Program LINLTE.FOR (LINFOR) Fine analysis and spectrum synthesis of stellar spectra

M. Steffen W. Steenbock H. Holweger M. Lemke

Kiel 1981/Austin 1991

Program based on BHT (Baschek, Holweger, Trawing, 1966). Input files:

- 1. ATM.DAT from ATMOS Model atmosphere
- 2. LINE.DAT Line data and commands
- 3. FALT.DAT Convolution (german: Faltung) data and output control of spectrum synthesis (file only needed for synthesis)
- 4. DEPART.DAT from NLTE system Departure coefficients for given element (file only needed if NLTE calculations requested)

Output files:

- 1. FOR003.DAT; in UNIX usually fort.3; FORTRAN channel number 3 Line printer output of results
- 2. PLOT.OUT Synthetic spectrum (optional)

The first section of the following lists the subroutines in the sequence they are called. The second section describes 'auxiliary' routines called by routines of the first section.

Global variables, *i.e.* those which are in COMMON blocks, are printed in caps, local variables in lower case, and formal parameters to functions or subroutines in caps but in a different type face like THIS.

Flow of Program and Formulae

READIN(1) (Subroutine)

Reads model atmosphere.

	• Start with reading those elements and ions from LINE.DAT (Part 1) for which line calculations are requested in Part 2 of the file.		
ijma	number of elements and ions; HI always counted		
NAMIJ(I)	1ijma element and ion codes; $HI = 100$ always included, even with contin-		
ፐሮለጥM	uum.		
TEDED	0: don't print departure coefficients: 1: do print.		
	o. don't print departure coefficients, 1. do print.		
	• Continue with model atmosphere from ATM.DAT:		
NMA	number of depth points		
TEFF	$T_{\rm eff}$ [K]		
GLOG	$\log g [\mathrm{cgs}]$		
REFLAM	λ_{ref} [Å] for $\tau_{\mathrm{ref}}, \kappa_{\mathrm{ref}}, \sigma_{\mathrm{ref}}$		
IMA	number of elements		
NAMI(I)	1 IMA element code = atomic number * 100		
WTI(I)	1 IMA μ_i ; atomic weights (¹² C=12.000)		
ABUI(I)	1 IMA $\log \varepsilon_i$; element abundances ($\log \varepsilon_{\rm H} = 12.0$)		
RTAU(N)	1NMA $ au_{\lambda_{\mathrm{ref}}}$, i.e.		
THETA(N)	1NMA $\Theta = \frac{5,400}{T}$		
PELG(N)	1NMA $\log p_e$; electron pressure $[\mathrm{dyn}\mathrm{cm}^{-2}]$		
PGLG(N)	1NMA $\log p_g$; gas pressure $[\mathrm{dyn}\mathrm{cm}^{-2}]$		
ALGK(N)	1NMA $\log \kappa_{\lambda_{\mathrm{ref}}}$		
ALGS(N)	1NMA $\log \sigma_{\lambda_{\mathrm{ref}}}$		
ROPTOT(N)	1NMA $\kappa_{\lambda_{\mathrm{ref}}} + \sigma_{\lambda_{\mathrm{ref}}}$		
RSU	R_*/R_{\odot}		
R(N)	1NMA stellar radius [cm] at depth point \mathbb{N} . $\Rightarrow \mathbb{R}(1) = \text{stellar radius in [cm]}$		
XI(N)	1NMA ξ_{micro} ; microturbulence [km/s]		
LMA	number of wavelengths		
OLAM(L)	1LMA wavelengths λ [Å] for which continuous		
ALKL(N,L)	1NMA, LMA opacities $\log \kappa_{\lambda}$ and		
ALSL(N,L)	1NMA, LMA $\log \sigma_{\lambda}$ are read in (depth dependent).		
JMA	= ijma only particle concentrations needed for the line calculations are read in		
CHIJ(J)	1 JMA χ_j [eV] ionization potential		
NAMJ(J)	1 JMA = NAMIJ(I) maybe in different sequence		
ZETAJ(N,J)	1NMA, JMA $\log\left(\frac{N_{j,0}/g_{j,0}}{N_{\text{nuc}}}\right)$; particle concentrations (depth dependent); see		
WTJ(J)	subroutine IONDIS 1JMA = WTI(I) (atomic weights) for NAMJ(J) = NAMI(I)		

	• Calculate:
HE	$HE = \frac{\varepsilon_{He}}{\varepsilon_{H}} = 10^{ABUI(2) - ABUI(1)}$
DEL	precision for equivalent width iteration; $= 0.001$ in DATA statement
RMIN	minimum line absorption depth up to which profile will be calculated; = $DEL *$
NTMIN	DEL + 0.003 depth point N with lowest temperature
taum	mean line formation depth; $= 0.11$ in DATA statement
MT	depth point N with $ au_{ m ref} \sim {\tt taum}$
ITMA	maximum number of iterations for equivalent width match; = 9 in DATA state-
	ment

PUTOUT(1) (Subroutine)

IFATM	print model atmosphere if equal to 1
IFDEP	print departure coefficients if equal to 1

KAPGAM(1) (Subroutine)

Calculation of line independent parts of $\gamma.$

$$\eta(\Delta \lambda) = \eta_0 \, \Phi(\Delta \lambda) = \frac{\kappa_l}{\kappa_{\rm ref}}$$

 η_0 : Line opacity; frequency independent part

 $\Delta \lambda$: distance from line center

$$\Phi = \begin{cases} H(\alpha, \upsilon) & \text{for metal lines} \\ \text{PROFHY}(\alpha', \Delta \lambda) & \text{for Hydrogen lines} \end{cases}$$

with

$$\alpha = \frac{\gamma}{2\Delta\omega_D} = \frac{\gamma\lambda_k}{2\cdot 2\pi c v_D}$$
$$v = \frac{\Delta\lambda}{\Delta\lambda_D} = \frac{\Delta\lambda}{\lambda_k v_D}$$
$$\Delta\lambda_D = \frac{\lambda^2}{2\pi c}\Delta\omega_D = \lambda v_D$$

 α' see KAPGAM(2), page 8

VDOP(n,j) Doppler velocity in units of c

$$\begin{aligned} \mathtt{VDOP}(\mathtt{n},\mathtt{j}) &= v_D &= \frac{1}{c} \sqrt{\xi^2 + \frac{2RT}{N}} \\ &= \frac{1}{299,792.5} \sqrt{\mathtt{XI}(\mathtt{n})^2 + \frac{\mathtt{x}}{\mathtt{THETA}(\mathtt{n})}} \end{aligned}$$

with

$$\mathbf{x} = \frac{2 R \cdot 5,040}{\mathtt{WTJ}(\mathtt{j})} = \frac{83.808}{\mathtt{WTJ}(\mathtt{j})}$$

