22) [rad/s], where A is in A.
Cl12: Ad [A]: Line profile is computed from 19 — Al to g + A4
C13: 64 [A]: Spacing of wavelength points for spectrum synthesis
(Cl14: W [mA]: total equivalent width of this blend, see above)

Example:

Mult namj ei alam gflg dlgC6 C6log dlgC4 C4log dlggr Crad dlam
1 12

Li7, 6 components Li6, 6 components: glog=-0.427905 .. -0.831310

12 4444444444414

9999 0300.7 0.00 6707.7560 -0.427905 0.84 31.3843 0.0 14.1505 0.0 -1.0

9999 0300.7 0.00 6707.7680 -0.206158 0.84 31.3843 0.0 14.1505 0.0 -1.0

9999 0300.7 0.00 6707.9070 -0.808148 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.7 0.00 6707.9080 -1.507150 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.7 0.00 6707.9190 -0.808148 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.7 0.00 6707.9200 -0.808148 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6707.9200 -0.478953 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6707.9230 -0.178176 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6708.0690 -0.831310 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6708.0700 -1.734310 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6708.0740 -0.734310 0.84 31.3844 0.0 14.1505 0.0 -1.0

9999 0300.6 0.00 6708.0750 -0.831310 0.84 31.3844 0.0 14.1505 0.0 -1.60 10.D-1

clam gfscale
6707.840 5.0119

dd]

5.1

8.2 Line Data Formats 71

8.2.7 Single line calculations, complete line data format ‘5’

This data format has a maximum of 15 columns. It differs substantially form format ‘4’: (i) an extra
column is inserted that allows the specification of loggf offsets; (ii) the van der Waals broadening is
specified by log y¢ instead of — log Cg; (iii) the Stark broadening is specified by log y,4 instead of —log Cy;
(iv) the natural broadening is specified by 10g y;aq instead of yyaq/ 108. More precisely, column C5-C15
have the following meaning in format ‘5’:

C5: Alog gf: Correction factor for the line’s log g f value
C6: loggf: the line’s logarithmic g f value
C7: Alog ys: Enhancement factor for van der Waals y parameter

C8: log («%:}1104)): logarithmic van der Waals broadening parameter ys /Ny at T = 10* K.
C9: Alogvya: Enhancement factor for Stark y parameter
C10: log (MTT:;OZ‘)): logarithmic Stark broadening parameter y4/N, at T = 10* K.
if log y4/N. > 0, then use Griem (Phys. Rev. 165, 258, 1968)
and Cowley (Obs. 91, 139, 1971) approximation
C11: Alogyraq: Enhancement factor for the natural line broadening
C12: 1og yraq: Natural line broadening (log yag [rad/s])
if 108 Yraa > 99.0, use classical formula (yraq = 2.22 - 10'5/42) [rad/s], where A is in A.
Cl13: AA [A]: Line profile is computed from 1p — A1 to g + A4
C14: 64 [A]: Spacing of wavelength points for spectrum synthesis
(C15: Wy [mz&]: total equivalent width of this blend, see above)

Example:

Mult namj ei alam dlggf gflg dlgg6b g6log dlgg4 g4log dlggr grlog dlam ddlam
1 12

Li7, 6 components Li6, 6 components: glog=-0.427905 .. -0.831310

12 555555555555

9999 0300.7 0.00 6707.7560 0.00 -0.427905 2.10 -7.94973 0.00 -5.7800 0.0 99.0
9999 0300.7 0.00 6707.7680 0.00 -0.206158 2.10 -7.94974 0.00 -5.7800 0.0 99.0
9999 0300.7 0.00 6707.9070 0.00 -0.808148 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.7 0.00 6707.9080 0.00 -1.507150 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.7 0.00 6707.9190 0.00 -0.808148 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.7 0.00 6707.9200 0.00 -0.808148 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6707.9200 0.00 -0.478953 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6707.9230 0.00 -0.178176 2.10 -7.94975 0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6708.0690 0.00 -0.831310 2.10 -7.94976 ©0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6708.0700 0.00 -1.734310 2.10 -7.94976 0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6708.0740 0.00 -0.734310 2.10 -7.94976 0.00 -5.7800 0.0 99.0
9999 0300.6 0.00 6708.0750 0.00 -0.831310 2.10 -7.94976 0.00 -5.7800 0.0 99.0 10.D-1 5.D-3

clam gfscale
6707.840 5.0119

8.2.8 Single line calculations, complete line data format ‘6’

This data format also has a maximum of 15 columns. It differs from format ‘5’ only in the way the van der
Waals broadening parameters are specified. In format ‘6’, column C7—C8 have the following meaning:

C7: oaBo: van der Waals broadening cross section in atomic units at vg = 10 km/s according ABO theory
C8: aapo: @ parameter of ABO theory defining the velocity (temperature) dependence of the cross section o

The remaining columns C9—C15 are as in format ’5’. Note that:

e no enhancement factor for van der Waals broadening is foreseen in this line data format.

72

o the temperature dependence of the broadening cross section is correctly taken into account accord-
ing to the ABO theory when this line data format is used.

Example:

Mult
1 12

Li7, 6 components Li6, 6 components: glog=-0.427905 ..
66666666
6707.
6707.
6707.
6707.
6707.
6707.
6707.
6707.
6708.
6708.
6708.
6708.

namj

ei

12 66 66

9999 0300.7 O
9999 0300.7 O
9999 0300.7 ©
9999 0300.7 O
9999 0300.7 O
9999 0300.7 ©
9999 0300.6 O
9999 0300.6 O
9999 0300.6 O
9999 0300.6 O
9999 0300.6 O
9999 0300.6
clam gfscale
6707.840 5.0119

8.2.9 Single line calculations, complete line data format ‘7’

This data format was designed for simple test calculations where the line profile is fixed, i.e. the line
parameters are depth-independent (see also Sect. 3.5). This format has a maximum of 7 columns:

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
0.

00

alam

Description of entries:

Row 1:
Row 2:

Row 3:
Row 4:

Row 5:

Row 6: Description for data in row 6
Row 7: clam and gfscale (see Sect.8.1)

7560
7680
9070
9080
9190
9200
9200
9230
0690
0700
0740
0750

dlggf gflg

@ oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

-0.
-0.
-0.
.507150
-0.
-0.
-0.
-0.
-0.
-1.
-0.
-0.

-1

427905
206158
808148

808148
808148
478953
178176
831310
734310
734310
831310

s_abo

355.
355.
355.
355.
355.
355.
355.
355.
355.
355.
355.
355.

8 LINE DATA FILE: LINE.DAT

a_abo

-0.831310
909 0.40000
900 0.40000
892 0.40000
892 0.40000
892 0.40000
892 0.40000
892 0.40000
892 0.40000
894 0.40000
894 0.40000
894 0.40000
894 0.40000

Header (identifies the meaning of the columns for data in row 5)

Two integers, kline and krotal
kline: number of line calculations requested in this file

ktotal: is the total number of spectral lines including blends
in this case kline = 1, ktotal = 1
String, identifier of the line calculation

Integer nbl, integer array incode(nbl)

nb: number of blend components for this line calculation (= 1)

incode: integer array identifying the input format for each of the blend components (= 7)

C1: Central wavelength of blend component [A]
C2: Doppler broadening in units of ¢, vp/c

C3: 170 = Kiine/Kcont at line center

C4: a-parameter for Voigt profile, @ = y/2/Awp

C5: A1 [A]: Line profile is computed from dg — Ad to 4y + A

C6: 61 [A]: Spacing of wavelength points for spectrum synthesis

(C7: Wy [mA]: total equivalent width of this blend, see above)

Example:

alam
1 1
Test
1 7

Vdop

etald

avgt

dlam

ddlam

grey sf Vdop=2.D-5, eta®=1.0D0O, avgt=1.D-2

dlgg4

@ oo

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

g4log

-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5

.7800
.7800
.7800
.7800
.7800
.7800
.7800
.7800
.7800
.7800
.7800
.7800

(ratio of half half width of dispersion profile and Doppler widths of Gaussian).

dlggr grlog dlam

(= I — A — = R R A= A= = A — A=]
(=B — R — = R — A~ N — I — A~ =]

99.
99.
99.
99.
99.
99.
99.
99.
99.
99.
99.
99.

(=B — I — = R — R A~ A~ I A~ A~ =]

10.D-1

ddle

5.D-

8.2 Line Data Formats 73

4000.000 2.0D-5 1.0DO0 1.60D-2 0.960D® 0.90D-2
clam gfscale
-4000.000 1.0

8.2.10 Multiple Line Calculations

It is also possible to process a whole set of lines in a single run. The requirement is, however, that all lines
have the same central wavelength (continuum wavelength). This mode was designed for parameter studies,
e.g. investigating the “granulation abundance corrections” as a function of line excitation potential.

Example, 8 unblended N I lines of different excitation potential:

Mult namj chik alam gflg dlgC6 drrcal dlam ddlam Wwo
8 8
N I Fictitious Line 1: / 0.000 5500.0 -7.6914 1.60 10.00 75.00 /
-1 0

9999 700 0.000 5500. .6914 1.00 10.00 3.00E-01 3.00E-03 75.00
N I Fictitious Line 2: / 2.000 5500.0 -5.7282 1.0 10.00 75.00 /
-1 0

9999 700 2.000 5500. .7282 1.00 10.00 3.00E-01 3.00E-03 75.00
N I Fictitious Line 3: / 4.000 5500.0 -3.8298 1.0 10.00 75.00 /
-1 0

9999 700 4.000 5500. .8298 1.00 10.00 3.00E-01 3.00E-03 75.00
N I Fictitious Line 4: / 6.000 5500.0 -1.9876 1.00 10.00 75.00 /
-1 0

9999 700 6.000 5500. .9876 1.00 10.00 3.00E-01 3.00E-03 75.00
N I Fictitious Line 5: / 8.000 5500.0 -0.1961 1.80 10.00 75.00 /
-1 0

9999 700 8.000 5500.0 -0.1961 1.00 10.60 3.00E-01 3.00E-03 75.00
N I Fictitious Line 6: / 10.000 5500.0 1.5485 1.60 10.00 75.00 /
-1 0

9999 700 10.000 5500.0 1.5485 1.00 10.60 3.00E-01 3.00E-03 75.00
N I Fictitious Line 7: / 11.000 5500.0 2.4046 1.00 10.00 75.00 /
-1 0

(=)
I
~N

(=]
1
(9]

[=)
I
w

(=)
1
[

9999 700 11.000 5500.0 2.4046 1.00 10.600 3.00E-01 3.00E-03 75.00
N I Fictitious Line 8: / 12.000 5500.0 3.2510 1.600 10.00 75.00 /
-1 0

9999 700 12.0600 5500.0 3.2510 1.00 10.600 3.00E-01 3.00E-03 75.00
clam gfscale

2000.0 1.0

Note that now kline = 8, and ktotal = 8, since all lines have one blend component only.

74 8 LINE DATA FILE: LINE.DAT

8.3 Conversion of line broadening parameters

The line broadening can be specified in different ways, e.g. as — log C4 for quadratic Stark broadening. The
required data is, however, not always available and must be converted from other broadening parameters,
e.g. v4. In the particular case of the Vienna Atomic Line Database the broadening is provided as log(y4/N,)
for a temperature of T = 10* K.

Please note that here and in Linfor3D in general, the parameters C,, (n = 4, 6) are defined via

c
Aw = r—: (79)
whereas the definition by Unsold is
Cn
Aw=2m—. (80)
rn

The Linfor parameters C,, are thus a factor 27 larger than in the definition by Unsold.

Note that yra4, V4, Y6 measure the full width at half maximum of the Lorentzian profile in units of rad/s.

8.3.1 Quadratic Stark effect

The broadening parameter y4 for the quadratic Stark effect can be written as
ya = 11.37C" v P N, 81)

where vy is the relative velocity between the regarded atom and the perturber, i.e. the colliding particle:

8kT 1 1

2

= (— + . 82

Urel prp— (Al A2) (82)
A; and A; are the atomic weights in atomic mass units, e.g., Ay = 1 for a colliding hydrogen atom and
A} = 56 for iron atoms and A, = 1/1837 = m./my for electrons. For Stark broadening with electrons as

perturbers the following good approximation can be made:

1 1 1
Al >>Ay = —+— =~ — =1837 = 83
1> A=t s my /me (83)
With this Eq. 81 can be written as
log % = log11.37 + log Ciﬁ + log Vpe 3 (84)
€
2 1 8kT
= 1.056 + - logC4 + — log (85)
3 6 T Mme
2 1
= 1.056+§10gC4+1.931+610gT (86)
2 1 1 T
= 1.056 + = log C4 + 1.931 + — log 10* + —1 87
3 108C4 G g 6 °8 TR (87)
(88)
With T = 10* K, which is assumed for data in VALD, we derive
Y4 2
log =— =3.654 + = log C 89
g\ 3 10gC4 (89)
and finally the conversion formula:
Y4
log C4 = 1.5log — — 5.4805 (90)
Ne
For instance a value of —5.491 from VALD gives logCs = —13.717. The parameter C41g is thus

setto 13.717.

