IAU Symposium No. 248, Shanghai, 15-19 Oct. 2007

Astrometric detection and characterisation

of brown dwarfs

Ralf-Dieter Scholz Astrophysikalisches Institut Potsdam

in collaboration with:

- Mark McCaughrean @ Exeter
- Siegfried Röser @ Heidelberg
- Elena Schilbach @ Heidelberg

Low-mass Stars ... Brown Dwarfs (BDs) ... Planets

BDs form like stars but do not reach critical mass of stars (~0.08 Msolar) \rightarrow no long-lasting thermonuclear burning in their cores \rightarrow become fainter and cooler with time

Theory: similar radii of relatively old (>100 Myr) low-mass stars, BDs, and giant planets (hard to observe)

Observations: <u>spectra</u> (temperature, chemical composition), <u>astrometry</u> (\rightarrow luminosity, kinematics, masses in binary systems)

Sun Gliese 229A Teide Gliese 229B Jupite 180 K 5.800 K 3.800 K 2.700 K 900 K G2 star red dwarf brown dwarf brown dwarf planet 0.6...0.08 0.08...0.013 0.001

Mass in Solar units:

(www.astron.berkeley.edu/~stars/bdwarfs/)

Theory: evolution of low-mass stars, BDs, planets

Observed absolute magnitudes/colours of BDs

et al. (2004). premin. paramaxes of L and T dwarts

Phan-Bao et al. (2007, arXiv:0708.4169v1)

The search for brown dwarfs

First discoveries of brown dwarfs

Name (spectral type)	Discovery	Astrometry		
GD 165B (L4)	WD companion (Becklin & Zuckerman 1988)	CPM measured later by Zuckerman & Becklin (1992)		
Gl 229B (T7)	Companion of M2 dwarf (Nakajima et al. 1995)	crude measurement of CPM included in discovery paper		
Teide 1 (M8)	Pleiades member (Rebolo et al. 1995)	Astrometric membership established (CPM with cluster)		
Kelu 1 (L2)	Free-floating (Ruiz et al. 1997)	detected in HPM survey		
Denis 0205 (L7), 1058 (L3), 1228 (L5)	Free-floating (Delfosse et al.1997)	HPM initially not measured		
LP 944-20 (M9.5)	Free-floating (Tinney 1998)	previously known HPM object (NLTT catalogue, Luyten 1979)		
GJ 802b (?)	Companion of M5.5 dwarf (Pravdo, Shaklan & Lloyd 2005)	Astrometric wobble detected		

High proper motion as rough distance measure

- Proper motion μ = apparent motion (large values: ~0.1 to ~10 arcsec/yr)
- Real velocity [in km/s] scales with distance d [in pc] $v_{tan} = 4.76 \cdot \mu \cdot d$
- Typical relative velocity of local Galactic disk stars ~ 40 km/s
- Disk star with $\mu = 1$ arcsec/yr has typically d ~ 10 pc
- Halo stars do not take part in Galactic rotation (~220 km/s at the location of the Sun) \rightarrow same μ indicates 5 times larger distance

Proper motion samples are halo biased

Galactic space velocities UVW for proper motion stars from Lepine, Shara & Rich (2003):

Normal red dwarfs

red subdwarfs

Dotted and dashed ellipses - 2σ velocity dispersions of local disk and halo stars, respectively (Chiba & Beers 2000) Solid circles - limit for stars gravitationally bound to the Galaxy (model of Dauphole & Colins 1999)

Recent discoveries with $\mu > 2$ arcsec/yr

Name	proper	Discovery paper	Distance	object
	motion		(plx. ref.)	type
	$[\operatorname{arcsec}/\operatorname{yr}]$		[pc]	
SO 0253+1652	5.11	Teegarden+03	3.84(1)	disk M6.5
arepsilon Indi Ba,Bb	4.70	Scholz+03, McCaughrean+04	3.625(2)	disk T $1+T6$
SSSPM 1444-2019	3.51	Scholz+04b	~ 20	halo $sdM9$
$2MASS \ 1114-2618$	3.05	Tinney+05	$\sim\!7$	disk T 7.5
SCR 1845–6357 AB	2.66	Pokorny+03, Hambly+04,	3.854(1)	disk M $8.5+T6$
		Biller+06		
2MASS 0532+8246	2.60	Burgasser+03	26.7(5)	halo $sdL7$
PM 13420-3415	2.55	Lépine, Rich & Shara 05	${\sim}18$	halo WD
LEHPM 3396	2.45	Pokorny+03, Phan Bao+06	${\sim}8$	disk M9.0
LSR 1826+3014	2.38	Lépine+02	${\sim}14$	halo $M8.5$
F351-50	2.33	Ibata+00	$35 \ (4)$	halo cool WD
2MASS 0415 - 0935	2.26	Burgasser+02	5.74(3)	disk T 8.5
2MASS 0251 - 0352	2.17	Cruz+03, Schmidt+07	${\sim}12$	disk(?) L3.0
SCR 1138-7721	2.15	Hambly+04, Scholz+04a	8.18(1)	disk M5.5

Trig. parallaxes: 1 - Henry+06, 2 - ESA97, 3 - Vrba+04, 4 - Ducourant+07, 5 - Burgasser+07

13 new discoveries since 2000 - compared to 73 known LHS stars! Most new objects are at or below the substellar mass limit

The Solar neighbourhood

10 Lightyears

New high proper motion survey using SSS

goal

Compared to previous efforts needed to conduct a high proper motion survey (e.g. Luyten Half Second = LHS) ...