Damping:

$$\gamma = \gamma_{\rm rad} + \gamma_e + \gamma_v$$

$$\begin{aligned} \gamma_v &= \gamma_{\rm H} + \gamma_{\rm He} \\ &= \gamma_{\rm H} \left(1 + G \frac{\varepsilon_{\rm He}}{\varepsilon_{\rm H}} \right) \end{aligned}$$

with

$$G = \left(\frac{\alpha_{\rm He}}{\alpha_{\rm H}}\right)^{2/5} \left(\frac{\mu_{\rm H}}{\mu_{\rm He}}\right)^{3/10} = \frac{1}{2.4194} \quad \alpha: \text{ polarizability}$$
$$n = 6:$$

$$n = 6: \gamma_{\rm H} = x C_6^{2/5} v^{3/5} N_{\rm H} \quad \text{Lindholm:} \ x = 8.08$$
(1)

$$n = 4: \gamma_e = x C_4^{2/3} v^{1/3} N_e \quad \text{Lindholm: } x = 11.37$$
(2)

$$v = \left[\frac{8\,kT}{\pi\,m_{\rm H}}\left(\frac{1}{A_1} + \frac{1}{A_2}\right)\right]^{1/2}\tag{3}$$

$$\left(\frac{1}{A_1} + \frac{1}{A_2}\right) = \begin{cases} 1 & \text{HI} - \text{metal} \quad A_2 \gg A_1\\ \frac{1}{m_e/m_{\text{H}}} = 1,837 & e - \text{metal} \quad A_2 \gg A_1 \end{cases}$$
(4)

vdwlg(n)
$$\gamma_{\rm H} = C_6^{2/5} p_{\rm H} \Theta^{7/10} \left(\frac{8.08}{k \cdot 5,040} \right) \left(\frac{8 k \cdot 5,040}{\pi m_{\rm H}} \right)^{3/10}$$
 with (1), (3), (4), and $N_{\rm H} = \frac{p_{\rm H} \Theta}{k \cdot 5,040}$

$$\log \gamma_{\rm H} = \frac{2}{5} \log C_6 + \log p_{\rm H} + \frac{7}{10} \log \Theta + 8.6724 \quad [10^8 \, {\rm sec}^{-1}]$$
$$vdwlg(n) = \log p_{\rm H} + \frac{7}{10} \log \Theta + 8.6724 + \log(1 + G\frac{\varepsilon_{\rm He}}{\varepsilon_{\rm H}})$$

eldplg(n)
$$\gamma_e = C_4^{2/3} p_e \Theta^{5/6} \left(\frac{8 \, k \cdot 5,040 \cdot 1,837}{\pi \, m_{\rm H}} \right)^{1/6} \frac{11.37}{k \cdot 5,040} \qquad \text{with (2), (3), (4), and} N_e = \frac{p_e \Theta}{k \cdot 5,040}$$

$$\log \gamma_e = \frac{2}{3} \log C_4 + \underbrace{\log p_e + \frac{5}{6} \log \Theta + 7.7614}_{= \text{eldplg(n)}} \quad [10^8 \, \text{sec}^{-1}]$$

PHLG(n) partial pressure of Hydrogen

$$\begin{split} &\frac{p_{\rm HI,0}}{p_g} = \frac{N_{\rm HI,0}}{N_g} = \frac{N_{\rm HI,0}}{N_{\rm nuc}} \\ &N_{\rm HI,0} = N_{\rm nuc} \, 10^{\rm ZETAJ(\rm HI)} \, g_{\rm HI,0} \\ &p_{\rm H} = p_g \, 10^{\rm ZETAJ(\rm HI)} \, g_{\rm HI,0}; \qquad g_{\rm HI,0} = 2 \\ & {\rm PHLG}({\bf n}) = \log p_{\rm H} = {\rm PGLG}({\bf n}) + \log 2 + {\rm ZETAJ}({\bf n}, 1) \end{split}$$

READIN(2)

Reads line data and commands from LINE.DAT (Part 2).

Commands

IFSURF	$= \left\{ \begin{array}{cc} 2 & \cos \vartheta \ge 0 & \text{compute intensities} \\ 1 & \cos \vartheta < 0 & \text{compute fluxes} \end{array} \right\} \text{ control of subroutine FLUX}$
IFSCAT	$= \left\{ \begin{array}{ll} 0 & \text{scattering is true absorption} \\ 1 & \text{correct treatment} \end{array} \right\} \text{scattering in the continuum;} \\ \text{control of subroutine FLUX}$
IFSPHA	$= \begin{cases} 0 & \text{plane parallel} \\ 1 & \text{sphericity in 1st approximation} \end{cases}$
IFNLTE	$= \left\{ \begin{array}{cc} 0 & \text{LTE calculation} \\ 1 & \text{NLTE calculation} \end{array} \right\} \begin{array}{c} \text{control of} \\ \text{subroutine SUMETA} \end{array}$

6	LINLTE READIN	(2)
IFABS	$= \begin{cases} 0 & \text{write relative intensity to PLOT.OUT} \\ 1 & \text{absolute intensity } I_{\lambda} \\ 2 & \text{absolute intensity } I_{\nu} \end{cases}$	
CONTI	$= \left\{ \begin{array}{ll} .TRUE. & compute \ continuum \\ .FALSE. & compute \ lines \end{array} \right\} \begin{array}{l} control \ of \ subroutines \ FLUX, \\ SUMETA, \ CONT \end{array}$	
KCONTR	$= \begin{cases} \geq 0 = K & \text{output of depth dependent quantities for blend} \\ & \text{line K or for continuum if } K = 1 \text{ and } MLAM < 0 \\ & \text{no depth dependent output} \end{cases}$	
ia	code for line computations; see description of LINE.DAT.	
BOA(1)	= .TRUE. if is odd W_{λ} from $\log gf$; output for each iteration (is 3.5.7)	=
(2)	= .TRUE. if $ia = 2, 3, 6, 7$ Fine analysis; iterate $\log gf$ to match equivalent width	nt
(3) (4)	= .TRUE. if $ia = 4, 5, 6, 7$ Coarse analysis; rough estimate of $\log gf$ to W_{λ} = .TRUE. if $ia = 8$ Spectrum synthesis	
DLOGGR DLOGC4 DLOGC6 new_abu COSTHE KMA BLEND(k) ANFLAM ENDLAM DELLAM	$\begin{array}{ll} \Delta \log \gamma_{\rm rad} & {\rm not used for H lines} \\ \Delta \log C_4 & {\rm not used for H lines} \\ \Delta \log C_6 & {\rm not used for H lines} \\ {\rm new abundance; adds {\rm new_abu}-\varepsilon_{\rm ATM.DAT} to \log gf {\rm for all lines of given element/is} \\ {\rm cos} \vartheta (= -1 {\rm for flux computation; see IFSURF}) \\ {\rm number of blend lines; for synthesis: total number of lines} \\ f f$	ion 17,
ITV	$= \begin{cases} 0 & \text{no terminal output during synthesis} \\ 1 & \text{do print on terminal} \end{cases}$	
MLAM SINGLE WI.TM	$\bar{\lambda}$ [Å] for continuum calculation; if < 0: depth dependent output (KCONTR = 1) .TRUE. for single line computation (<i>i.e.</i> not a blend). Compute only half of profile (WCAL = 2 WCAL) minimum W_{i} [Å] for suppressing output of lines with WCAL < VII IM	
ISYN	number of point of synthetic profile for which depth dependent information v be given	vill
Line data	for blend component $k, k = 1 \dots KMA$	
NAMK(k) MULT(k)	element code multiplet number; if $MULT(k) < 0$: depth dependent output of line quantit (KCONTR = k)	ies