8.3 Conversion of line broadening parameters 75

8.3.2 Van der Waals broadening

The broadening parameter g for the van der Waals effect can be written as
¥6 = 8.08 C6/> ve>> Ny . (91)

The perturbing particles are mostly hydrogen atoms with Ay = 1. We now make the approximation

1 1 1
A A —+—~— =1 92
1> 2ffA1 5 (92)

With this the relative velocity of the particles (Eq. 82) reduces to

8kT
bret” = ——. (93)
Tmy
We can thus rewrite Eq. 91:
log 2% = log8.08 +log C2* +log vy’’’ (94)
Ny
2 3 8kT
= 0907 + -logC¢ + — log — (95)
5 10 Tmy
2 3
= 0.907 + 3 log Ce +2.497 + 0 logT (96)
2 3 3 T
= 0.907 + = log Cs +2.497 + — log 10* + — log —— 97
5 o8o 10 27 "0 %®10PK .
(98)
With T = 10* K, which is assumed for data in VALD, we derive
log Y& = 4.604 + 2 log Cs (99)
Ny 5
and finally the conversion formula:
Y6
logCe = 2.5log — —11.510 (100)
Ny

For instance a value of —7.619 from VALD gives log C¢ = —30.558. Before Linfor3D Version 6.5.0,
neither the parameter yg nor the parameter C61og= —log C¢ could be specified in the line data file directly.
Instead the van der Waals broadening had to be specified via the difference of mean square electron orbital

radii Ar_z/ ag, where ag is the Bohr radius:
log (Ar2/a3) = log Cy + 323867 . (101)

The necessary relation for the conversion between (Ar_z/ag) and g is:

J— Y
AP /a% _ 1020.877+2.510gﬁ ‘ (102)

The exemplary value of —7.619 from VALD thus gives 67.437 for the parameter drrcal. In ad-
dition d1gC6 should be set to 0 unless you want to apply an additional enhancement of the broadening.

Since Linfor3D Version 6.5.0, line data format ‘4’ and ‘5° allows to enter directly the parameter C61og or
Y6/Nu, respectively.

76 8 LINE DATA FILE: LINE.DAT

8.3.3 ABO van der Waals broadening formalism

In the van der Waals broadening formalism of Anstee, Barklem, and O’Mara, yg is computed as

wo Y6

@aBo/2
Nu 2Ny)

s Vrel 1-aaBo
= 0ABO 4 (['(2 — aaBo/2) vo (I) , (103)

n
where w is the half half width in rad s™', oapo and @apo are the two tabulated quantities of the ABO line
broadening theory, I' denotes the mathematical I'-function. The parameter o-apo is the broadening cross
section at relative velocity vg = 10 km/s between the perturbing hydrogen atom and the atom of interest
in atomic units. The factor a% (ap is the Bohr radius) converts the cross section to units of cm?2. vy is the
mean relative velocity averaged over the Maxwellian velocity distribution as given by Eq. 82.

The parameter aapo describes the velocity dependence of the broadening cross section

o AB0(V) = 0ABO(V0) (%) . (104)

For details see, e.g., Barklem, Anstee and O’Mara, Publ. Astron. Soc. Aust., 1998, 15, 336-8.
Numerically, we obtain

Urel

log 12/]—; = log OABO + 0-052455CVABO + logF (2 - (IAB()/Z) + (1 - CZAB()) log (E

) —-10.25177. (105)

This relation may be compared to the classical van der Waals formula (Eq.94) which may be rewritten as

log ;—6 = 0.4 log Cg + 0.6 log (@) + 45074114 (106)
H o

We can convert the ABO parameters o apo and aapo to Cg by requiring the two expressions (105) and
(106) to yield identical results for ye(vre; = vg) = v6(T ~ 4760 K):

logCe = 2.5 logoapo + 0.1311376 wapo + 2.5 logI' (2 — @apo/2) — 36.89795. (107)

For oago = 530, aago = 0.277, we obtain log C¢ = —30.1076.
If we choose a different reference velocity, v*, for matching both expressions, we obtain

*

5
1og Cg = 2.5 log oago +0.131 1376 aaBo + 2.5 10gF(2 — aABo/Z) + (1 - 5 a’ABo) log U— —36.89795.
Vo

(108)
This relation shows that, for aagpo = 2/5, ABO and Linfor3D can be matched to give identical y¢ for
arbitrary temperatures. In Linfor3D we choose v* = 14.495km/s, corresponding to 7 ~ 10*K. Then
log(v*/vp) = 0.1612.
On the other hand, any Cg can be uniquely converted to o ago and @apo:

logoapo = 0.4 log Ce + 14.76906834 , a@apo =2/5. (109)

For example, log Cq = —30.1076 implies log cao = 2.7260324 or oapo = 532.15.
For use in Linfor3D, we rewrite Eq. (105) as

Y6

1+ @ABO
108

1
og >

= 10g O ABO + 10g9 + IOg PH + F(a/ABo) s (1 10)

where 6 = 5039.67/T, Py = Ny kT is the partial pressure of neutral hydogen atoms, and
F(aago) = craapo +10gI'(2 - aapo/2) — (1 — aao) logug

1-aapo ~_ 1+aapo
2 7 2

c3+c4, (111)

8.3 Conversion of line broadening parameters

77

or
F(aao) = logI'(2—aaBo/2) + fi@aBo + f2, (112)
with the constants
vo = 10°[cm/s], (113)
ap = 5.291772510™%, Bohrradius [cm], (114)
1 4
c1 = = log (—) = 0.052455, (115)
2 n
8
= log(—) = 24.182288, (116)
Tmy
¢z = log(k5039.67) = —12.15750, (117)
209 a%
cs = log o8 =-18.25177, (118)
fi = c1—(c2+c3)/2 +log(vg) = 0.040060295, (119)
= (c2—c¢3)/2 + cq —log(vg) = —6.0818740. (120)
For aago = 2/5 we obtain
log 8 7
Ogl_()8 logoaBo + 10 log 6 + log Py — 6.0967212, (121)
and with Eq. (109) we get
1 Yo 2l Ce + ! log 6 + log Py + 8.6723475 (122)
og—=-1lo — lo 0 .
g 1085 gle 10 g gI'H)
which is the standard formula used in Linfor3D for decades.
8.3.4 Natural line broadening
The broadening parameter ;g can be converted like this:
Crag = 10108700780 (123)
For instance, logyrq = 7.877 would give Crg = 0.753. In line data formats ‘0’ — ‘4’, the param-

eter Crad is thus set to 0.753, and dlggr is set to 0.0. In line data formats ‘5’ —

grlogissetto 7.887.

‘6’, the parameter

78 9 DEPARTURE COEFFICIENTS

9 Departure Coefficients

Linfor3D is able to read departure coefficients from statistical equilibrium computations and incorporate
how they affect the source function, and hence the line depression and the over all line profile in a nor-
malised spectrum.

Until early 2022, Linfor3D was only able to read departure coefficients from the 3D statistical equilibrium
code, NLTE3D. These files are formatted according to the UIO standard, and are often called xbc files.

Since then, modifications were made to Linfor3D that made it possible for it to read a new type of file — an
xbc?2 file. Like this file’s predecessor, it is written using the UIO package, but the contents of these files
differs. These files are created with the counterpart 1.5D statistical equilibrium wrapper, NLTE15D. This
code is an MPI wrapper that can be adapted for most 1D statistical equilibrium codes, such as MULTI or
DETAIL.

Linfor3D is capable — with some effort — of reading most formats containing departure coefficients. To
add new formats, a new module should be added to nlte/ and those considerations should be added to
linfor_nlte.f90. In fact linfor_nlte.f90 was designed so that one could easily add new modules
that deal with NLTE departures.

The contents of the xbc and xbc?2 files are now explained.

9.1 The xbc file
Add a table of the inputs

Description of entries:
Z-Structure:

MI10 : First index of first horizontal dimension

N10 : Last index of first horizontal dimension

M20 . First index of second horizontal dimension

N20 : Last index of second horizontal dimension

M30 : First index of the vertical dimension

N30 : Last index of the vertical dimension

KI1SKIP : Skipping value of the first horizontal dimension

K2SKIP . Skipping value of the second horizontal dimension

K3BOT : Bottom boundary grid point considered for statistical equilibrium computations
from NLTE3D

K3TOP : Top boundary grid point considered for statistical equilibrium computations from
NLTE3D

NLEVEL : Number of levels stored in departure file

GSTLEV : Statistical weights of each level

EEVLEV : Energies of each level in electron volts

XC3 . Vertical grid points in centimetres

TEMP : Temperature values at every grid point of the 3D cube in Kelvin

DNEO : Electron number density values at every grid point of the 3D cube

DNHO : Hydrogen number density values at every grid point of the 3D cube

XBCOEF : Departure coeflicients, nnyre/nire, for each level at every grid point of the 3D

cube

9.2 The xbc2 file

9.2 The xbc2 file

79

Description of entries:

FILETYPE
Z-Structure:
ID

ANAM
M10

N10

M20

N20

M30

N30
NLAM
NLEVEL
KI1SKIP
K2SKIP
ZSHIFT
ILEVEL
GSTLEV
EEVLEV
CLAM
LEVI]

XC1

XC2

XC3
TEMP
LTAUV
LTAUR
XBCOEF

File type. Set to “xbc2” in files generated by NLTE15D

Element ID

Element code ID

First index of first horizontal dimension

Last index of first horizontal dimension

First index of second horizontal dimension

Last index of second horizontal dimension

First index of the vertical dimension

Last index of the vertical dimension

Number of transition wavelengths stored in departure file

Number of levels stored in departure file

Skipping value of the first horizontal dimension

Skipping value of the second horizontal dimension

First geometrical depth point over which departures are computed
Corresponding departure indexes in xbcoef for each level
Statistical weights of each level

Energies of each level in electron volts

Central wavelength of every transition considered in departure file
Corresponding lower (first index) and upper (second index) departure indexes for
each transition

First horizontal grid points in centimetres

Second horizontal grid points in centimetres

Vertical grid points in centimetres

Temperature values at every grid point of the 3D cube in Kelvin
Monochromatic optical depth scale evaluated in base 10 logarithm
Rosseland optical depth scale evaluated in base 10 logarithm
Departure coefficients, nnyre/niTE, for each level at every grid point of the 3D
cube

80 10 OUTPUT FILES

10 Output files

Linfor3D generates the following output files in the Linfor3D working directory:

name content
linfor_3D_1.uiosave : UIO formatted structures:
ABU, ATOM, CMD, CONST, INFO, LINE (see Sect. 11.1 for
details).
linfor_3D_2.uiosave : UIO formatted structures:
CONTF, IMUPHI, MAPS, RESULT (see Sect. 11.2 for details).
linfor_3D_3.uiosave : UIO formatted structure:

CONTF3D — written to file if cc3d flag is set to 1 in CMD (see
Sect. 11.3 for details).

linfor_1X.uiosave : UIO formatted structures:
ABU, ATOM, CMD, CONST, INFO, LINE, CONTF, IMUPHI,
RESULT — writen to file if run flag is set to —3 in CMD (See
Sect. 11.4 for details).

linfor_timing.txt : Timing statistics (see Sect. 13).

linfor 3D_1.ps . Postscript file: local line profiles plus average.

linfor 3D _2.ps . Postscript file: line profiles for 1D reference atmospheres and
time-averaged 1D and 3D spectra; granulation abundance correc-
tion

<LHD model name>_150.3x3 : The 1D LHD model written as a 3X3 RHD box in UIO format

<3D_model name>_avg.3x3 : The (3D) model written as a 3X3 RHD box in UIO format

The latest versions of Linfor3D (version 6.0.0 onwards) are compatible with the CVS versions of GNU
data language (GDL)’. To make this possible, two new routines were written to replace the intrinsic IDL
1/O routines, SAVE/RESTORE, previously used by Linfor3D. Both these new routines, written by A. J.
Gallagher, were written to exploit the Universal Input Output (UIO) routines, which were designed by B.
Freytag for handling 1/0 in CO°BOLD.

10.1 uio_save

The uio_save.pro routine is rather complex, but is nevertheless designed to work as a viable replacement
to the intrinsic IDL routine, SAVE. Therefore its call is simple. At the current time, the maximum number
of variables uio_save can save is 15. This can be extended when necessary by adding further variables
into the routine, but for the purposes of Linfor3D it was not required.

It saves a binary file, which is commonly given the file format name uiosave. A typical call for this
routine is as follows:

uio_save, FILE = ’<filename>’, variablel, variable2, variableN [, /verbose]

where <filename> is a string of the exact file name to be used; variablel — variableN are the variable
names to be saved.

The uio_save.pro routine can save scalars, arrays and structures. However, at present, the UIO
routines do not work with IDL pointers.

The switch verbose can be used to output several useful checks to screen, including the results of an
error check, which is performed by the UIO routines throughout the save procedure. This is particularly

>The tarball can be downloaded at http://gnudatalanguage.cvs.sourceforge.net/ and the GDL manual can be found at
http://gnudatalanguage.sourceforge.net

http://gnudatalanguage.cvs.sourceforge.net/viewvc/gnudatalanguage/
http://gnudatalanguage.sourceforge.net/gdl.pdf

10.1 uio_save 81

useful for error checking one’s own coding. As a simple example, the uio_save routine is used to save
a scaler, two arrays and a structure and then uio_restore (see Sect. 10.2) is used to open the saved file
below:

IDL> a 45L & b = findgen(100) & c = dblarr(50, 100, /nozero)
IDL> d = {a:a, b:b, c:c}

IDL> uio_save, FILE = ’example.uiosave’, a, b, c, d, /verbose
% UIO_SAVE: Writing A vector to file

% UIO_SAVE: Write of A successful

% UIO_SAVE: Writing B vector to file

% UIO_SAVE: Write of B successful

% UIO_SAVE: Writing C vector to file

% UIO_SAVE: Write of C successful

% UIO_SAVE: Writing D structure to file

% UIO_SAVE: Write of D successful

% UIO_SAVE: Closing file and checking...