Willem Jacob Luyten (1899-1994)

Scanned at the American Institute of Physics

... it is now much easier thanks to digitised observations & convenient access to public data bases, e.g. the SuperCOSMOS Sky Surveys (SSS)

WFAU, Institute for Astronomy, Royal Observatory, Blackford Hill Edinburgh, EH9 3HJ, UK Tel +44 131 668 8356 (office) or +44 131 668 8100 (switchboard)

M.Read@roe.ac.uk 08-May-2001

- Fill the gaps in Southern sky

ROE

IFA

- Extend the magnitude limit
- Find cooler nearby objects (bd)
- Find cool halo objects (wd, sd)

Discovery of a hright I, dwarf (Scholz & Mousinger 2002)

Detected in SSS high pm survey; spectroscopic classification with 2.2m@Calar Alto; More high pm L dwarfs classified with ESO 3.6m and NTT (Lodieu et al. 2002, 2005)

Is SSPM 1444 a substellar subdwarf?

Near-infrared trigonometric parallax program

@ Calar Alto 3.5m Omega 2000 targetting 10 ultracool subdwarfs (Röser, Schilbach & Scholz)

Table 2. Preliminary parallaxes of ultracool subdwarfs					
Name	Spectral Type	Ref.	$\mu_{lpha}\cos\delta$ $[m mas/yr]$	μ_{δ} [mas/yr]	π Ref. [mas]
SSSPM 1444-2019	sdM9 (sdL:)	(1)	-2901.5 ± 2.5	-1977.9 ± 2.2	$55.1 \pm 2.8 \ (4^*)$
2MASS 0532+8246	$\rm sdL7$	(2)	$+2047.7 \pm 1.8$ +2041.9 \pm 1.8	-1658.6 ± 1.5 -1648.2 ± 1.8	$\begin{array}{rrr} 40.8 \pm 1.7 & (4^*) \\ 37.5 \pm 1.7 & (6) \end{array}$
2MASS 0937+2931	sdT6	(3)	$+952.2 \pm 1.6 +973.0 \pm 7.1$	-1308.3 ± 1.7 -1297.8 ± 7.1	$\begin{array}{rrr} 161.6 \pm 1.8 & (4^*) \\ 161.5 \pm 3.9 & (5) \end{array}$

References: 1 - Scholz et al. (2004b), 2 - Burgasser et al. (2003), 3 - Burgasser et al. (2002), 4^{*} - Röser et al. (prelim. relative parallaxes), 5 - Vrba et al. (2004), 6 - Burgasser et al. (2007b)

Spectral sequence + list of all ultracool subdwarfs

Source	Spectral Type	
LSR 1610-0040	d/sdM7:	
SSSPM 1444-2019 2MASS 1640+1231	d/sdM9 d/sdM9	
2MASS 0937+2931	d/sdT6	
LHS 377	sdM7	
SSSPM 1930-4311	sdM7	
LSR 2036+5059	sdM7.5	
LSR 1425+7102	sdM8	
2MASS 0142+0523	sdM8.5	
SSSPM 1013-1356	sdM9.5	
SDSS 1256-0224	sdL4:	
2MASS 1626+3925	sdL4	
2MASS 0532+8246	sdL7	
APMPM 0559-2907	esdM7	
2MASS 1227-0447	esdM7.5	
LEHPM 2-59	esdM8	

Burgasser, Cruz & Kirkpatrick (2007) and references therein

Discovery of the nearest brown dwarf: ϵ Indi B

resulting from SSS high proper motion survey

initially discovered on two overlapping I plates in SSS (+2MASS), improved proper motion solution with all available data

Residual difference ~ 40 mas/yr is consistent with orbital motion

... resolved as a T1+T6 binary

using adaptive optics at VLT+NACO

Ongoing orbital monitoring program with VLT NACO+FORS (P.I.: McCaughrean) aiming to determine individual dynamical masses:

pm + parallax + orbital motion (simulation)

L & T dwarfs: near-infrared colours, magnitudes

L & T dwarfs: parallax measurements

626 known L & T dwarfs on the sky

L & T dwarfs: more astrometry needed !

Completeness of astrometric parameter determination as a function of magnitude: Hashed – available proper motions Shaded – available parallaxes Number of determined parallaxes

Vrba+04
 Dahn+02
 ESA 97
 Tinney+03
 others

Kirkpatrick, Gelino & Burgasser – DwarfArchives.org – as of 1 October 2007

Concluding remarks

- Archival (photographic) data are not yet fully exploited in high proper motion surveys detecting brown dwarfs
- Large area multi-epoch near-infrared surveys will uncover most of the hidden brown dwarfs
- Considerable efforts are needed for astrometric characterisation of brown dwarfs and ultracool subdwarfs (see also Poster 2.2.4 by Faherty et al.)
- Ground-based high-accuracy astrometry will play a major role since mosts brown dwarfs are too faint to be seen by GAIA (see also talk 7.1.4 by Smart et al.)