LAMK(k) CHIK(k)	λ_k [Å]; wavelength at line center χ_k [eV]; excitation potential of lower level		
GFLG(k)	$= \left\{ \begin{array}{ll} \text{Metal lines:} \\ \text{Hydrogen lines:} \end{array} \right.$	$\log gf$ $\log K + 17$ (see Traving, 1962, Ap. J., 135 , 439)	
DRRCA(k)	$= \begin{cases} \text{Metal lines:} \\ \\ \text{Hydrogen lines:} \end{cases}$	$\Delta \bar{r}^2 / a_0^2$ for van der Waals broadening; see KAPGAM(2), page 8 n_l ; principal quantum number of lower level	
C4LG(k)	$= \begin{cases} Metal lines: \\ \\ \\ Hydrogen lines: \end{cases}$	$-\log C_4$; if $< 0 \ \gamma_e = 0$; if $= 0$ use approximation according to Griem (1968, <i>Phys. Rev.</i> , 165 , 258) and Cowley (1971, <i>Obs.</i> , 91 , 139) (see KAPGAM(2), page 8). n_u ; principal quantum number of upper level	
RAD(k)	$= \begin{cases} \text{Metal lines:} \\ \text{Hydrogen lines:} \end{cases}$	$\gamma_{\rm rad}$; if < 0 classical formula: $\gamma_{\rm rad} = 2.22 \cdot 10^{15} \lambda^{-2}$ (see KAPGAM(2), page 8) $C_e/C_{\rm H}$ (see Cayrel, Traving, 1960, Z. Astrophys., 50, 239	
WNOTE(k) WOBS	measured W_{λ} ; ignored if $\mathbf{k} \neq KMA$ (<i>i.e.</i> , for all components of the blend except the last one) and in spectrum synthesis. Printed, though, measured W_{λ} of the blend		
LU(k) DIU(k) LO(k) DIO(k)	If DRRCA < 0 (Unsöld approximation): l_l ; orbital quantum number of valence electron of lower level ΔI_l ; excitation energy [eV] of parent term for lower level l_u ; orbital quantum number of valence electron of upper level ΔI_u ; excitation energy [eV] of parent term for upper level		
LOW(k) UP(k) lowk upk	If IFNLTE = 1: number of lower NLTE level in model atom number of upper NLTE level in model atom name (label) of lower NLTE level in model atom (set only if LOW(k) not numeric) name (label) of upper NLTE level in model atom (set only if UP(k) not numeric)		
HY(k) ABUK(k) KJ(k)	.TRUE. if H line $(NAMK(k) = 100)$ abundance of element of line k (= ABUI(i) if $NAMK(k) = NAMI(i)$) = j if $NAMK(k) = NAMJ(j)$; <i>i.e.</i> , position of line element $NAMK(k)$ in array $NAMJ(j)$		
	• Branching synthesis—	-line analysis:	

Spectrum synthesis

DLK(k)	distances of line centers from start of synthesis interval: $1,000 \cdot (\lambda_k - \lambda_{\text{start}})$
	[mÅ]; see also figures on page 14
DELLAM	rescaling of DELLAM to mÅ: DELLAM = $1,000 * \text{DELLAM}$

MLAM	$ar{\lambda} = \sum_{n=1}^{ ext{KMA}} \lambda_k / ext{KMA}$
DLK(k)	$\Delta \lambda_k = 1,000 \cdot (\lambda_k - \lambda_{k,\min});$ distances of line centers (in a blend) from blend
	line with smallest wavelength [mÅ]
DLDOP	Doppler width for estimate of integration end: $\Delta \lambda_D = 1,000 \cdot \bar{\lambda} v_D \text{ [mÅ]}$ with v_D
	taken at depth point MT (typical line formation depth) for element $KJ(KCONTR)$
	(Remark: $ KCONTR $ chooses different v_D if $MULT(k) < 0$. Intended?)
ENDLAM	$DLK(k)_{max} + 2\Delta\lambda_D;$ wavelength for integration end

LINLTE (Main program)

	• For continuum calculation (CONTI = .TRUE.):
FCLAM	= CONT(MLAM); $I_{\bar{\lambda},c}$ or $F_{\bar{\lambda},c}$ Then do • CALL PUTOUT(2); output continuum quantities and • GO TO READIN(2) (page 5); continue reading LINE.DAT

• else for line calculations CONTI = .FALSE.:

KAPGAM(2)

Calculation of line dependent parts of γ , α , and η . See also KAPGAM(1), page 3. NLTE accounted for in function SUMETA, page 34.

Metal lines

$$\begin{aligned} \mathsf{ETAO}(\mathbf{n},\mathbf{k}) \qquad \eta_{0,k}^* &= \frac{\kappa_{j,s}^* N_{j,s}^*}{(\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}}) N_{\mathrm{nuc}}} \quad \mathrm{atom/ion} \ j, \ \mathrm{lower} \ \mathrm{level} \ s \\ &= \frac{\kappa_{j,s}^*}{(\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}})} g_{j,s} \ 10^{-\chi_{rs}} \Theta \underbrace{\frac{N_{j,0}^*/g_{j,0}}{N_{\mathrm{nuc}}}}_{10^{\mathrm{ZETAJ}}} \\ &= \frac{2 \pi^{3/2} e^2}{m_e c \underbrace{\Delta \omega_D}_{\frac{2\pi c}{\lambda_k} v_D}} \left(1 - e^{-c_2/\lambda_k T}\right) \frac{f}{(\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}})} g_{j,s} \ 10^{-\chi_k \Theta} \ 10^{\mathrm{ZETAJ}} \\ &= \frac{\pi^{1/2} e^2 10^{-8} gf}{m_e c^2} \underbrace{\frac{\lambda_k}{v_D}} 10^{\mathrm{ZETAJ}(\mathrm{N},\mathrm{J})} \ 10^{-\chi_k \Theta} \underbrace{(1 - 10^{-\mathrm{v}\Theta})}_{(\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}})} (\lambda_k \ \mathrm{in} \ [\mathrm{\AA}]) \end{aligned}$$

with

$$\mathbf{v} = \frac{12,398.54}{\lambda_k \, [\text{Å}]} \, [\text{eV}]$$

$$\begin{split} \mathbf{w}' &= \log \frac{\pi^{1/2} e^2 10^{-8} gf}{m_e c^2} = -20.3015 + \log gf \\ \mathbf{w} &= \mathbf{w}' + \log \lambda_k \\ \mathbf{z} &= 1 - 10^{-\mathbf{v} \Theta} \\ \mathrm{ETAO}(\mathbf{n}, \mathbf{k})' &= 10^{(\mathbf{w} + \mathrm{ZETAJ}(\mathbf{n}, \mathrm{KJ}(\mathbf{k})) - \mathrm{CHIK}(\mathbf{k}) \operatorname{THETA}(\mathbf{n}))} \mathbf{z} / \underbrace{\mathrm{ROPTOT}(\mathbf{n})}_{\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}}} \end{split}$$

ETAO(n,k) = ETAO(n,k)'/VDOP(n,KJ(k))

RRCA

If DRRCA ≤ -0.1 : Function; Unsöld approximation

$$\frac{\bar{r}^2}{a_0^2} = \frac{n_{\text{eff}}^2}{2(Z+1)^2} \left(5 \, n_{\text{eff}}^2 + 1 - 3 \, l(l+1) \right)$$
$$n_{\text{eff}}^2 = \frac{(Z+1)^2 \cdot 13.598}{\chi_j + \Delta I_k - \chi_k}$$

with $\chi_j = \text{ionization energy of element } j, \chi_k$ level energy, ΔI_k excitation energy of parent term, and Z charge of ion.