% UIO_SAVE: Data has been successfully written to file

% UIO_SAVE: Write status: done

IDL> .reset ; reset the session and delete variable(s)

IDL> uio_restore, ’example.uiosave’, /verbose

% UIO_RESTORE: Restoring structure A

% UIO_RESTORE: Restoring structure B

% UIO_RESTORE: Restoring structure C

% UIO_RESTORE: Restoring structure D

IDL> help

% At $MAINS

A LONG = 45

B FLOAT = Array[100]

C DOUBLE = Array[50, 100]

D STRUCT = -> <Anonymous> Array[1]

The routine calls upon the following sub-routines from the UIO database directly:

Routine Description

uio_filedefinc.pro : Parameter definitions for standard file descriptors and labels
uio_uionaminc.pro : Common block that contains parameters for UIO initialisation routines
uio_init.pro : Initialisation procedure for UIO routine package

uio_wr.pro : Writes scalar or array data to file.

uio_wrlabl.pro : Writes a label for structures or datasets.

uio_openwr.pro 1 Opens a file for writing and writes the data block header.
uio_closwr.pro : Closes a file after writing.

Each of these sub-routines call on several other sub-routines within the UIO routine package.
A very simple example of how to use these sub-routines to write a basic structure to file in IDL or
GDL (without using uio_save.pro) is given with step-by-step annotations:

Create a structure, C, with arrays A and B:
IDL> a = findgen(100) & b = fltarr(20, 50) & ¢ = {a:a, b:b}
Initialise the UIO procedures and common blocks:

IDL> @uio_filedefinc
IDL> @uio_uionaminc
IDL> uio_init, progrm = ’example_save’

82 10 OUTPUT FILES

Open a binary file (form = ’unformatted’) called test.uiosave and use the default conversion type
(conv = ’ieee 4’):

IDL> uio_openwr, nc, ’test.uiosave’, outstr, ierr, $
IDL> form = ’unformatted’, conv = ’ieee_4’, prog = 'example_save’

Write the name of the dataset to file for the binary file header using special definition dataset_ident:

IDL> uio_wrlabl, nc, dataset_ident, outstr, ierr, date = ’now’, §$
IDL> name = ’test.uiosave’

Write the structure name, C, to file using special definition box_ident:

IDL> uio_wrlabl, nc, box_ident, outstr, ierr, date = ’now’, name = ’c

Begin the write of the C structure to file by declaring the box ID name as C using special definition
box_id_ident:

IDL> uio_wr, nc, 'C’, box_id_ident, name = ’C structure’
Write the contents of structure C to file:

IDL> uio_wr, nc, c.a, 'A’, outstr, ierr, name = ’c.A’
IDL> uio_wr, nc, c.b, ’B’, outstr, ierr, name = ’c.B’

Declare the end of the structure write using special definition endbox_ident:
IDL> uio_wrlabl, nc, endbox_ident, outstr, ierr

Declare the end of the dataset write using special definition enddataset_ident:
IDL> uio_wrlabl, nc, enddataset_ident, outstr, ierr

Close the file for writing

IDL> uio_closwr, nc, outstr, ierr

The uio_save.pro routine and other sub-routines within the Linfor3D routine list use this basic principle
to write structures to file. A similar (though not as complex) set of procedures are used when writing
arrays or scalars to file:

Create two arrays, A and B, and a scalar, C:
IDL> a = findgen(100) & b = fltarr(20, 50) & c = 55L
Initialise the UIO procedures and common blocks:

IDL> @uio_filedefinc
IDL> @uio_uionaminc

IDL> uio_init, progrm = ’example_save’
Open a binary file (form = ’unformatted’) called test.uiosave and use the default conversion type
(conv = ’ieee 4’):

IDL> uio_openwr, nc, ’test.uiosave’, outstr, ierr, $
IDL> form = ’unformatted’, conv = ’ieee_4’, prog = 'example_save’

Write the name of the dataset to file for the binary file header using special definition dataset_ident:

IDL> uio_wrlabl, nc, dataset_ident, outstr, ierr, date = ’now’, §$
IDL> name = ’test.uiosave’

Write the arrays/scalars to file:

IDL> uio_wr, nc, a, ’'A’, outstr, ierr, name A’
IDL> uio_wr, nc, b, 'B’, outstr, ierr, name 'B’
IDL> uio_wr, nc, c, 'C’, outstr, ierr, name = 'C’

10.2

uio_restore

83

Declare the end of the dataset write using special definition enddataset_ident:

IDL> uio_wrlabl, nc, enddataset_ident, outstr, ierr

Close the file for writing

IDL> uio_closwr, nc, outstr, ierr

10.2 uio_restore

The uio_restore.pro routine is a wrapper designed around the high level IDL function
uio_dataset_rd.pro to read a UIO formatted binary or ASCII file and return the output to the call level
within IDL or GDL. The call procedure for this wrapper is identical to that of the intrinsic RESTORE
procedure in IDL, i.e.:

uio_restore, ’'<filename>’ [, variablel, variable2, ., variableN [, /verbose]]

where variables 1-N are optional, but useful where computer memory is limited. An example of its use:

IDL> uio_restore, ’linfor_3D_1l.uiosave’, /verbose

% UIO_RESTORE: Restoring structure ABU

% UIO_RESTORE: Restoring structure ATOM

% UIO_RESTORE: Restoring structure CMD

% UIO_RESTORE: Restoring structure CONST

% UIO_RESTORE: Restoring structure LINE

% UIO_RESTORE: Restoring structure INFO

IDL> help

% At $MAINS

ABU STRUCT = -> <Anonymous> Array[1]
ATOM STRUCT -> <Anonymous> Array[1]
CMD STRUCT -> <Anonymous> Array[1]
CONST STRUCT -> <Anonymous> Array[1]
INFO STRUCT = -> <Anonymous> Array[1]
LINE STRUCT = -> <Anonymous> Array[1]

The user can specify what data should be restored by adding additional command(s) to the call:

IDL> uio_restore, ’linfor_3D_1l.uiosave’, CMD, LINE, /verbose
% UIO_RESTORE: Restoring structure CMD
% UIO_RESTORE: Restoring structure LINE

IDL> help

% At $MAINS

CMD STRUCT = -> <Anonymous> Array[1]
LINE STRUCT = -> <Anonymous> Array[1]

Additionally, this routine will open all CO’BOLD model atmospheres and is useful when a single piece
of information (e.g. the model time) is required. It also means that for the first time, the user has a choice
of computer languages (Fortran/IDL/GDL) to do their analysis without the need for any conversion of the
output file. Further details of the routine’s use can be found in the header of uio_restore.pro, which is
located in the Routines sub-directory of Linfor3D.

10.3 Useful UIO information

The UIO routines allow the user to restore arrays with up to four dimensions, as modifying the UIO
routines for use with Fortran so that more than four dimensions can be read is not a trivial matter. In its
current form, the UIO routines will successfully save an array with more than four dimensions:

84 10

IDL> a = fltarr(10, 10, 10, 10, 10, 10, /nozero)

IDL> uio_save, file = ’example.uiosave’, a, /verbose
% UIO_SAVE: Writing A vector to file

6 ULIO_SAVE: Write of A successful

% UIO_SAVE: Closing file and checking...

% UIO_SAVE: Data has been successfully written to file
% UIO_SAVE: Write status: done

R R

however, the routines will not allow you to open the file afterwards:

IDL> uio_restore, ’example.uiosave’

% Attempt to subscript SARR with NDIM is out of range.

% Execution halted at: UIO_ST2DIM 86
/data/Linfor/uio/uio_st2dim.pro

% UIO_RD 140
/data/Linfor/uio/uio_rd.pro

% UIO_STRUCT_RD 333
/data/Linfor/uio/uio_struct_rd.pro

% UIO_DATASET_RD 150
/data/Linfor/uio/uio_dataset_rd.pro

% UIO_RESTORE 134
/data/Linfor/Linfor_6_0_2/Routines/uio_restore.pro

% $MAINS

OUTPUT FILES

It is shown that the restore procedure fails during the uio_st2dim.pro sub-routine call. If one only
wishes to work in IDL or GDL, and has little interest in working under Fortran, there is a very simple
modification that can be added to the UIO routines so that an array with more than four dimensions can
be saved and successfully restored under the UIO convention. At line 69 in the routine uio_st2dim.pro,
the following is seen sarr=strarr(2,4), where 4 represents the maximum number of dimensions that
the UIO routines (in IDL and GDL) can load. The user can simply replace 4 with a higher number so that
larger dimension arrays can be successfully restored using the UIO routines. However, it must be stressed
that any alteration to this routine will only affect any file opened in IDL and GDL, not in Fortran. Indeed,

any attempt to open these larger dimension arrays in Fortran will result in a read failure.

For further details on the UIO repository, as well as some other examples, please consult the

CO’BOLD manual®, (Sect. 4).

SDownloadable at http://www.astro.uu.se/~bf/co5bold_main.html.

http://www.astro.uu.se/~bf/co5bold_main.html

11.1 Ilinfor_3D_1.uiosave 85

11 Output file structures

The binary files saved by Linfor3D contain several structures. In this section, a brief description of each
array in every output structure is given.

11.1 linfor_3D_1.uiosave

The UIO formatted output file 1infor_3D_1.uiosave contains the following structures:

11.1.1 ABU

The ABU structure contains information on the input file, <ABUFILE>.abu, found in the Data sub-
directory of Linfor8D, where <ABUFILE> is either kiel, cifist2006 or special. It is created after
the successful initialisation of the routine ionopa.pro.

Description of entries:

NAMI : Column 1 from abuid.
ABUI : Column 2 from abuid.
NAMIX : Column 1 from abuidx (version 6.2.2 onwards). See Sect. 7.5
ABUIX : Column 2 from abuidx (version 6.2.2 onwards). See Sect. 7.5

11.1.2 ATOM

The ATOM structure contains information on the input file, atom.dat, found in the Data sub-directory
of Linfor3D, e.g. 1201.24 corresponds to Mg II 24, 1201.25 corresponds to Mg II 25, etc.

Description of entries:

NIONS : Number of species included in atom.dat

ANAM : Linfor3D formatted atoms, ions and molecules. (Column 1 of atom.dat)

WTJ : Corresponding baryon masses of ANAM. (Column 2 of atom.dat)

CHIJ . Corresponding y (eV) energies of ANAM (Column 3 of atom.dat)

FISO : Corresponding isotope fractions of ANAM. Usually = 1.0, unless the isotopes are

considered. (Column 4 of atom.dat)

This file can be edited before running Linfor3D to alter, for example, isotope fractions. However
‘line.dat’ should be properly formatted to reflect the changes.

11.1.3 CMD

This structure contains inputs defined by the user in the linfor_setcmd.pro routine (plus additional
parameters defined by 1linfor_checkcmd.pro). See Sect. 7 for details.

This input structure routine can be defined and compiled in IDL/GDL before running Linfor3D by
writing a BASH/TCSH script to produce this file using the native EOS procedure. This is usually done to
run Linfor3D when several sessions need to be computed at the same time.

11.1.4 CONST

This structure contains a set of constants used by Linfor3D throughout the synthesis.

86

11 OUTPUT FILE STRUCTURES

Description of entries:

AVMEOS
AVMION
EPSHE
FRACH
AVMIONX
EPSHEX
FRACHX
LUTAU1

LUTAU2

LUTAU
UTAU
NUTAU
LCTAU1
LCTAU2
LCTAU
CTAU
NCTAU
ICG

DLGF_CG

IMT

XIMC_MTX

XIMC_MT1

MLIST
NFILE
NDATA
WALFAOQ

WALFALI

WALFA?2

YRI1
YR2
YR3
YR4
YRS
YR6

Average mass of heavy particles in EOS.

Average mass of heavy particles in IONDIS of the model.

Helium number density of the model.

Hydrogen mass fraction of the model.

Average mass of heavy particles in IONDIS of the spectrum.

Helium number density of the spectrum.

Hydrogen mass fraction of the spectrum.

Smallest log 7ross covered by sub-model (refined z-grid) — set by user in
linfor_setcmd.pro

Largest log Tross covered by sub-model (refined z-grid) — set by user in
linfor_setcmd.pro

Array of log Tross values covered by sub-model (refined z-grid)

Array of Tross values covered by sub-model (refined z-grid)

Number of points in LUTAU

Smallest log 79 used for RT integration — set by user in linfor_setcmd.pro
Largest log 7o used for RT integration — set by user in 1infor_setcmd.pro
Array of log 7¢ points used for the RT integration

Array of 7(points used for the RT integration

Number of points in LCTAU

Index number of points over which the Curve-of-Growth is computed. Default:
51. Can be set in CMD structure by user.

Alog gf index used to compute the Curve-of-Growth. By default this is set at 51
points between —0.5 < Aloggf < +1.0, but the user can extend this if the CoG
control parameters are set in the CMD structure (see CMD.COG).

The index number of microturbulence values over which to compute the Curve-
of-Growth. If CMD.MICRO = 0 then IMT = 1.

The range of microturbulence values over which to compute the Curve-of-Growth
using the 1D external atmosphere.

The range of microturbulence values over which to compute the Curve-of-Growth
using the average 3D atmosphere.

String array of COSBOLD full files used during the spectrum synthesis run.
Number of model files for which the spectrum synthesis was done

Number of snapshots for which spectrum synthesis was done

Switch for the ALFA parameter, which is related to the upper boundary condition
(0/1). ALFA = Hp,/H, — 1, where Hp, and H, is the pressure scale height and
the optical depth scale height, respectively, at the upper boundary. If WALFAQ =
1, Hy, = f X Hp,, where fis —H;, (if =10 < H;, < 0).

Switch for the ALFA parameter, which is related to the upper boundary condition
(0/1). ALFA = Hp,/H, — 1, where Hp, and H, is the pressure scale height and
the optical depth scale height, respectively, at the upper boundary. If WALFA1 =
1, Hy, = f X Hp,, where f is —H, (if Hr, > 0).

Switch for the ALFA parameter, which is related to the upper boundary condition
(0/1). ALFA = Hp,/H., — 1, where Hp, and H, is the pressure scale height and
the optical depth scale height, respectively, at the upper boundary. If WALFA2 =
1, Hy, = f X Hp,, where fis —H, (if H;, < —10).

Plot ranges used by linfor_plot@.pro.

Plot ranges used by linfor_plot@.pro.

Plot ranges used by linfor_plot@.pro.

Plot ranges used by linfor_plot0.pro.

Plot ranges used by linfor plot@.pro.

Plot ranges used by linfor_plot@.pro.

11.1 Ilinfor_3D_1.uiosave 87

11.1.5 INFO

The INFO structure contains information about the machine that Linfor3D was run on.

Description of entries:

VERSION
DATE
MACHINE

Version of Linfor3D used for synthesis run
Date of synthesis run
Machine used for synthesis run (Sometimes missing from INFO structure)

11.1.6 LINE

The LINE structure contains wavelength information and line parameters on the synthesis. This structure
is typically used to reconstruct the equivalent wavelength array for use with the RESULT and IMUPHI

structures.

Description of entries:

KLINE
KTOTAL
K1
NBLEND
CLAM
DLAM
DDLAM
WLAMO

LINEID
LFLAG

MULT
ANAM
WTJ

CHIJ

FISO

CHIK
ALAM
GFLG
C6LOG
DLGC6
DRRCAL1
C4LOG
DLGC4
GRADS
DLGGR
VDOP

Number of line calculations done by the synthesis

Total number of spectral lines including blends

Array containing corresponding index numbers of each line or blend in kline
Array containing number of blends for each line synthesis

Central wavelength, Ay, and continuum wavelength in A, set in line file

Line profile, A4, in A computed from Ag — Adto Ag + Ad

Spacing of wavelength points for spectrum synthesis

Requested equivalent width from line file. (set to ‘O’ unless user includes WO in
line.dat, see Sect. 8.2.2).

Header from the line file

Control string set to ‘cont’ (continuum synthesis) or ‘line’ (line synthesis) by con-
tents of line file.

Integer array identifying the multiplet number of the lines synthesised

The atomic number of lines included in the synthesis (multiplied by 100)

Array of baryon masses for every transition considered during spectrum synthesis
(taken from atom.dat).

Array of y values of lower energy in eV for every transition considered during
synthesis (taken from [cifist2006, special, kiel].abu input file).

Array of isotope fractions for every transition considered during spectrum synthe-
sis (taken from atom.dat).

Array containing y values of upper energy in eV

Central wavelength of line or blend component

Array containing log g f values of lines synthesised

Array containing log Cg values of lines synthesised

Array containing A log Cg values of lines synthesised

Difference of mean square electron orbital radii, Ar2/ a(z)

Array containing log Cy4 values of lines synthesised

Array containing A log C,4 values of lines synthesised

Natural line broadening parameter, y;oq of KLINE.

Array of mean square electron orbital radii differences (Ar?/ a(z))

Doppler width in units of the speed of light.

88

ETAO

AVGT
ILOWER][3,X]
IUPPER(3,X]
XBCFIL3

XBCFILX

XCFLAG

11 OUTPUT FILE STRUCTURES

no = k1/k.. See Sect. 3.5 and Fig. 1

Damping parameter “a” for Voigt profile.

Lower level index from NLTE departure files (XBC)

Upper level index from NLTE departure files (XBC)

String array containing XBC information for the 3D synthesis (set to “LTE” if no
XBC is used)

String array containing XBC information for the 1D synthesis (set to “LTE” if no
XBC is used)

Set to ‘grey’: Continuum source funtion was set to wavelength-integrated Planck-
Function, § = oT*/x and continuum opacity is set to Rosseland mean opacitiy,
Ko = KRross- Set to ‘mono’: spectrum synthesis was computed as normal.

11.2 linfor_3D_2.uiosave

The UIO formatted output file 1infor_3D_2.uiosave contains the following:

11.2.1 CONTF

The arrays found in this structure relate to the contribution functions calculated by Linfor3D. See Sect. 3.4
for the formal derivations.

Description of entries:

NZX

77X
CCX

NZ1

771
CC1

NZ3

773
CC3

LTAUC
LTAURX
DTRTCX
LTAURI
DTRTC1
LTAUR3
DTRTC3
CFCXI

CFC11

CFC31

Array containing resultant sampling considered during external 1D model synthesis,
redefined by 1ctaul and 1ctau?2 setin linfor_setcmd.pro

Vertical geometrical ray scale for the 1D external model.

Continuum intensity contribution functions of the external 1D model for “vertical”
rays on the geometrical scale, ZZX.

Array containing resultant sampling considered during (3D) log Tross synthesis, re-
defined by 1ctaul and 1ctau2 setin linfor_setcmd.pro

Vertical geometrical ray scale for the (3D) model.

Continuum intensity contribution functions of the (3D) model for “vertical” rays on
the geometrical scale, ZZ1.

Array containing resultant sampling considered during 3D synthesis, redefined by
lctaul and 1ctau2 setin linfor_setcmd.pro

Vertical geometrical ray scale for the 3D model.

Continuum intensity contribution functions of the 3D model for “vertical” rays on
the geometrical scale, ZZ3.

Array of log ¢ (continuum optical depth) points

Array of 1D log Tross (Rosseland optical depth) points

dlog tross/d log Ty for the external 1D model used by linfor_cf2cr.pro.

Array of (3D) log Tross points.

dlog tross/d log Tg for the (3D) model used by linfor_cf2cr.pro.

Array of 3D log Tross points

dlog tross/d log Tg for the 3D model used by linfor_cf2cr.pro.

Array containing the 1D Continuum Intensity Contribution Function, CS, evaluated
over a log 1 scale

Array containing the (3D) Continuum Intensity Contribution Function, C$, evaluated
over a log 1 scale

Array containing the 3D Continuum Intensity Contribution Function, CS, evaluated
over a log 1 scale, see Eq. (42).

11.2 linfor_3D_2.uiosave 89

CFLXI : Array containing the 1D Line Intensity Contribution Function, Cﬁ, evaluated over a
log 7¢ scale

CFL11 . Array containing the (3D) Line Intensity Contribution Function, C', evaluated over a
log 7¢ scale

CFL3I : Array containing the 3D Line Intensity Contribution Function, Cf, evaluated over a
log 7 scale, see Eq. (46).

CFDXI : Array containing the 1D Line Intensity Depression Contribution Function, C‘ID =
ci-C 5, evaluated over a log 7 scale

CFD1I : Array containing the (3D) Line Intensity Depression Contribution Function, C‘f’ =
Cy - Cﬁ, evaluated over a log 7 scale

CFD3I : Array containing the 3D Line Intensity Depression Contribution Function, (:’,D =
Cy - Cﬁ, evaluated over a log 7 scale, see Eq. (50).

CFWXI : Array containing the 1D Equivalent Width Intensity Contribution Function, C}V, eval-
uated over a log 1 scale

CFWI1I . Array containing the (3D) Equivalent Width Intensity Contribution Function, CV,
evaluated over a log 7 scale

CFW3I : Array containing the 3D Equivalent Width Intensity Contribution Function, C}’V, eval-
uated over a log T.one scale, see Eq. (56).

CFCXF . Array containing the 1D Continuum Flux Contribution Function, CS., evaluated over
alog T scale

CFCI1F . Array containing the (3D) Continuum Flux Contribution Function, C, evaluated
over a log 7¢ scale

CFC3F . Array containing the 3D Continuum Flux Contribution Function, CS,, evaluated over
a log T scale, see Eq. (44).

CFLXF . Array containing the 1D Line Flux Contribution Function, C'., evaluated over a log 7
scale

CFL1F . Array containing the (3D) Line Flux Contribution Function, C?, evaluated over a
log 7¢ scale

CFL3F : Array containing the 3D Line Flux Contribution Function, C;, evaluated over a log 7
scale, see Eq. (48).

CFDXF : Array containing the 1D Line Flux Depression Contribution Function, C ? , evaluated
over a log ¢ scale

CFDIF : Array containing the (3D) Line Flux Depression Contribution Function, C ? , evalu-
ated over a log 7y scale

CFD3F : Array containing the 3D Line Flux Depression Contribution Function, C2, evaluated
over a log 7 scale, see Eq. (53).

CFWXF : Array containing the 1D Equivalent Width Flux Contribution Function, C;V, evalu-
ated over a log 7y scale

CFWI1F : Array containing the (3D) Equivalent Width Flux Contribution Function, C}V, evalu-
ated over a log 7y scale

CFW3F . Array containing the 3D Equivalent Width Flux Contribution Function, C¥, evalu-
ated over a log 7. Scale, see Eq. (59).

CRCXI . Array containing the 1D Continuum Intensity Contribution Function, CS, evaluated
over a log Tross scale

CRCI1I . Array containing the (3D) Continuum Intensity Contribution Function, CS, evaluated
over a log Tross scale

CRC3I . Array containing the 3D Continuum Intensity Contribution Function, CS, evaluated
over a log Tross scale, see Eq. (42).

CRLXI . Array containing the 1D Line Intensity Contribution Function, Cf, evaluated over a
log Tross scale

CRLI1I . Array containing the (3D) Line Intensity Contribution Function, C 5, evaluated over a

log Tross scale

90 11 OUTPUT FILE STRUCTURES

CRL3I : Array containing the 3D Line Intensity Contribution Function, Cﬁ, evaluated over a
log Tross scale, see Eq. (46).

CRDXI : Array containing the 1D Line Intensity Depression Contribution Function, C’? =
¢, -C f, evaluated over a log Tross scale

CRD1I : Array containing the (3D) Line Intensity Depression Contribution Function, C'}) =
Cy - Cﬁ, evaluated over a log Tross scale

CRD3I : Array containing the 3D Line Intensity Depression Contribution Function, C’f’ =
Cy - Cﬁ, evaluated over a log Tross scale, see Eq. (50).

CRWXI . Array containing the 1D Equivalent Width Intensity Contribution Function, C IW, eval-
uated over a log Tross scale

CRWII : Array containing the (3D) Equivalent Width Intensity Contribution Function, C}”,
evaluated over a log Tross scale

CRW3I . Array containing the 3D Equivalent Width Intensity Contribution Function, C IW, eval-
uated over a log Tross scale, see Eq. (56).

CRCXF : Array containing the 1D Continuum Flux Contribution Function, C¢., evaluated over
a log Tross scale

CRCIF : Array containing the (3D) Continuum Flux Contribution Function, C¢., evaluated
over a log Tross scale

CRC3F :Array containing the 3D Continuum Flux Contribution Function, C¢,, evaluated over
a log Tross scale, see Eq. (44).

CRLXF : Array containing the 1D Line Flux Contribution Function, C;, evaluated over a
log Tross scale

CRLIF : Array containing the (3D) Line Flux Contribution Function, C;, evaluated over a
log Tross scale

CRL3F . Array containing the 3D Line Flux Contribution Function, C.,, evaluated over a
log Tross scale, see Eq. (48).

CRDXF : Array containing the 1D Line Flux Depression Contribution Function, C ? , evaluated
over a log Tross scale

CRDIF : Array containing the (3D) Line Flux Depression Contribution Function, C? , evalu-
ated over a log Tross scale

CRD3F : Array containing the 3D Line Flux Depression Contribution Function, C Q , evaluated
over a log Tross scale, see Eq. (53).

CRWXF : Array containing the 1D Equivalent Width Flux Contribution Function, C;V, evalu-
ated over a log Tross scale

CRWIF : Array containing the (3D) Equivalent Width Flux Contribution Function, CI‘?/, evalu-
ated over a log Tross scale

CRW3F : Array containing the 3D Equivalent Width Flux Contribution Function, C?’, evalu-

ated over a log Tross scale, see Eq. (59).

11.2.2 IMUPHI

This structure contains selective information from the RESULT structure (as well as information on
ray angles). This structure is used in conjunction with several post-processing routines, such as
linfor_rotate.pro.