RRCAU(k) = RRCA(
$$\chi_k, \Delta I_l + \chi_j, l_l, iz$$
); $iz = Z + 1 = 1$ for neutrals, 2 for singly ionized

RRCAO(k)

$$\begin{array}{l} \text{etc.} \\ = \operatorname{RRCA}(\chi_k + v, \Delta I_u + \chi_j, l_u, \mathbf{iz}) \\ v = \frac{12398.54}{\lambda_k \, [\text{Å}]} \quad [\text{eV}] \quad = h\nu \quad \Rightarrow \chi_k + v = \text{ energy of upper level} \end{array}$$

DRRCA(k)

$$\begin{array}{ll} \displaystyle \frac{\Delta \bar{r}^2}{a_0^2} & = & \left| \frac{\Delta \bar{r}_u^2}{a_0^2} \right| - \left| \frac{\Delta \bar{r}_l^2}{a_0^2} \right| \\ & = & |\mathrm{RRCAO}(\mathbf{k})| - |\mathrm{RRCAU}(\mathbf{k})| \end{array}$$

$$\mathrm{DRRCA}(\mathbf{k}) = \left|\frac{\Delta \bar{r}^2}{a_0^2}\right| \cdot 10^{\Delta \log C_6}$$

$$C6LG(k) = -\log C_6 - \Delta \log C_6$$

= $-\log \frac{\Delta \bar{r}^2}{a_0^2} - \log \frac{e^2 \alpha_H a_0^2}{\hbar} - \Delta \log C_6$
= DRRCA(k) - 32.3867

C4LG(k) =
$$-\log C_4 - \Delta \log C_4$$

= C4LG(k) - DLOGC4

For C4LG(k) = 0 use Griem/Cowley approximation at 10,000 K:

$$\gamma_{e} = \begin{cases} \underbrace{\frac{1}{2\pi v_{10,000}} \left(\frac{h}{m_{e} (Z+1)}\right)^{2} \frac{5}{3}}_{\text{c4fak}} n_{\text{eff}}^{4} N_{e} & \text{neutrals, i.e., } Z = 0\\ \underbrace{\frac{1}{2\pi v_{10,000}} \left(\frac{h}{m_{e} (Z+1)}\right)^{2} 4}_{\text{c4fak}} n_{\text{eff}}^{4} N_{e} & \text{ions}\\ \underbrace{\frac{1}{2\pi v_{10,000}} \left(\frac{h}{m_{e} (Z+1)}\right)^{2} 4}_{\text{c4fak}} n_{\text{eff}}^{4} N_{e} & \text{ions} \end{cases}$$

with (3) and (4) for $T_{\rm eff} = 10,000 \,{\rm K}$:

$$v_{10,000} = \left(\frac{8 \, k \cdot 10,000}{\pi \, m_{\rm H}} \, 1,837\right)^{\frac{1}{2}} = 6.213 \cdot 10^7$$

c4fak

$$\left\{ \begin{array}{ll} 2.259 \cdot 10^{-7} & \text{neutrals} \\ 5.421 \cdot 10^{-7}/(Z+1)^2 & \text{ions} \end{array} \right.$$

and with $N_e = \frac{P_{\rm H} \Theta}{k \cdot 5,040}$ (in units of $10^8 \, {\rm rad/sec}$) \Rightarrow

$$\gamma_e = \mathsf{c4fak} \, n_{\mathrm{eff}}^4 \, p_{\mathrm{H}} \, \Theta \underbrace{\frac{10^{-8}}{\underbrace{k \cdot 5,040}}_{\mathsf{c4konst}}}_{\mathsf{c4konst}} \tag{5}$$

With (2) and (5) we obtain:

$$\begin{array}{rcl} C_4^{2/3} & = & \frac{\mathsf{c4fak}}{11.37} \, n_{\mathrm{eff}}^4 \, v^{-\frac{1}{3}} \\ C_4 & = & \left(\frac{\mathsf{c4fak}}{11.37} \, n_{\mathrm{eff}}^4\right)^{\frac{3}{2}} \, v^{-\frac{1}{2}} \end{array}$$

or

=

 $\log C_4 = 1.5 \log(\texttt{c4fak}/11.37) + 1.5 \log(n_{\rm eff}^2) - 3.9$

For RAD(k) < -0.001 use classical formula:

$$\begin{aligned} \gamma_{\rm rad} &= \frac{2 e^2 \omega^2}{3 \, m \, c^3} \\ &= \frac{2 e^2 4 \, \pi^2}{3 \, m \, c \, \lambda_k^2} \\ &= \frac{2.22 \cdot 10^7}{\lambda_k^2} \, \left[10^8 \, {\rm sec}^{-1} \right]; \ \lambda \ {\rm in} \ {\rm \AA} \end{aligned}$$

$$\begin{aligned} \text{ALPHA}(\mathbf{n},\mathbf{k}) & \alpha(\mathbf{n},\mathbf{k}) &= \frac{\gamma}{2\,\Delta\omega_D} = \frac{\gamma\,\lambda_k}{4\,\pi\,c\,v_D}; \quad \gamma = \gamma_e + \gamma_{\text{rad}} + \gamma_v \\ & [\text{\AA}]: \, 10^{-8} \text{ against } \gamma \, (10^8) \\ &= \left(10^{-2/3\,\log C_4 + \text{eldplg}} + \gamma_{\text{rad}} + 10^{-4/10\,\log C_6 + \text{vdwlg}}\right) \frac{\lambda_k}{v_D \, 4\,\pi\,c} \\ &\quad 37.673 \cdot 10^{10} \end{aligned}$$

see also KAPGAM(1), page 3

Hydrogen lines; if HY(k) = .TRUE.

GFLG(k) $\log K + 17$; see Traving, 1962, Ap. J., **135**, 439 DRRCA(k) n_l

ETAO(n,k)
$$\eta_0 = (2.603 \, e)^{3/2} \, gK \, 10^{\text{ZETAJ}(n,1)} \frac{1 - e^{-c_2/\lambda_k T}}{\kappa_{\text{ref}} + \sigma_{\text{ref}}} \frac{p_e}{kT} \, 10^{-\chi_k \Theta}$$

 $g = 2 n_l^2$

$$\mathbf{w} = \underbrace{\mathbf{w}'}_{l} + 2.4054 + 2\log n_l$$

see page 9; = -20.3015 + GFLG; GFLG = log K + 17
= -20.3015 + log K + 17 + 2 log n_l + 2.4054
= $\frac{3}{2}\log(2.603 e) + \log 2 - \log(k \cdot 5,040) + 2\log n_l + \log K$

Original write up contains a pretty mess trying to explain the numerical constants. Good luck! Try BHT or Traving, 1962, Ap. J., **135**, 439.

$$\mathsf{ETAO}(\mathbf{n}, \mathbf{k}) = \underbrace{\mathsf{ETAO}(\mathbf{n}, \mathbf{k})'}_{\text{see page 9; new w}} \Theta \, 10^{\log p_e}$$

 Set

RRCAO(k)	= 0
RRCAU(k)	= 0
DRRCA(k)	= 0 (but why?)
C4LG(k)	n_u
ANM	see BHT:

$$\texttt{ANM} = A_{nm} = 0.06479 \frac{\frac{n_u^3}{n_l^2} + \frac{n_l^3}{n_u^2}}{\sqrt{n_u^2 + n_l^2}}$$

ALPHA(n,k)
$$\alpha' = A_{nm}\sqrt{\Theta} \left(4.1007 - \log(\sqrt{p_e}n_u^2 \Theta^{3/2})\right)$$

= $A_{nm}\sqrt{\Theta}(4.1007 - \frac{1}{2}\log p_e - 2\log n_u - \frac{3}{2}\log\Theta)$