Description of entries:

NDATA : Number of snapshots for which spectrum synthesis was done
KLINE : Number of lines for which spectrum synthesis was done
NLAMX : Total number of wavelength and flux points in calculated in the synthesis

NMUPHI : Number of i and ¢ angles used in the synthesis

11.2 linfor_3D_2.uiosave 91

MODELIDX : Name of the external 1D model atmosphere

MODELID3 : String array containing the name of snapshot, the x and y sampling and snapshot
time in seconds

MODELID1 : String array containing the name of average model snapshot and snapshot time in
seconds

DV3 : Array containing a velocity-spaced wavelengths, (’l;—j‘)) co

MU : Array containing ray inclination angles, y = cos

PHI . Array containing azimuthal angles, ¢

XMU : An extended array of inclination angles, conformal with NMUPHI dimension of

other arrays — allows for a simple way to perform the flux integration; f I3udu =
> (I3 % XMU * WTS)

XPHI : An extended array of azimuthal angles, conformal with NMUPHI dimension of
other arrays — allows for a simple way to perform the flux integration; f I3¢do =
3 (I3 XPHI * WTS)

WTS : Weightings used for u and ¢ angle quadratures

I1 : Array of (3D) fluxes evaluated over NMUPHI angles: [NLAMX, NMUPHI,
NDATA, KLINE]

D1 : Array of (3D) line depression fluxes evaluated over NMUPHI angles: [NLAMX,
NMUPHI, NDATA, KLINE]

13 : Array of 3D fluxes evaluated over NMUPHI angles: [NLAMX, NMUPHI, NDATA,
KLINE]

D3 : Array of 3D line depression fluxes evaluated over NMUPHI angles: [NLAMX,
NMUPHI, NDATA, KLINE]

IX . Array of 1D fluxes evaluated over NMUPHI angles: [NLAMX, NMUPHI, NDATA,
KLINE]

DX . Array of 1D line depression fluxes evaluated over NMUPHI angles: [NLAMX,

NMUPHI, NDATA, KLINE]

11.2.3 MAPS

The output file linfor_3D_2.uiosave contains a structure MAPS. An example of this structure is:

** Structure <83027f4>, 11 tags, length=11289820, data length=11289820, refs=1:
NX LONG 140

NY LONG 140

NDATA INT 12

KLINE INT 1

NLAM LONG 11
MODELID STRING Array[12]

MU® FLOAT 1.00000

PHIO® FLOAT 0.00000

CLAM FLOAT 3966.34
LINEID STRING Array[1]

DV3 FLOAT Array[11]

ICLAMO FLOAT Array[140, 140, 12]
ICLAM2 FLOAT Array[140, 140, 11, 1, 12]

Depending on the value of the control parameter maps_flag (see Sect. 7.3), there might be a tag named
ICLAM1

92 11 OUTPUT FILE STRUCTURES

ICLAM1 FLOAT Array[140, 140, 12, 1]
instead of ICLAM2 or even both might be missing if maps_flag = 0.

Description of entries:

nx, ny . X,y dimensions of the 2D images

ndata : number of models for which spectrum synthesis was done
kline : number of lines for which spectrum synthesis was done
clam : central continuum wavelength for all maps

modelid : modelidentifier (O:ndata-1)

lineid : line identifier (O:kline-1)

ICLAM® : continuum intensity maps for all models (at clam),

dimensions: nx, ny
(see Sect. 8)
ICLAM1 : emergent intensity maps for all models and lines,
including line absorption at clam (window center);
dimensions: nx, ny, ndata, kline;
only present if maps_flag =1
(see Sect. 8)
ICLAM2 : emergent intensity maps for all models and lines,
including line absorption at all wavelengths within the wavelength window
of width 2 - dlam around the central wavelength clam:
A = clam — dlam + i - dd1am, where clam = alam + dclam,
alam is the wavelength of the main blend component as defined in 1ine.dat;
dimensions: nx, ny, nlam, kline, ndata;
only present if maps_flag =2
(see Sect. 8)
W3LAM : equivalent width maps for all models and lines

Note:
e Intensities are given in units of [erg cm™2 s sr™! A1 1.
o The file formerly called "linfor_3D.idIsave” was renamed to “linfor_3D_1.idlsave”.

Note that the maps include foreshortening effects. A model with a quadratic cross section becomes a
rectangle when viewed off-center.

If ntheta# 0, the flux spectrum is computed as before, and the intensity maps show the vertical
view, as before.

Keyword view added to plotting routine linfor_plot3. If given, the intensity and equivalent
width maps show the foreshortened view.

11.24 RESULT

This structure contains all results from the radiative transfer done by Linfor3D, as well as some other
useful information.

Description of entries:

NDATA : Number of snapshots for which spectrum synthesis was done
KLINE : Number of lines for which spectrum synthesis was done
KTOTAL : The total number of spectral lines including blends

NLAMX : Total number of wavelength and flux points in calculated in the synthesis

11.2 linfor_3D_2.uiosave

MUO

PHIO
STRMUO
MODELIDX
MODELID3

MODELID1
GRIDID
LINEID
LFLAG
VFACX
VFACY
VFACZ
NL3
DV3
XIMICX
XIMIC1

XIMIC3
GFLGOX

GFLGO1

FX
DX
WX
F1

D1
Wi
F3
D3
W3
ACI
ACX
FCG1
WCGl1

FCGX

Scalar containing first u angle

Scalar containing first ¢ angle

String of MU®

Name of the LHD model atmosphere

String array containing the name of snapshot, the x and y sampling and snapshot
time in seconds

String array containing the name of average model snapshot and snapshot time in
seconds

String array containing the sampling size of the synthesis

String array containing the headers in the line file

Control string set to ‘cont’ (continuum synthesis) or ‘line’ (line synthesis) by con-
tents of line file.

The x-component of the hydrodynamical velocity field of the 2D/3D models is
multiplied by this factor. Set in CMD.

The y-component of the hydrodynamical velocity field of the 2D/3D models is
multiplied by this factor. Set in CMD.

The z-component of the hydrodynamical velocity field of the 2D/3D models is
multiplied by this factor. Set in CMD.

Number of wavelength and flux points used for every line synthesised

Array containing a velocity-spaced wavelengths

Array containing the microturbulences of the 1D synthesis

Array containing the microturbulences of the (3D) synthesis

Array containing the microturbulences of the 3D synthesis

If the user sets an equivalent width ‘WO’ (stored in LINE.WLAMO) in the line file
(see Sects. 8.2.2 & 8.2.3) then this array will contain the resulting log g f value(s)
necessary to compute the line or blend of that set strength from the given external
1D model atmosphere.

If the user sets an equivalent width value in the line file (see Sects. 8.2.2 & 8.2.3)
then this array will contain the resulting log g f value(s) necessary to compute the
line or blend of that set strength from the (3D) model atmosphere.

Structure containing arrays of 1D fluxes fluxes (F) and intensities (I)

Structure containing arrays of 1D line depression fluxes (F) and intensities (I)
Structure containing arrays of 1D equivalent widths for the absolute line depres-
sion (D) and intensity (I)

Structure containing arrays of (3D) fluxes fluxes (F) and intensities (I)

Structure containing arrays of (3D) line depression fluxes (F) and intensities (I)
Structure containing arrays of (3D) equivalent widths for the absolute line depres-
sion (D) and intensity (I)

Structure containing arrays of 3D fluxes fluxes (F) and intensities (I)

Structure containing arrays of 3D line depression fluxes (F) and intensities (I)
Structure containing arrays of 3D equivalent widths for the absolute line depres-
sion (D) and intensity (I)

Structure containing arrays of (3D) abundance corrections required to replicate
the equivalent 3D profiles for absolute line depression (D) and intensity (I)
Structure containing arrays of 1D abundance corrections required to replicate the
equivalent 3D profiles for absolute line depression (D) and intensity (I)

Contains the (3D) continuum intensity (I) and continuum flux (F). They are con-
stant, not changing with log g f or the line along the CoG.

Structure containing arrays of (3D) Curve-of-Growth equivalent width fluxes (F)
and intensities (I).

Contains the external 1D continuum intensity (I) and continuum flux (F). They
are constant, not changing with log gf or the line along the CoG.

93

94 11 OUTPUT FILE STRUCTURES

WCGX : Structure containing arrays of Curve-of-Growth equivalent width fluxes (F) and
intensities (I) computed from the 1D external model atmospheres.

11.3 linfor_3D_3.uiosave

The UIO formatted output file 1infor_3D_3.uiosave contains the following:

11.3.1 CONTF3D

The CONTF structure contains information relating to the 3D contribution functions. When the cc3d flag
is set, this structure is saved and contains extended information from that stored in the CONTF structure.

Description of entries:

NX3 : Resultant sampling points considered in synthesis, redefined by nx_skip set in
linfor_setcmd.pro

NY3 : Resultant sampling points considered in synthesis, redefined by ny_skip set in
linfor_setcmd.pro

NZ3 : Array containing resultant sampling considered during synthesis, redefined by lctaul
and 1lctau2 setin linfor_setcmd.pro

773 : Vertical geometrical ray scale for the 3D model.

CC3 : Continuum intensity contribution functions of the 3D model on the geometrical scale,
ZZ3.

11.4 linfor_1X.uiosave

This is a special output file, only written when Linfor3D performs synthesis under run_flag = —3. While
most of the structures given in this file contain most of the same sub-structures and arrays that are found
in linfor_3D_1.uiosave and linfor_3D_2.uiosave, the MAPS structure is not written and several sub-
structures or arrays pertaining to the 3D or (3D) synthesis. The only exception to this is the inclusion
of the I3, D3, Il and D1 arrays in the structure IMUPHI. This is so that certain post-synthesis routines,
such as linfor_rotate.pro, still work without error. While these arrays exist, they only contain zeros.

95

12 Plotting output

In this section we briefly present examples of how you can manipulate the output detailed in Sect. 11 and
plot them in IDL or GDL.

12.1 Plotting the synthesis

Linfor3D has several routines that can quickly process the raw data from the uiosaves output after the
synthesis has completed. The first of these is 1infor_rotate.pro. The call procedure for this routine is:

A = linfor_rotate(IMUPHI, itime, kline, vsini [, /normalize, modid = modid])

where IMUPHI is the imuphi structure found in linfor_3D_2.uiosave; itime is the snapshot number
(0O-N-1) or the averaged time (-1); i_kline is the kline index; and vsini is the vsini value of star in
kms~!. The switch, /normalize, is used to normalise the spectrum and keyword modid is used to select
which synthesis to process (1 = 1D, 2 = (3D) and 3 = 3D).

The other useful routine is linfor_convol.pro. This routine is used to convolve a Gaussian profile
with the synthesis. The call for this routine is:

linfor_convol, lambda, input_flux, output_flux, xi

where lambda is a 1D array containing the wavelength points; input_flux is a 1D array containing the
corresponding unbroadened flux; output_flux is the 1D output array containing the broadened flux; and
xi is a float/double scalar turbulence parameter in absolute units — & = o V2 = FWHM/ (a' \/5) Using
both these routines will produce an array of flux points that can be plotted. The following step-by-step
procedures can be used to successfully load and plot the synthesis.

After loading the two uiosaves, linfor_3D_1.uiosave and linfor_3D_2.uiosave, create a wavelength
array for the number of lines synthesised (kline) and data points (nlamx):

IDL> lambda = fltarr(imuphi.nlamx, imuphi.kline)
IDL> for i = 0, imuphi.kline - 1 do begin &$

(line.clam - line.dlam[i]) + §

IDL> lambdal[*, i] =
+ 2. * line.dlam[i] / line.ddlam[i]) * line.ddlam[i] &$

IDL> findgen(1.
IDL> endfor

Create the corresponding flux arrays for the 3D, (3D) and 1D fluxes:

IDL> flux3 fltarr(imuphi.nlamx, imuphi.kline) ; 3D flux array
IDL> fluxl fltarr(imuphi.nlamx, imuphi.kline) ; <3D> flux array
IDL> fluxx = fltarr(imuphi.nlamx, imuphi.kline) ; 1D flux array

Set a v sin i value. For this example, we will set vsini = 5 km/s:
IDL> vsini = 5.

Use the routine linfor_rotate.pro to produce the normalised flux for the 3D, (3D) (averaged over all
snapshots):

IDL> for i = 0, imuphi.kline - 1 do begin &$

IDL> flux3[*, i] = linfor_rotate(imuphi, -1, i, vsini, /normalize, modid = 3) &$
IDL> fluxl1[*, i] = linfor_rotate(imuphi, -1, i, vsini, /normalize, modid = 2) &$
IDL> fluxx[*, i] = linfor_rotate(imuphi, -1, i, vsini, /normalize, modid = 1) &$

IDL> endfor

From this procedure, the 3D, (3D) and 1D synthesis can be plotted in IDL or GDL using the plot
command. However, if one wishes to include an instrumental broadening term in the synthesis, the

96 12 PLOTTING OUTPUT

following demonstrates how to do this using the 1infor_convol.pro.

Set up three new arrays for the convolved 3D, (3D) and 1D flux profiles:

IDL> f3_inst = make_array([size(flux3, /dimensions)])
IDL> fl1_inst = make_array([size(fluxl, /dimensions)])
IDL> fx_inst = make_array([size(fluxx, /dimensions)])

Set the instrumental broadening in km/s:

IDL> v_inst = 10.0

and the speed of light in km/s:

IDL> ¢ = 2.9979246D+5

Calculate the equivalent instrumental broadening value in absolute units:

IDL> inst = (v_inst * line.clam / c) / (2 * sqrt(alog(2)))

Using linfor_convol.pro to broaden flux3, flux1 and fluxx with a Gaussian of FWHM v_inst:

IDL> for i = 0, imuphi.kline - 1 do begin &$

IDL> linfor_convol, lambdal*, i], flux3[*, i], f3_inst[*, i], inst &$
IDL> linfor_convol, lambda[*, i], fluxl1[*, i], fl_inst[*, 1], inst &$
IDL> linfor_convol, lambda[*, i], fluxx[*, i], fx_inst[*, 1], inst &$
IDL> endfor

12.2 Plotting contribution functions

Linfor3D also contains information on contribution functions. This section explains how to plot one type
of contribution function, the equivalent width contribution functions (crw[3,1,X]f see Sect. 11.2.1),
which are derived by integrating the line-depth contribution functions (Magain 1986, A&A, 135) over all
wavelength points considered by Linfor3D during the synthesis run. In this example, we will average over
all snapshots computed during the synthesis as well. The crw[3,1,X]f has the following dimensions:
[CONST.NCTAU, RESULT.NDATA, RESULT.KLINE]. Create the arrays and set some variables:

IDL> crw3f = fltarr(const.nctau, result.kline)
IDL> crwlf = fltarr(const.nctau, result.kline)
IDL> crwxf = fltarr(const.nctau, result.kline)

IDL> f3 = fltarr(result.nlamx, result.kline)
IDL> f1 = fltarr(result.nlamx, result.kline)
IDL> fx = fltarr(result.nlamx, result.kline)

IDL> ltauc = contf.ltauc
IDL> tauc = 10.0 1ltauc
IDL> Inl® = alog(1®)

Fill the flux arrays:

IDL> for i = 0, result.kline - 1 do begin &$
IDL> £3[*, i] = avg(result.f3.f[*, *, i], 1) &S$
IDL> f1[*, i] = avg(result.fl.f[*, *, i], 1) &S$
IDL> fx[*, i] = result.fx.f[*, 1] &$

IDL> endfor

Convert the contribution functions from Eq. (59) to a log Tross scale:

IDL> for j = 0, result.kline - 1 do begin &$
IDL> crw3f[*, j] = 1nl® * avg(contf.crw3f[*, *, j], 1) * tauc / avg(£3[*, jl) &S$
IDL> crwlf[*, j] = 1nl® * avg(contf.crwlf[*, *, jl, 1) * tauc / avg(f1[*, j]) &S$

12.3 Plotting the Curve-of-Growth 97

IDL> crwxf[*, j] = 1Inl® * avg(contf.crwxf[*, *, jl, 1) * tauc / avg(£fx[*, jl) &$
IDL> endfor

Finally, plot the contribution functions:

IDL> plot, ltauc,crwxf[*, 0], linestyle = 5
IDL> oplot, ltauc,crw3f[*, 0]
IDL> oplot, ltauc,crwlf[*, 0], linestyle = 4

The conversion just performed means that the plot depicts dW/dlog tross (in mA) as a function of
log Tross, where W is the equivalent width and log Tross is the logarithm of the optical depth evalu-
ated over a Rosseland scale. As such, f (dW/dlog tross) d log Tross reproduces the equivalent width in
mA.

12.3 Plotting the Curve-of-Growth

The Curve-of-Growth (CoG) information is contained in three arrays within the RESULT, ABU and
CONST structures CONST.dlgf_cg, RESULT.wcgx, RESULT.wcgl, ABU.abui and ABU.abuix, see
Sect. 11 for information. The wcgx and wcgl are four dimensional arrays formatted according to the
number of snapshots considered during the spectrum synthesis, RESULT .ndata; the number of lines syn-
thesised, RESULT/LINE.kline; the number of microturbulences to be evaluated, CONST.imt; and the
number of index points to compute the CoG, CMD/CONST.icg.

To plot a traditional Curve-of-Growth (i.e. log(W) as a function of A(X)) the correct abundance
should be known. This is usually given in ABU.abui (or ABU.abuix in version 6.2.2 onwards), if their
corresponding abundance files are edited and input into Linfor3D. Otherwise, this value should be input
manually. In this example, we assume the former is accurate. First, let’s define A(X), in this case we will
work with lithium, A(Li1):

IDL> N = 3
IDL> logA = abu.abui[N] + const.dlgf_cg

Next, let’s define log (W), and average out the snapshot information:

IDL> logWX = fltarr(line.kline, const.imt, const.icg)

IDL> logWl fltarr(line.kline, const.imt, const.icg)

IDL> for k = 0, line.kline - 1 do begin &$

IDL> for i = 0, const.imt - 1 do begin &$

IDL> logwX[k, i, *] alogl®(avg(result.wecgx.f[*, k, i, *], 0)) &$
IDL> logWl[k, i, *] = alogl®(Cavg(result.wcgl.f[*, k, i, *], 0)) &$
IDL> endfor &$

IDL> endfor

Finally, let’s plot the first line for all microturbulence values:

IDL> plot, logA, logWX[®, O, *]

IDL> for i = 1, const.imt - 1 do $

IDL> oplot, logA, logWX[®, i, *], linestyle
IDL> for i = 0, const.imt - 1 do $

IDL> oplot, logA, logWl[®, i, *], linestyle

I}
[

i, color = 255

98

13 Timing statistics

13 TIMING STATISTICS

At the end of a run of Linfor3D timing statistics are presented which are also saved to the file
linfor_timing.txt in the current working directory. The file will look like this:

TIMING

STATISTICS

Routine linfor_ find ff..........
Restoring structure FF..........
Reading 3D model................

Routine linfor_ionopa_3d........

Saving structure FF.............
Rad. transfer for 3D model....

(total)
(average) :
(0 :
1 :
2) :
3) :
4) :
5) :
6) :
7))
8) :
9 :
10) :
11) :
12) :
13) :
14) :
15) :
16) :
17) :
18) :
19) :
(total)
(average) :
(0 :
D
2)
3) :
4) :
5) :
6) :
7)
8) :
9 :
10) :
11) :
12) :
13) :
14) :
15) :
16) :
17) :
18) :
19) :

YNVl el e Wea Wa W W Wan Wan WV W

I WY W W W Wan e Wan Wan We N W W W Wan Wan WY o W an

(total)
(average) :

(0 :

36.14
35.90
594678.33
29733.92
31170.96

n n n n n n n nnonnnnnonnnononnnnonoonononnnnonnnnnonoonoonononononononon

n

NNl N N W W N N N T Yl ataaNaNalea)

MMM

(= I — R — R R A I — A — A — A — A — I = A= A= R A A A — A — R — N A= R A = I = A — A — I — I — I — I B = A — A — I — I — I — I — I — =}

e}
~N

.40 %)
.87 %)
11 %)

(U2 BTN

99

(1) : 31021.06 s (5.08 %)
(2) 29445.84 s (4.82 %)
(3) : 30393.73 s (4.98 %)
(4) : 30423.26 s (4.98 %)
(5) : 29654.40 s (4.86 %)
(6) : 29151.41 s (4.77 %)
(7) : 29403.00 s (4.82 %)
(8) : 29536.25 s (4.84 %)
(9 : 29749.70 s (4.87 %)
(10) : 33397.79 s (5.47 %)
(11) : 30029.57 s (4.92 %)
(12) : 29955.88 s (4.91 %)
(13) : 28652.31's (4.69 %)
(14) : 28731.89 s (4.71 %)
(15) : 29166.00 s (4.78 %)
(16) : 28685.49 s (4.70 %)
(17) : 28832.02 s (4.72 %)
(18) : 28688.46 s (4.70 %)
(19) : 28589.31 s (4.68 %)
Rad. transfer for <3D> model....(total) 14236.35 s (2.33 %)
(average) : 711.82 s (0.12 %)
(0 : 755.84 s (0.12 %)
(1) : 716.50 s (0.12 %)
(2) 715.40 s (0.12 %)
(3) 721.79 s (0.12 %)
(4) : 717.25 s (0.12 %)
(5 : 715.77 s (0.12 %)
(6) : 702.42 s (0.12 %)
(7) : 717.40 s (0.12 %)
(8) : 707.86 s (0.12 %)
(9 : 703.97 s (0.12 %)
(10) : 746.35 s (0.12 %)
(11) : 707.23 s (0.12 %)
(12) : 695.03 s (0.11 %)
(13) : 691.42 s (0.11 %)
(14) : 690.57 s (0.11 %)
(15) : 736.33 s (0.12 %)
(16) : 698.71 s (0.11 %)
(17) : 698.63 s (0.11 %)
(18) : 701.31 s (0.11 %)
(19) : 696.56 s (0.11 %)
Rad. transfer for 1D model....(total) 577.25 s (0.09 %)
o = N (total) : 610549.27 s (100.00 %)

The file is also saved during a running Linfor3D process. Thus, time statistics are available even after
aborting the process. The statistics show the system time needed for individual computation steps/routines
of Linfor3D and their contribution to the total time in percent. For the case that the same operation is
performed several times, e.g., doing the radiative transfer for more than one model snap shot, the total of
all calls, the average time, and the duration for each individual step is given (see example above).

100 14 IONDIS

14 TONDIS

IONDIS is responsible for computing all information on requested atomic and molecular species requested
in the line.dat file. As stated in Sect. 2, IONDIS is run under Fortran. In this section, we will briefly
outline the considerations made by IONDIS, and a full list of the limited number of atomic and molecular
species IONDIS currently takes into account.

14.1 Atoms

Linfor3D does not at present include the complete atomic data information used by CO°BOLD. Rather,
a number of selected atoms are properly treated by IONDIS. Additions to IONDIS.f are welcome and
will be integrated, after proper testing. However, we ask that FULL considerations are taken to the entire
program flow of Linfor3D before submitting them to us.

At present (version 6.2.5) there are 61 atomic species considered by IONDIS. You can change the
atomic abundances considered during spectrum synthesis by changing the abuid (or abuidx in versions
6.2.2 onwards) and putting your changes in special.abu. Depending on how you want to run Linfor3D
(see Sect. 7.5), abuid and abuidx can be equal or different. If they are different, cifist2006.abu
is treated as the model abundance file (and is loaded into abuid) and special.abu is treated as the
spectrum abundance file (and is loaded into abuidx). A full list of the atoms (and ionisation states,
isotopes) are given below.

Table 19: List of atomic species currently considered by IONDIS

Species Considered Considered
ionisation states isotopes

H 1

He L1I

Li LI 6,7

Be LI

C L1I

N IL1I

0] L1I

F IL1I

Ne L1I

Na LI

Mg L1I 24,25, 26

Al LI

Si L1I

P L1I

S LI

Cl LI 35, 37

Ar IL1I

K L1I

Ca IL1I

Sc L1I

Ti LI

\" L1I

Cr LI

Mn L1I

Fe L1I

Co IL1I

14.2 Molecules 101

Ni LI

Cu I 1 63, 65

Zn LI

As I 1

Rb I I, I

Sr I 1

Y LI

Zr I 1

Nb LI

Mo LI

Ru I 1

Rh LI

Pd I 1

Ag LI

Ba I 1 134, 135, 136, 137, 138
La LI

Ce I 1

Pr LI

Nd I 1

Sm LI

Eu LI

Gd I 1 152, 154, 155, 156, 157, 158, 160
Dy LI

Er I 1 162, 164, 166, 167, 168, 170
Tm LI

Yb I 1 168, 170, 171, 172, 173, 174, 176
Lu LI 175, 176

Hf I 1

Ta LI

w I 1

Os LI

Pb LI

Th I 1

8] LI

14.2 Molecules

Linfor3D also considers a limited number of molecules. At present they are only diatomic/bimetallic
molecules. We welcome new integrations into IONDIS, and will include them into the general realise,
after they are properly tested. However, we ask that FULL considerations are taken to the entire program
flow of Linfor3D before submitting them to us.

Table 20: Small molecular network: 5 atoms, 8 molecules

[H [C|[NJO][M|

H H, | CH | NH | OH | MgH
C CH |G |CN|CO | —
N NH [CN | - - —
O OH |CO | - - —

Mg | MgH | - — - —

102 14 IONDIS

Table 21: Large molecular network:10 atoms, 14 molecules

] | H [Li|[C|N]O]|F|[Mg]|[Ti|Cr] Fe|

H H, |[LiH|CH |NH | OH | FH | MgH | — | CrH | FeH
Li LiH | — - - | LiO | - — — | — | —
C CH| — | C|CN|CO| - — — | — | —
N NH | — |CN| - - - — — | — | —
O OH | LiO | CO | - - - — |TI0O| — | —
F FH — - - - - — — | — | —
Mg || MgH | — - - - - — — | — —
Ti — — - - | IO | - — — | — | —
Cr || CtH | — - - - - — — | — —
Fe || FeH | — - - — - — — | — —

14.2.1 Some definitions

N; Total number density of nuclei of element i, including nuclei bound in diatomic molecules
N; Number density of nuclei of element i not bound in diatomic molecules
Ni,O Number density of neutral nuclei of element i not bound in diatomic molecules
Nik Total number density of diatomic molecules made up of one
nucleus of element i, and one nucleus of element k
N, Total electron number density.
Nkern = 2; Ni Total number density of nuclei of all elements, diatomic molecules counting as 2 nuclei
P, =N,kT Electron pressure.
fi = Ni/Nxem Fractional abundance of element i (constant)
X; = Nij/Nkem Fractional abundance of free nuclei of element i.

x; = f; = const. for elements not involved in molecule formation (i ¢ {i,,0;}).
For elements forming molecules (i € {i,,.}), x; is the variable to be iterated.
Xix = Nix/Nkem Fractional abundance of molecule (i, k).
Xe = No/NKem Fractional abundance of free electrons (iterated quantity).