Main Program: Branch synthesis—line analysis Synthesis

MLAM	$\bar{\lambda} = \begin{cases} \frac{1}{2}(\lambda_{\text{end}} - \lambda_{\text{start}}) \\ \text{center of 1 Å wide subintervals for which} \\ F_{\lambda,c}, B_{\lambda,c}, \eta_{\lambda,c}, \text{ and } \sigma_{\lambda,c} \text{ are recalculated} \\ \text{in progress of synthesis} \end{cases}$	for $\lambda_{end} - \lambda_{start} \le 1 \text{ Å}$ else
FCLAM dl	$\begin{array}{ll} I_{\bar{\lambda},c} \mbox{ or } F_{\bar{\lambda},c}; &= \mbox{CONT(MLAM)} \\ \mbox{distance from } \lambda_{\rm start} \mbox{ in m} \mbox{\AA} \end{array}$	
LASCAN(m) RSCAN(m)	□ Do for whole synthesis interval $[\lambda_{\text{start}}, \lambda_{\text{end}}]$: wavelength array $[\text{Å}]$; = $\lambda_{\text{start}} + \text{dl}/1,000$ calculated spectrum; continuum normalized to 10,000: RSCAN(m) = 10,000 · FLUX(dl)/FCLAM	
	• Printout on terminal if ITV = 1	
	• dl = dl + DELLAM	
MMA	\Box when done: number of calculated points (LASCAN, RSCAN)	

- CALL PUTOUT(3): printout of line data
- CALL FALT: convolve spectrum and write/print spectrum
- GO TO READIN(2) (page 5): read new data

Line analysis

• first $FCLAM \qquad \begin{array}{c} \mathbf{F}_{\bar{\lambda},c} = \texttt{CONT} \\ \text{with} \end{array}$

MLAM

$$F_{ar{\lambda},c}= ext{CONT}(ext{MLAM})$$
 with $ext{MLAM}=ar{\lambda}=\sum_{k=1}^{ ext{KMA}}\lambda_k/ ext{KMA}$

Coarse analysis if BOA(3) = .TRUE.

1. reduce f value (and η_0) until flux at center of first blend line (λ_0) is less than flux 5 mÅ shortward of λ_0 , *i.e.*, no emission line.

Done with NEW(-1) (*i.e.*, reduce f value by a factor of 10; see subroutine NEW, page 17) until FLUX(0) \leq FLUX(-5).

2. repeat calling NEW(v) with $v = \Delta \log gf = \log \left(\frac{R_c}{r(0)} - 1\right)$ until

$$\begin{array}{lll} 0.1 \geq \log\left(\frac{F_{\bar{\lambda},c} - B(\texttt{NTMIN})}{F_{\bar{\lambda},c} - F_{\lambda_0}} - 1\right) & = & \log\left(\frac{1 - \frac{B}{F_{\bar{\lambda},c}}}{1 - \frac{F_{\lambda_0}}{F_{\bar{\lambda},c}}} - 1\right) \\ & = & \log\left(\frac{R_c}{r(0)} - 1\right) \end{array}$$

i.e.

 $R_c \sim r(0)$

then call NEW(UCG(WOBS)) to get new f value from observed equivalent width.

This procedure adjusts the abundance so that the abscissa of the universal curve of growth (function UCG), $\log C = \log g f \varepsilon + \text{const}$, equals 0. See also BHT eqn. 32 a,b.

Calculation of equivalent width

tion.

Start values

SINGLE = .TRUE.

dl = 0; line center [mÅ]

Set IT = 0, WCAL = 0, nit = 0. Profile is calculated at wavelength point dl initialized as

dl

$$\frac{\text{SINGLE} = .FALSE.}{\text{dl} = -5, -10, -20, -40, -80, -160...}$$
until

$$\mathsf{DEP}(\mathtt{dl}) = 1 - \frac{\mathsf{FLOX}(\mathtt{dl})}{F_{\bar{\lambda},c}} \le \mathsf{RMIN},$$

that is, start left from first blend line where absorption depth is less than RMIN.

 $ddl = 10 \text{ m}\text{\AA} = \Delta x \text{ [mÅ]}; \text{ start value}$ ddl = -dl/16for wavelength increment in integra-

ŝ

ddl

Half of profile is integrated.

Whole profile is integrated.

Integration

L
$$W_{\lambda} = \texttt{WCAL} = \int_{\texttt{dl}}^{\cdots} \texttt{DEP}(\texttt{dl}) d\texttt{dl}$$

WCAI

DEP(dl): absorption depth; see function DEP on page 17.

$$\begin{split} & \text{WCAL} = \int y(x) \, dx \\ & x_{v+n} = x_v + n \underbrace{\Delta x}_{\text{ddl}} \\ & y_{v+n} = \text{DEP}(x_{v+n}) \\ & = \text{DEP}(\text{dl} + n \, \Delta x) \\ & \text{WCAL} = \text{WCAL} + \frac{\Delta x}{3} \left(\frac{14}{15} y_v + \frac{64}{15} y_{v+1} + \frac{24}{15} y_{v+2} + \frac{64}{15} y_{v+3} + \frac{14}{15} y_{v+4} \right) \\ & x_v = x_v + 4 \, \Delta x \quad (\text{dl} = \text{dl} + 4 * \text{ddl}) \end{split}$$

4-step Simpson rule with automatic adjustment of increment Δx :

$$\Delta x = \begin{cases} 2 \Delta x & \text{if } d1 = x_v > -1 \\ 0.5 \Delta x & \text{if } |y_{v+4} - y_{v+2}| > 0.1 & \text{change of absorption} \\ & \text{or } |4 y_{v+3} - 4 y_{v+1}| > 0.4 & \text{depth too large; } > 0.1 \\ & \text{or } |y_{v+2} - y_v| > 0.1 & \\ & \text{and } \Delta x > 19 & \text{but keep minimum step} \\ & \text{at about } 10 \text{ mÅ} \end{cases}$$

Integration end

 $\begin{array}{ll} \mbox{ENDLAM} & 2\,\Delta\lambda_D + \mbox{DLK}(\mbox{KMA}) \\ & \mbox{Stop integration when } \mbox{dl} \geq \mbox{ENDLAM and } \mbox{DEP}(\mbox{dl} + \mbox{3} * \mbox{dd} \mbox{dd}) \leq \mbox{RMIN (see figure).} \\ & \mbox{If single line set } \mbox{WCAL} = 2 * \mbox{WCAL}. \end{array}$

Fine analysis if BOA(2) = .TRUE.

IT ITMA while $\mathtt{IT} \leq \underbrace{\mathtt{ITMA}}_{=9}$

and

$$\left|\log \frac{\text{WOBS}}{\text{WCAL}}\right| < 0.87 \cdot \underbrace{\text{DEL}}_{=0.001}$$
 :

Using subroutine ORDER, sort the first $\log gf$ which is not to be kept fixed (*i.e.*, BLEND(k) = .FALSE.) and the corresponding W_{cal} in arrays GFLGIT and WCLGIT, with increasing W_{cal} .

Calculation of $\Delta \log g f$

$1^{\rm st}$ Iteration	$\Delta \log g f = \text{UCG}(\text{WOBS}) - \text{UCG}(\text{WCAL});$	estimate for
	2nd f value	
$2^{nd} + n^{th}$ Iteration	Interpolate or extrapolate in GFLGIT for	log WOBS; lin-
	early if $IT = 2$ and quadratic for $IT > 2$.	. See function
	POL , page 18.	
Then call NEW ($\Delta \log g$	f) and repeat integration (page 14).	

End

when $\left|\log \frac{\text{WOBS}}{\text{WCAL}}\right| < 0.87 \cdot \text{DEL} \text{ or IT} > \text{ITMA:}$

Output of results and line data; if $\texttt{KCONTR} \ge 0$ depth dependent.

• GO TO READIN(2) (page 5): read new data

Subroutines and Functions

The following subroutines and functions are called from various places of the program sections listed above and not in the sequence as it appears here.