14.2.2 Equations

The Saha equation provides the relation between N,-,O and N;:
Nio=SioN; (124)

where the Saha factor S ;o depends on temperature and electron pressure (and on the ionization potentials
and the partition functions of the different ionization stages).

Molecule partial pressures are given by the relation

P; P,
P = 125
i,k Ki,k ()

where K is the dissociation constant for the (neutral) diatomic molecule (ik), composed of one nucleus
of elements i and k each. P; and Py are the partial pressures of the neutral atoms of elements i and £,
respectively. Since P = N kT, molecule densities are

_ kT Nl‘,o Nk,()

(126)
Kk

Nik

14.2 Molecules 103

Dividing by Nkem, we obtain the fractional molecule abundance

T Nix Ngem kT xiSi0 XkSko _ PexiSio XkSko _ Xi Xk
ik = =]

— =D, (127)
NKern Ki,k Ki,k Xe Xe

where we have defined
Si0Sko

Kik
We note that D;; depends only on 7 and P,, but not on absolute number densities, and hence is constant

during the iteration.
For all elements i involved in molecule formation, i € {i,,,}, we have the following conservation equation

Di,k :Pe

(128)

fi=xi+ D xix(1+6) (129)
k
or X x
i Ak
Xi+) Dig =5 (1 +614) = f; (130)
k e

where d; is the Kronecker symbol, accounting for the correct counting of atoms in molecules with two
identical components.
The electron density is given by

Ne:ZNiii: Z NiZ + Z NiZ (131)

ie”mul} i¢”mul}
where the mean degree of ionization of element i, Z; is defined as

Z = Z iNij/ Z Nij= Z jNij= Z jSij= ngi,j_gi,—l- (132)

j=—1,3 j=—1,3 1j="13 =13 j=13

| =

Here index j runs over the 4 ionization stages j = 0...3 of element i. For elements forming negative
ions, the sum includes the negative ion, j = —1. For such elements, Z; may become negative! Note that Z;
depends only on T and P,, but not on the degree of molecule formation. Dividing Eq.(131) by Nkern, we

obtain
xK:Zx,-Z: Z xiZ + Z xiZ (133)
i i€{imol} i{imol}
Defining
fe= Y. xiZi=) fiZi=const. (134)
i#{imor} i#imot}
we have finally
Yo = D xiZi=f, (135)
i€{imol}

X+FX) =R (136)

where
X = {x1,x0,... XN, Xe}, (137)

is the vector of unknown number fractions, and

R={fi, fo-.. frn. .} = const., (138)

is the known (constant) right-hand side. N is the number of chemical elements included in the molecular
network. Equation (136) is a system of N + 1 nonlinear algebraic equations which can be solved for X by
Newton-Raphson iteration.

104 14 IONDIS

The first step it to find a suitable starting vector for the iteration,)?0. This is done as described below. The
correction 6X giving the next improved estimate of X is computed as follows. Assume after n iterations
we have

X, + FX,) = R,. (139)
Then we require that
X, +6X+FX,+6X) =R (140)
or
X, +0X+FX,)+J 06X =R, (141)
hence
(JT+1)-6X=R-R,. (142)
The elements of the Jacobian 7 are defined as
OF;
o _or 143
Since we know that .
FX) =2 Dixxi(1+6;) fori=1,N (144)
Ye k=1,N
and _
Fya®)=- > %7, (145)
i=LN
we can readily evaluate ; ;.
We find from Eqs.(144) and (145)
OF; i . .,
Jij="t=D,;2 fori=1,Nandi# (146)
Ox;j Xe
Dk—+4D = Dix X 43D fori=1,N (147)
l 1 6x1 ; 1 I, [xe kz]:N 12 xe 1, i e
OF; ;
Jive = 5= 3 Dux(l+8y) fori=1.N (148)
Ye Xe | =TN
oF -
Ins1j =~ = -Z; forj=1,N (149)
6)6]'
OF
IN+1IN+1 = aNH =0 (150)
Xe

With this information , we can solve Eq.(142) for 5X , and obtain the next estimate
X1 =X, +0X (151)

Once the iteration has converged, the molecule densities can be computed from Eq.(127).

14.2.3 Criterion for convergence
The criterion for convergence is currently:
|x§n+1) _ xgl’l)l <1. 10_4ﬁ (152)

and
(n) (

A +0i%) — fil<1-107*f; (153)

(”)+ZD

for all elements i. The maximum number of iterations is 15.

14.2 Molecules 105

14.2.4 Initial guess

The initial concentrations of free atoms and ions of elements involved in molecule formation, x;, are
computed as follows.
First, we assume that no molecules are formed and so the initial x; are set to f;,

xi0 = fi (154)

for all elements. From this, the electron fraction x, is computed as

Yoo = max{ Xemin, fot Y %iZif, (155)

i€{imor}

where Xomin = 1 - 10710, Using this value for x,, we compute the molecule concentrations x;; according
to Eq.(127). If the resulting
Xix < 1-107° min {x;, x}, (156)

the formation of this molecule is considered negligible, and no correction of x;, x; and x; is necessary. If
1-107> min {xi, X} < X% < min{x;, x¢}, (157)

molecule formation is no longer negligible, but also not exhaustive. In this case, the molecule concentra-
tions must be iterated, but the initial guesses for x;x, x; and x; need not be changed. Finally, if

Xij > min{x;, x;}, (158)

then molecule formation is exhaustive, and the initial guesses for x;x, x; and x; are changed. We compute
x; and x; as the equilibrium values that would result if only this particular molecule was present.
If the molecule consists of two atoms of the same element, the condition is (see Eq.(130))

2

X
2D,~’i—l+x,-—f,~=0 (159)
Xe
which has the solution 5
Xi0 = fl . (160)
1+ w/] + SfiDi,,‘/xe,()
If the molecule consists of two different atoms, we have two conditions, namely (see Eq.(130))
Diy 2 xi—f = 0
e
D Xi X +x—fi = 0 (e1)
Xe
From this we see that
Xi—xxk=fi—-fk=A. (162)
Then we have A
+
Dy DT e (163)
Xe
or b b
Lk x,§+(1+A ”")xk—szo. (164)
Xe Xe
Assuming that f; > fi, and hence A > 0, the solution for x; can be written as
2
X0 S (165)

T 1+ AD/xe0) + \JA +ADi /%00 + 4 f; Dig/%en

106 14 IONDIS

and for x; we simply have
Xi0 = Xk0 + A. (166)

For each molecule, the values of x;, x; o obtained for the current molecule from Eq.(160) or Eqns.(165),

(166) are compared to the previous values xg'g, x](("()) (obtained from the same conditions for a previous

molecule). The new estimate of is then set to the minimum of previous and current estimate

XE%H) = min {x,’,(), x%)}
1 .
x,z’(;r) = min {xk,o, xl(cné} (167)

The initial guess for the current molecule is then computed as

(n+l) _(n+1)

0 ko

Xe,0

X

Xik = Dig (168)

For simplicity (and stability), the initial guess for the electron fraction is not updated when changing the
initial guesses x; for the elements involved in molecule formation.

14.2.5 Variable names

DAB D/ x

DFO0 R-R,

FRACEL Xe

FRACEL® f.

FRACEL1 Sictinn fi Zi

FRACI fi

FRACJ x;S;; (atomsandions, j=1...4)
Xik (molecules)

FREEI X

NATMOL N

PNUC Neem kT = P,/ x,

RIJSUM F;

SAHA)J Sij (atoms and ions, j=1...4)
Kix (molecules)

ZEFF Zi

107

15 ionopa

Linfor3D computes opacities, level populations, pressures and densities with the IDL/GDL routine
ionopa.pro. It has evolved quite considerably over many versions of Linfor3D and this routine has
now been replaced by ionopa2.pro. It calls on the IONDIS library described above, is fairly easy to
use, and can be used separately from Linfor3D to compute various properties for 1D and 3D models.
As this routine has developed, the call sequence has changed significantly. The call sequence described
here is correct for the last version of ionopa.pro, which was running as of Linfor3D version 5.1.5 and
deprecated after version 6.1.1:

ionopa, temp, pin, alam, pout, densnc, okappa, osigma, pgas=pgas, $
namj=namj, fracj=fracj, zeta=zeta, init=init, §
dm=dm, dalpha=dalpha, avm=avm, ehe=ehe, abupath=abupath, $
nami=nami, abui=abui

A brief description of all entries into ionopa are now listed.

15.1 temp
description gas temperature(s) in kelvins
input/output input
required always
type float
properties scalar, 1D array, 2D array, 3D array: must have same dimensions as pin
values 5777, [4000:6000]
15.2 pin
description input pressure(s) in dyn/cm?
input/output input
required always
type float
properties scalar, 1D array, 2D array, 3D array: must have same dimensions as temp
values led, [led:5e4]
15.3 alam
description wavelength range in angstroms
input/output input
required always
type float
properties scalar, 1D array
values 5500, [4000:6000]

108

15

IONOPA

154 pout
description output pressure(s) in dyn/cm?
input/output output
required always
type float
properties same dimensions as temp and pin, i.e. scalar, 1D, 2D, 3D array
values le4, [le4:5e4d]

15.5 densnc

description
input/output
required
type
properties
values

number densities of atomic nuclei

output

always

float

same dimensions as temp and pin, i.e. scalar, 1D, 2D, 3D array
1.0el4

15.6 okappa

description
input/output
required
type
properties
values

true absorption continuum opacity in cm? per nucleus
output

always

float

[N temp, N alam] if alam is an array, otherwise [N temp]
1.0e-22

15.7 osigma

description
input/output
required
type
properties
values

scattering continuum opacity in cm? per nucleus

output

always

float

[N temp, N alam] if alam is an array, otherwise [N temp]
1.0e-27

Continuum opacity is given by okappa + osigma

109

15.8 pgas
description toggles pin and pout
input/output input
required optional
type switch
properties scalar
values 0 or 1

pgas = 0: ionopa assumes that pin is the electron pressure and pout is the gas pressure (de-

fault).

pgas = 1: ionopa assumes that pin is the gas pressure and pout is the electron pressure (usual

case).
15.9 namj

description input ion identifier
input/output input
required always
type float
properties scalar, 1D array
values 2600.0, [2600.0, 2601.0, 5600.0]

15.10 fracj
description fractional number density n; / densnc, where 7; is the number density
of namj elements in ionization stage j
input/output output
required optional
type float
properties [N temp, N namj] if namj is an array, otherwise [N temp]
values 3.30554e-12
15.11 zeta
description number densities such that zeta = fracj /U (T)
input/output output
required optional
type float
properties [N temp, N namj] if namj is an array, otherwise [N temp]
values 4.53707e-10

110 15 IONOPA
15.12 init
description : type of abu file
input/output : input
required : for initialisation only
type . integer
properties : scalar
values 01, 2, 3
init = 1: abu file is defined as kiel.abu
init = 2: abu file is defined as cifist2006.abu
init = 3: abu file is defined as special.abu
15.13 dm
description : gas metallicity
input/output : input
required : for initialisation only
type . float
properties : scalar
values : -1.0, 0.0
15.14 dalpha
description : gas alpha enhancement, [a/Fe]
input/output : input
required : for initialisation only
type . float
properties : scalar
values : 0.0, 0.4
Affects elements O, Ne, Mg, Si, S, Ar, Ca and Ti
15.15 avm
description : average mass of nucleus for chemical composition defined by init
input/output : output
required : optional
type : float
properties : scalar

values : 2.08985e-24

15.20 Example

111

15.16 ehe
description ratio of helium to hydrogen number densities
input/output output
required optional
type float
properties scalar
values 0.0851139
15.17 abupath
description path to directory where abu file defined by init can be found
input/output input
required always
type string
properties scalar
values getenv(‘LINFOR3D_ABU’)
15.18 nami
description ion identifier from abu file defined by init
input/output output
required optional
type integer
properties 1D array
values 100, 200, 300, ., 9200
15.19 abui
description corresponding abundances of ions in nami
input/output output
required optional
type float
properties 1D array
values 12.0000, 10.9300, 1.10000, ..., -0.470000
15.20 Example

In order to use ionopa it first needs to be initialised. The initialisation tells ionopa properties of the
model such as its metallicity, chemical abundances, alpha enhancement. An example of the initialisation
may look as follows:

IDL> ionopa, 0.0, 0.0, 0.0, pout, densnc, okappa, osigma, init = 2, $

IDL> dm = -1.0, dalpha

0.4, abupath = getenv(’LINFOR3D_ABU’), §

IDL> nami = nami, abui = abui, ehe = ehe, avm = avm0®

112 15 IONOPA

% Compiled module: IONOPA.

Not all of those options are required, however. Once initialised, ionopa can be executed. The input
parameters should be used instead of the 0.0 values used to initialise.

IDL> ionopa, Tin, Pin, alam, pele, densnc, okappa, osigma, /pgas, $
IDL> namj = ions, fracj = fracj, zeta = zeta

16 ionopa2

113

ionopa2 replaced ionopa in Linfor3D version 6.2.0 onwards. The inputs and outputs of ionopa2 are
fairly similar to ionopa, but there are certain differences:

ionopa2, temp, gin, alam, pe, pg, densnc, okappa, osigma, gflg=qflg, $
namj=namj, fracj=fracj, zeta=zeta, init=init, §
dm=dm, dalpha=dalpha, avm=avm, ehe=ehe, abupath=abupath, $
nami=nami, abui=abui

A brief description of all entries into ionopa2 are now listed.

16.1 temp
description gas temperature(s) in kelvins
input/output input
required always
type float
properties scalar, 1D array, 2D array, 3D array: must have same dimensions as gin
values 5777, [4000:6000]
16.2 qin
description input quantities in cgs units
input/output input
required always
type float
properties scalar, 1D array, 2D array, 3D array: must have same dimensions as temp
values le4, [led:5e4]
16.3 alam
description wavelength range in angstroms
input/output input
required always
type float
properties scalar, 1D array
values 5500, [4000:6000]
16.4 pe
description electron pressure(s) in dyn/cm?
input/output output
required always
type float
properties same dimensions as temp and gin, i.e. scalar, 1D, 2D, 3D array
values led, [led:5e4]

114

16

IONOPA2

16.5 pg
description gas pressure(s) in dyn/cm?
input/output output
required always
type float
properties same dimensions as temp and qin, i.e. scalar, 1D, 2D, 3D array
values le4, [led:5e4d]

16.6 densnc

description
input/output
required
type
properties
values

number densities of atomic nuclei

output

always

float

same dimensions as temp and qin, i.e. scalar, 1D, 2D, 3D array
1.0el4

16.7 okappa

description
input/output
required
type
properties
values

true absorption continuum opacity in cm? per nucleus
output

always

float

[N temp, N alam] if alam is an array, otherwise [N temp]
1.0e-22

16.8 osigma

description
input/output
required
type
properties
values

scattering continuum opacity in cm? per nucleus

output

always

float

[N temp, N alam] if alam is an array, otherwise [N temp]
1.0e-27

Continuum opacity is given by okappa + osigma

115

169 qflg
description toggles qin
input/output input
required optional. Set to 0 if ignored
type switch
properties scalar
values 0, 1, 2, 3

qflg = 0: ginis defined as the electron pressure, P, (default).

aflg = 1: qinis defined as the gas pressure (usual case), Pgas.

aflg = 2: qinis defined as Pgys — Pe.

qflg = 3: ginis defined as continuum opacity per unit volume, densnc * (okappa + osigma).

16.10 namj
description input ion identifier
input/output input
required always
type float
properties scalar, 1D array
values 2600.0, [2600.0, 2601.0, 5600.0]

16.11 fracj
description fractional number density n; / densnc, where #; is the number density
of namj elements in ionization stage j
input/output output
required optional
type float
properties [N temp, N namj] if namj is an array, otherwise [N temp]
values 3.30554e-12
16.12 zeta

description number densities such that zeta = fracj /U (T)
input/output output
required optional
type float
properties [N temp, N namj] if namj is an array, otherwise [N temp]

values

4.53707e-10

116 16 IONOPA2
16.13 init

description : type of abu file

input/output : input

required : on initalisation or when more than one abu file has been initialised

type . integer

properties : scalar

values -3, -2, -1, 1, 2, 3

init = 1: abu file is defined as kiel.abu
init = 2: abu file is defined as cifist2006.abu

init = 3: abu file is defined as special.abu

init = -1: initialise composition 1 from memory*.
init = -2: initialise composition 2 from memory*.
init = -3: initialise composition 3 from memory*.

*Used if ionopa2 has been initialised for more than one abu file.

16.14 dm
description : gas metallicity
input/output : input
required : for initialisation only
type : float
properties : scalar
values : -1.0, 0.0

16.15 dalpha

description : gas alpha enhancement, [@/Fe]
input/output : input

required : for initialisation only

type : float

properties : scalar

values : 0.0, 0.4

Affects elements O, Ne, Mg, Si, S, Ar, Ca and Ti

117

16.16 avm
description average mass of nucleus for chemical composition defined by init
input/output output
required optional
type float
properties scalar
values 2.08985e-24
16.17 ehe
description ratio of helium to hydrogen number densities
input/output output
required optional
type float
properties scalar
values 0.0851139

16.18 abupath

description path to directory where abu file defined by init can be found
input/output input
required always
type string
properties scalar
values getenv(‘LINFOR3D_ABU’)
16.19 nami
description ion identifier from abu file defined by init
input/output output
required optional
type integer
properties 1D array
values 100, 200, 300, ..., 9200
16.20 abui
description corresponding abundances of ions in nami
input/output output
required optional
type float
properties 1D array
values 12.0000, 10.9300, 1.10000, ..., -0.470000

118 16 IONOPA2

16.21 Example

Like ionopa, ionopa2 must first be initialised

IDL> ionopa2, 0.0, 0.0, 0.0, pele, pgas, densnc, okappa, osigma, $
IDL> init = 2, dm = 0.0, dalpha = 0.0, avm=avm, ehe=ehe, $

IDL> abupath=getenv(’LINFOR3D_ABU’), nami=nami, abui=abui

% Compiled module: IONOPA2.

Now that ionopa2 has been initialised, it can be executed.

IDL> ionopa2, tin, qin, alam, pele, pgas, densnc, okappa, osigma, $
IDL> qflg = 1, namj = ions, fracj = fracj, zeta = zeta

Additionally, ionopa2 can be initialised more than once for more than one abu file.

IDL> %----- initialise 1 -----

IDL> ionopa2, 0.0, 0.0, 0.0, pele, pgas, densnc, okappa, osigma, §
IDL> init = 2, dm = 0.0, dalpha = 0.0, avm = avm2, ehe = ehe2, §
IDL> abupath = getenv(’LINFOR3D_ABU’), nami = nami2, abui = abui2
% Compiled module: IONOPA2.

IDL> %----- initialise 2 -----

IDL> ionopa2, 0.0, 0.0, 0.0, pele, pgas, densnc, okappa, osigma, $
IDL> init = 3, dm = 0.0, dalpha = 0.0, avm = avm3, ehe = ehe3, §
IDL> abupath = getenv(’LINFOR3D_ABU’), nami = nami3, abui = abui3

Once it has been initialised for the requested parameters it can be executed without being reinitialised.

IDL> %----- execute 1 -----
IDL> ionopa2, tin2, qin2, alam, pele2, pgas2, densnc2, okappa2, osigmaz2, $
IDL> qflg = 1, namj=[ions], fracj = fracj2, zeta = zeta2, init = -2

IDL> %----- execute 2 -----
IDL> ionopa2, tin3, qin3, alam, pele3, pgas3, densnc3, okappa3, osigma3, $
IDL> qflg = 1, namj=[ions], fracj = fracj3, zeta = zeta3, init = -3

Note the use of init in these instances. As ionopa2 has been initialised for more than one abu file, init
should be included from its memory.

Index

a-elements, 41, 106, 112
Linfor3D
Change log, 6
history, 3

Curve-of-Growth
CMD, 49, 52, 53
computations, 52
CONST, 83
RESULT, 90

F90

compilers, 17

Files, 31

install, 6

Intel
ifort, 3, 5
MPI, 6, 17
oneAPI, 6
version issues, 6

MPI, 7
Curve-of-Growth, 21
Description, 17
Domain decomposition, 17
DoRT, 19
IONDIS, 17
subdomain, 17-19

GDL
cmake, 25
Eigan3, 25
installing GDL, 25
running, 25, 26

HPC, 17

IDL
Files, 28
Structures
Common block, 28
flow field, 29
ray system, 29
spectrum, 29
IONDIS
atomic information, 96
ionopa, 103
ionopa2, 109
treatment of molecules, 97

Line Data
ABO van der Waals broadening, 72

blends, 69

data format: -1, 60

data format: 0, 61

data format: 1, 62

data format: 2, 64

data format: 3, 65

data format: 4, 66

data format: 5, 67

data format: 6, 67

data format: 7, 68

line.dat, 60

Natural broadening, 73
Quadratic stark broadening, 70
Van der Waals broadening, 71

Main program
Calling sequence, 27, 30
run_flag, 36

Parameter input
execution flags, 36
linfor_setcmd, 34
Plotting
contribution functions, 92
Curve-of-Growth, 93
synthesis, 91

Radiative transfer, 8

Contribution functions, 11
Continuum flux, 11
Continuum Intensity, 11
Equivalent width, 13
Line depression, 12
Line flux, 12
Line Intensity, 12

Grey test case, 13

Transfer equation
the continuum intensity, 8
the line depression, 10
the line intensity, 9

Statistical equilibrium
NLTE15D, 74
NLTE3D, 74

Structures
ABU, 81
ATOM, 81
CMD, 81
CONST, 81
CONTEF, 84
CONTF3D, 90

119

120 INDEX

IMUPHI, 86
INFO, 83
LINE, 83
MAPS, 87
RESULT, 88

18] (0)
definition, 5
library, 28, 31
UIO information, 79
uiorestore, 79
uiosave, 36, 76, 78, 81, 84, 87, 90, 91

	Introduction
	The IDL version
	The F90 version
	The differences
	Final word

	Getting started
	Running the IDL version
	Running the F90 version
	Getting a custom installation

	Basic Equations of Radiative Transfer
	Transfer equation for the continuum intensity
	Transfer equation for the line intensity
	Transfer equation for the line depression
	Contribution functions
	Grey test case

	Linfor3D and MPI
	Reading input data
	Writing data to file
	Computing 1D continuous opacities
	Computing 3D continuous opacities
	Computing all radiative transfer
	DoRT in full 3D
	DoRT in 1D with Curve-of-growth computations
	DoRT in 1D without Curve-of-growth computations

	Limitations of Linfor3D with MPI

	Installing GDL and running Linfor3D
	Running Linfor3D with GDL
	Running Linfor3D in parallel

	Program Files
	IDL program flow
	Structures in Common Block linfordata
	IDL/GDL Files
	F90 program flow
	F90 Files

	Parameter Input: linfor_setcmd.pro (IDL) linfor3d.setcmd (F90)
	F90 specific flags and settings
	outfile
	printcobold
	debug
	wr3x3
	d1_flag

	IDL specific flags and settings
	plt_flag
	free_flag
	ff_path

	Program execution flags (IDL/F90)
	run_flag
	cv1_flag
	cv2_flag
	cv3_flag
	maps_flag
	cc3d_flag
	nlte_flag

	General paths
	abupath
	opapath
	gaspath
	eospath

	Model data
	context
	rhdpath
	modelid
	parfs
	xbcpath3
	xbcpathx
	xbcpath
	abuid
	abuidx
	dmetal
	dalpha
	nx_skip
	ny_skip

	More model information (MOST read from parameter file for CO5BOLD data)
	opafile
	gasfile
	eosfile
	htau0
	qmol
	Teff
	grav
	tsurffac

	Model data - reading of `full' files (CO5BOLD only)
	isnap_full_1
	isnap_full_2
	istep_full

	3D mean model
	mavg

	External 1D reference model
	atmpath
	atmfile

	Line data and radiative transfer
	linfs
	lutau1
	lutau2
	dlutau
	lctau1
	lctau2
	dlctau
	Hbrd
	vsini
	ximicx
	ximic1
	ximic3
	ximacx
	ximac1
	ximac3
	vfacx
	vfacy
	vfacz
	micro
	xi_a
	xi_b
	xi_d
	dclam
	intmode
	intline
	nchunk

	Angle quadrature schemes
	ntheta
	nphi
	mu0
	kphi
	raybase

	Curve-of-Growth computations
	cog
	icg
	gflgmin
	gflgmax

	IDL Example
	F90 Example

	Line Data File: line.dat
	Parameters in Line Data File
	clam
	gfscale

	Line Data Formats
	Continuum only
	Single line calculations, line data format `0'
	Single line calculations, line data format `1'
	Single line calculations, complete line data format `2'
	Single line calculations, complete line data format `3'
	Single line calculations, complete line data format `4'
	Single line calculations, complete line data format `5'
	Single line calculations, complete line data format `6'
	Single line calculations, complete line data format `7'
	Multiple Line Calculations

	Conversion of line broadening parameters
	Quadratic Stark effect
	Van der Waals broadening
	ABO van der Waals broadening formalism
	Natural line broadening

	Departure Coefficients
	The xbc file
	The xbc2 file

	Output files
	uio_save
	uio_restore
	Useful UIO information

	Output file structures
	linfor_3D_1.uiosave
	ABU
	ATOM
	CMD
	CONST
	INFO
	LINE

	linfor_3D_2.uiosave
	CONTF
	IMUPHI
	MAPS
	RESULT

	linfor_3D_3.uiosave
	CONTF3D

	linfor_1X.uiosave

	Plotting output
	Plotting the synthesis
	Plotting contribution functions
	Plotting the Curve-of-Growth

	Timing statistics
	IONDIS
	Atoms
	Molecules
	 Some definitions
	Equations
	Criterion for convergence
	Initial guess
	Variable names

	ionopa
	temp
	pin
	alam
	pout
	densnc
	okappa
	osigma
	pgas
	namj
	fracj
	zeta
	init
	dm
	dalpha
	avm
	ehe
	abupath
	nami
	abui
	Example

	ionopa2
	temp
	qin
	alam
	pe
	pg
	densnc
	okappa
	osigma
	qflg
	namj
	fracj
	zeta
	init
	dm
	dalpha
	avm
	ehe
	abupath
	nami
	abui
	Example