CONT(MLAM) (Function)

Calculates $B_{\bar{\lambda},c}(T)$, $\sigma_{\bar{\lambda},c}$, $\eta_{\bar{\lambda},c}$, $I_{\bar{\lambda},c}$ or $F_{\bar{\lambda},c}$ for all depth points.

MLAM REAL input $\bar{\lambda}$ [Å]

BLAM(n)

$$B_{\bar{\lambda},c} = \frac{2hc^2 \cdot 10^{40}}{\bar{\lambda}^5} \frac{1}{e^{\frac{\Theta}{\lambda}\frac{hc \cdot 10^8}{k \cdot 5040}} - 1}$$
$$= \frac{a}{\bar{\lambda}^5} \frac{1}{e^{b\Theta/\bar{\lambda}} - 1}$$

with

$$a = 1.1911 \cdot 10^{35}$$
 $b = 28,548$

SIGMAC(n) $\sigma_{\bar{\lambda},c}$; interpolated in ALSL(n,1) for $\bar{\lambda}$ (MLAM, parabolic).

ETAC(n)
$$= \eta_{\bar{\lambda},c} = \frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c}}{\underbrace{\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}}}_{\mathrm{ROPTOT}(n)}}$$

$$F_{\lambda} = \frac{1}{\pi} \mathcal{F}_{\lambda} = 4 H_{\lambda} \quad \left[\frac{\text{erg}}{\text{s} \cdot \text{cm}^2 \cdot \mathring{\text{A}}} \right]$$

NEW(DEPS) (Subroutine)

DEPS REAL input $\Delta \log g f$

Computes for all lines k with BLEND(k) = .FALSE.:

 $\begin{array}{rcl} 1) & \log gf & = & \log gf + \Delta \log gf \\ 2) & \operatorname{ETAO}(\mathbf{n},\mathbf{k}) & = & \operatorname{ETAO}(\mathbf{n},\mathbf{k}) \cdot 10^{\Delta \log gf} \end{array}$

DEP(DL) (Function)

Calculates absorption depth.

DL	REAL input λ					
LASCAN(m) RSCAN(m)	Looks in array LASCAN(1:MMA) for λ . If found return in DEP absorption depth from array RSCAN(1:MMA). If λ not there calculate absorption depth as					
MMA	$\texttt{RSCAN}(\texttt{m}) = 1 - \texttt{FLUX}(\lambda) / \texttt{FCLAM}$					
DEP	and sort results into arrays LASCAN(m) and RSCAN(m). Thus these arrays contain the line profile points sorted by wavelength. absorption depth obtained as described above					

ORDER(**X**,**Y**,**A**,**B**,**N**) (Subroutine)

Sorts table.

Х	REAL	input
Y	REAL	input
A(N)	REAL	modified
B(N)	REAL	modified
N	INTEGER	modified

Inserts function value y(x) into table $b_i(a_i)$ $(1 \le i \le n)$. Table size increased by 1, *i.e.*, N = N + 1.

UCG(W) (Function)

Universal Curve of Growth; see Hunger, 1956, Z. f. Astrophys. 39, 36.

W REAL input Equivalent width

$$\begin{aligned} R_c &= 1 - \frac{B_{\lambda}(\text{NTMIN})}{\text{FCLAM}} \\ \Omega &= \log \frac{\text{W}}{2 \, \Delta \lambda_D \, R_c} \end{aligned}$$

$$\mathsf{UCG} \qquad \qquad = \left\{ \begin{array}{ll} \Omega & \Omega < -1 \\ \Omega + \left[\Omega - \log(2\,\alpha(\mathsf{MT}, 1)\,)\right](\Omega + 1)\frac{2}{3} & -1 \leq \Omega < 0.5 \\ 2\,\Omega - \log(2\,\alpha(\mathsf{MT}, 1)\,) & \Omega \geq 0.5 \end{array} \right.$$

POL(X,A,B,MI,MA,L) (Function)

Inter- and extrapolation routine.

Х	REAL	input	place x to evaluate $b_i(a_i)$
A(1)	REAL	input	independent variable a_i
B(1)	REAL	input	dependent variable b_i
MI	INTEGER	input	lower i where function defined
MA	INTEGER	input	upper i where function defined
L	INTEGER	input	control parameter

POL
$$= \begin{cases} b_i(x) & \mathsf{MI} \le i \le \mathsf{MA} \\ \text{extrapolated} & \text{else} \end{cases}$$

Extrapolation is always linear. Interpolation controled by L:

- 1: linear interpolation
- 2 : linear, parabolic, hyperbolic interpolation: If MA - MI = 0, *i.e.*, two points only, linear interpolation. Else if *b* is monotonic in $[a_0, a_2]$ do hyperbolic interpolation:

$$b(x) = b(a_0) + (x - a_0)[b_0b_1] \left\{ 1 - (x - a_1) \frac{[b_0b_1b_2]}{[b_0b_2]} \right\}^{-1}$$

 $L = \langle$

$$b(x) = b(a_0) + (x - a_0) \{ [b_0 b_1] + (x - a_1) [b_0 b_1 b_2] \}$$

with

$$[b_i b_j] = \frac{b(a_i) - b(a_j)}{a_i - a_j}$$
$$[b_i b_j b_k] = \frac{[b_i b_j] - [b_j b_k]}{a_i - a_k}$$

else parabolic interpolation:

FLUX(DL) (Function)

Computes flux or intensity.

Controled by IFSCAT, IFSURF, IFSPHA, and CONTI (Function SUMETA).

DL REAL input Distance ([mÅ]) from line/synthesis center

• call SUMETA(n,DL,sumet2), controled by CONTI

BETA(n) Underlined terms taken only for line calculation, *i.e.* CONTI = .FALSE.. Also, $\lambda = \overline{\lambda}$ for continuum calculation.

with

$$\texttt{dum(n)} \qquad \qquad \sum_{i=1}^{\texttt{KMA}} \eta_i = \frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c} + \sum_{i=1}^{\texttt{KMA}} \kappa_{\lambda,l_i}}{\kappa_{\text{ref}} + \sigma_{\text{ref}}}$$

sc

$$\frac{\sigma_{\bar{\lambda},c}}{\kappa_{\rm ref}+\sigma_{\rm ref}}$$

sumet2
$$\frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c} + \sum_{k=1}^{\texttt{KMA}} \kappa_{\lambda,l_k}^* b_{u_k}}{\kappa_{\text{ref}} + \sigma_{\text{ref}}}$$

strue(n) \bar{S}_{λ} ; source function for true absorption, *i.e.*, without scattering term:

$$\bar{S}_{\lambda} = C \frac{1}{\frac{b_{l}}{b_{u}}e^{+c} - 1}$$

$$= C \frac{b_{u}}{b_{l}e^{+c} - b_{u}}$$

$$= C \frac{b_{u}}{\frac{b_{l}}{e^{-c}} - b_{u}}$$

$$= C \frac{b_{u}e^{-c}}{b_{l} - b_{u}e^{-c}}$$

$$\Rightarrow$$

$$B_{\lambda} = C \frac{e^{-c}}{1 - e^{-c}}$$

$$\Rightarrow$$

$$\frac{\bar{S}_{\lambda}}{B_{\lambda}} = \frac{b_{u}(1 - e^{-c})}{b_{l} - b_{u}e^{-c}}$$

with

$$\begin{split} \kappa &= C' \left(b_l - b_u e^{-c} \right) \\ \kappa^* &= C' \left(1 - e^{-c} \right) \\ \Rightarrow \\ \frac{\bar{S}_{\lambda}}{B_{\lambda}} &= \frac{b_u \kappa^*}{\kappa} \\ \bar{S}_{\lambda} &= \frac{b_u \kappa^*}{\kappa} B_{\lambda} \\ \Rightarrow \\ \text{strue}(n) &= \frac{\text{sumet} 2 - \text{sc}}{\text{dum}(n) - \text{sc}} \text{ BLAM}(n) \end{split}$$

$$\texttt{taulam(n)} \qquad \tau_\lambda(n) ~=~ \int \sum_{i=1}^{\texttt{KMA}} \eta_i(n) \, d\tau_{\text{ref}}$$

$$= \int_{\tau_1}^{\tau} \frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c} + \sum_{i=1}^{\text{KMA}} \kappa_{\lambda,l_i}}{\kappa_{\text{ref}} + \sigma_{\text{ref}}} d\tau_{\text{ref}}$$

with

$$au_1 = \sum_{i=1}^{ ext{KMA}} \eta_i(1) au_{ ext{ref}}(1) ext{ finite starting } au$$

Integration with subroutine INTEG by Kurucz, see page 36. $\tau_1=0$ after integration.

Scattering treated as true absorption (IFSCAT = 0)

SLAM(n)
$$S_{\lambda}(n) = (1 - \beta_{\lambda})\bar{S}_{\lambda} + \beta_{\lambda}B_{\lambda}(n)$$

For flux calculation (IFSURF = 1):

For spherical approximation set

$$S_{\lambda} = \left(\frac{R}{R_{\odot}}\right)^2 S_{\lambda}$$

Interpolate S_{λ} to fixed τ scale with subroutine MAP1 by Kurucz for pretabulated Φ operator in matrix form.

$$S_{\lambda}(\tau_{\lambda})_{1\dots$$
NMA} $\rightarrow S_{\lambda}'(\tau_{\lambda}')_{1\dots$ NXTAU}

NXTAU	Number of points	in fixed τ scale (43)
XTAU(1)	1NXTAU τ'_{λ} ; f	ixed τ scale for matrix operators, see also page 28.
xs(1)	1NXTAU S'_{λ} ;	S_{λ} interpolated to fixed τ scale τ'_{λ} .

Scattering treated correctly (IFSCAT = 1)

For spherical approximation in flux calculation set

$$\bar{S}_{\lambda} = \left(\frac{R}{R_{\odot}}\right)^2 \bar{S}_{\lambda}$$

 S_{λ} is calculated on fixed τ scale for integration matrices, which depend only on τ and $\Delta \tau$. For doing this, interpolate \bar{S}_{λ} and β_{λ} to fixed τ scale τ'_{λ} with subroutine MAP1 by Kurucz, see page 39.

$$\bar{S}_{\lambda}(\tau_{\lambda})_{1...\text{NMA}} \longrightarrow \bar{S}'_{\lambda}(\tau'_{\lambda})_{1...\text{NXTAU}}$$

$$\beta_{\lambda}(\tau_{\lambda})_{1...\text{NMA}} \longrightarrow \beta'_{\lambda}(\tau'_{\lambda})_{1...\text{NXTAU}}$$
(6)
(7)

NXTAUNumber of points in fixed τ scale (43)XTAU(1) $1 \dots$ NXTAU τ'_{λ} ; fixed τ scale for matrix operators, see also page 28.
Then calculate $S'_{\lambda}(\tau'_{\lambda})$ (see below) and do inverse transformation:

$$S_{\lambda}'(\tau_{\lambda}')_{1...\mathsf{NXTAU}} \longrightarrow S_{\lambda}(\tau_{\lambda})_{1...\mathsf{NMA}}$$

$$\tag{8}$$

(11)

Calculation of S_{λ}

We omit primes in the following, i.e., we write S_λ instead of S_λ' etc.

$$S_{\lambda} = (1 - \beta_{\lambda}) \,\bar{S}_{\lambda} + \beta_{\lambda} J_{\lambda} \tag{9}$$

with

$$\begin{array}{lll}
\bar{S}_{\lambda} & \text{Source function for true absorption} \\
\beta_{\lambda} &= \frac{\sigma_{\lambda}}{\kappa_{\lambda} + \sigma_{\lambda}} \\
1 - \beta_{\lambda} &= \frac{\kappa_{\lambda}}{\kappa_{\lambda} + \sigma_{\lambda}} \\
\kappa_{\lambda} &= \kappa_{\bar{\lambda},c} & \text{if continuum only} \\
&= \kappa_{\bar{\lambda},c} + \kappa_{\lambda,l} & \text{if lines included}
\end{array}$$

Substitute $J_{\lambda} = \Lambda S_{\lambda}$ in (9) \Rightarrow

$$S_{\lambda} = (1 - \beta_{\lambda})\bar{S}_{\lambda} + \beta_{\lambda}\Lambda S_{\lambda}$$

$$\vec{S} = (\mathbf{I} - \beta)\vec{S} + \beta\Lambda\vec{S} \quad \beta \text{ diagonal; } \mathbf{I}: \text{ unity matrix}$$

$$(\mathbf{I} - \beta\Lambda)\vec{S} = (\mathbf{I} - \beta)\vec{S} \qquad (10)$$

$$(\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) \vec{S} - (\mathbf{I} - \boldsymbol{\beta}) \vec{\tilde{S}} = 0$$

Use Gauß-Seidel iteration scheme to solve eqn. 11

Iteration j:

=

 \Rightarrow

$$\Delta^{j} = (\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) \vec{S}^{j+1} - (\mathbf{I} - \boldsymbol{\beta}) \vec{\tilde{S}}$$
(12)

(10) for
$$\vec{S}^{j} = \vec{S}^{j-1} + \Delta \vec{S}^{j}$$
: (13)

$$(\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda})(\vec{S}^{j-1} + \Delta \vec{S}^j) = (\mathbf{I} - \boldsymbol{\beta})\vec{S}$$
(14)

Substitute (14) for $(\mathbf{I} - \boldsymbol{\beta})\vec{\tilde{S}}$ in (12)

$$\Delta^{j} = (\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) \vec{S}^{j-1} - (\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) (\vec{S}^{j-1} + \Delta \vec{S}^{j})$$
(15)

$$= (\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) \left[\vec{S}^{j-1} - (\vec{S}^{j-1} + \Delta \vec{S}^j) \right]$$
(16)

$$-(\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda}) \Delta \vec{S}^{j} \tag{17}$$

$$\Delta \vec{S}^{j} = -(\mathbf{I} - \boldsymbol{\beta} \mathbf{\Lambda})^{-1} \Delta^{j}$$
(18)

$$(\mathbf{I}-\boldsymbol{\beta}\,\boldsymbol{\Lambda})$$
diagonal

$$(\mathbf{I} - \boldsymbol{\beta} \, \boldsymbol{\Lambda})^{-1} \simeq \frac{1}{1 - \beta_i \Lambda_{ii}} \tag{19}$$

(18) with (19)
$$\Rightarrow$$

$$\Delta \vec{S}^{j} = -\frac{\Delta^{j}}{1 - \beta_{i} \Lambda_{ii}} \tag{20}$$

$$= \frac{(\mathbf{I} - \boldsymbol{\beta})\vec{S} - (\mathbf{I} - \boldsymbol{\beta} \mathbf{\Lambda})\vec{S}^{j-1}}{1 - \beta_i \Lambda_{ii}}$$
(21)

Repeat calculating new $\Delta \vec{S}^{j}$ until

$$\left|\frac{\Delta \vec{S}^j}{\vec{S}^{j-1}}\right| \le 0.00001$$

in all depth points but do not more than 43 iterations (NXTAU, arbitrary choice).

In program start with

$$\vec{S}^0 = \vec{\bar{S}}$$

COEFJ(1,1)	Λ_{ii}	
diag(l)	$1\ldots$ NXTAU	$1 - \beta_i \Lambda_{ii}$
xbeta(l)	$1\ldots \texttt{NXTAU}$	$\boldsymbol{\beta}; \beta_{\lambda} \text{ on fixed } \tau \text{ scale } \tau_{\lambda}', \text{ i.e., } \beta_{\lambda}'.$
xblam(1)	$1\ldots$ NXTAU	$(\mathbf{I} - \boldsymbol{\beta}) \vec{S}$
xs(1)	1NXTAU	\vec{S}^{j-1}

 $\texttt{delxs}' = \mathbf{\Lambda} \vec{S}^{j-1} = \sum_{i=1}^{\texttt{NXTAU}} \Theta_{li} S_i; \text{ see below, page 27}$ (22)

if $\left|\frac{\text{delxs}}{\text{xs}}\right| > 0.00001$ set

xs = xs + delxs

and repeat from eqn. (22).

Finally, do inverse transformation:

 $S_{\lambda}'(\tau_{\lambda}')_{1\dots$ NXTAU} $ightarrow S_{\lambda}(\tau_{\lambda})_{1\dots$ NMA

The inverse transformation fails for $\tau_{\lambda} > 20 = \tau'_{\lambda}$ which means it ends for maxj < NMA. The asymptotic forms for Λ and Φ will be used in this region:

For maxj + 1 < NMA to NMA:

Start:
$$S_{\lambda}(\tau_{\lambda}) = \bar{S}_{\lambda}(\tau_{\lambda}) = S_{\lambda}^{\text{old}}$$

 $H_{\lambda} = \frac{1}{3} \frac{dS_{\lambda}}{d\tau_{\lambda}}$ Derivatives calculated with func-
 $I_{\lambda} = \frac{dH_{\lambda}}{d\tau_{\lambda}} + S_{\lambda}$ (23)
 $S_{\lambda}^{\text{new}} = (1 - \beta_{\lambda})\bar{S}_{\lambda} + \beta_{\lambda}J_{\lambda}$
 $S_{\lambda}(\tau_{\lambda}) = S_{\lambda}^{\text{new}}$

If $\sum_{\max j+1}^{\text{NMA}} \frac{|S^{\text{new}} - S^{\text{old}}|}{S^{\text{new}}} \ge 0.00001$ go to Start with $S_{\lambda} = S_{\lambda}^{\text{new}}$.

Matrix operators

See also Mihalas, page 156, first edition.

$$J = \Lambda S$$

= $M_1(\tau)$
= $J(\tau) = \Lambda S(\tau)$ (24)
$$M_1(\tau) = \frac{1}{2} \int_0^\infty S(t) E_1 |t - \tau| dt = M(\tau)$$

N subintervals, depth point $\tau_l :$

$$M(\tau_l) = M_l = \frac{1}{2} \sum_{j=1}^{N} \int_{\tau_j}^{\tau_{j+1}} S(t) E_1 |t - \tau_l| dt$$

Approximate S(t) in interval (τ_j, τ_{j+1}) by parabola through points S_j, S_{j+1} and determine coefficients C_{jki} from least squares fit including S_{j-1} and S_{j+2} (see page 29 [Kurucz]):

$$S_j(t) = \sum_{k=1}^{3} t^{k-1} \sum_{i=1}^{N} C_{jki} S_i$$

$$\Rightarrow M_{lj} = \frac{1}{2} \int_{\tau_j}^{\tau_{j+1}} dt E_1 |t - \tau_l| \sum_{k=1}^3 t^{k-1} \sum_{i=1}^N C_{jki} S_i$$
$$= \sum_{k=1}^3 \eta_{ljk} \sum_{i=1}^N C_{jki} S_i$$

with

$$\eta_{ljk} = \frac{1}{2} \int_{\tau_j}^{\tau_{j+1}} t^{k-1} E_1 |\tau_l - t| dt \quad \text{(calculation see page 30 [Kurucz])}$$

$$\Rightarrow \boxed{M_{l}} = \sum_{j=1}^{N} \sum_{k=1}^{3} \eta_{ljk} \sum_{i=1}^{N} C_{jki} S_{i}$$

$$= \sum_{j=1}^{N} \sum_{k=1}^{3} \sum_{i=1}^{N} \eta_{ljk} C_{jki} S_{i}$$

$$= \sum_{j=1}^{N} \sum_{k=1}^{3} \sum_{i=1}^{N} \eta_{lik} C_{ikj} S_{j}$$

$$= \left[\sum_{j=1}^{N} \Theta_{lj} S_{j}\right] = J(\tau_{l})$$
(25)

C1...C43 Θ_{lj}

 $\Rightarrow M_1(\tau) = \Theta S(\tau)$

 $\Rightarrow \Lambda = \Theta$ matrix operator

Since the matrix $\Lambda=\Theta$ is difficult to calculate it has been pretabulated with program <code>PRETAB</code> by Kurucz.

Lit: Kurucz, ATLAS5, *Smithsonian Astrophys. Obs. Special Report* **309**, pp. 17-18:

'Since the integration matrices are rather complicated to evaluate, they have been pretabulated for a fixed τ set, where the values of τ have been chosen to give accurate integrations. The program that does this, **PRETAB**, is listed in Section 9.2. The 43 points currently used are the following:

1	0	12	0.01	23	0.63	34	3.65
2	0.000032	13	0.016	24	0.78	35	4.15
3	0.000056	14	0.025	25	0.95	36	4.9
4	0.0001	15	0.042	26	1.15	37	6.1
5	0.00018	16	0.065	27	1.35	38	7.7
6	0.00032	17	0.096	28	1.6	39	10
7	0.00056	18	0.139	29	1.85	40	12.5
8	0.001	19	0.196	30	2.15	41	15
9	0.0018	20	0.273	31	2.45	42	17.5
10	0.0032	21	0.375	32	2.75	43	20
11	0.0056	22	0.5	33	3.15		

Note that since there are few points near the surface, integrals at monochromatic optical depths of 10^{-4} and less cannot be very reliable if the source function varies there. ...

Least-squares parabolic interpolation coeffcients (Kurucz)

$$\begin{split} D &= \tau_{j-1}^2 + \tau_{j+2}^2 - \tau_j \, \tau_{j-1} - \tau_j \, \tau_{j+1} - \tau_{j+1} \, \tau_{j-1} - \tau_{j+1} \, \tau_{j+2} + 2 \, \tau_j \, \tau_{j+1} \\ C_{j \, l \, l-1} &= \frac{\tau_j \, \tau_{j+1}}{D} \\ C_{j \, l \, j} &= \frac{\tau_{j+1} (-\tau_{j-1}^2 - \tau_{j+2}^2 + \tau_{j+1} \, \tau_{j-1} + \tau_{j+1} \, \tau_{j+2})}{(\tau_j - \tau_{j+1}) \, D} \\ C_{j \, l \, j+1} &= \frac{\tau_j (\tau_{j-1}^2 + \tau_{j+2}^2 - \tau_j, \tau_{j-1} - \tau_j \, \tau_{j+2})}{(\tau_j - \tau_{j+1}) \, D} \\ C_{j \, l \, j+2} &= \frac{\tau_j \, \tau_{j+1}}{D} \\ C_{j \, 2 \, j-1} &= \frac{-(\tau_j + \tau_{j+1})}{D} \\ C_{j \, 2 \, j} = \frac{\tau_{j-1}^2 - 2\tau_{j+1}^2 + \tau_{j+2}^2}{(\tau_j - \tau_{j+1}) \, D} \\ C_{j \, 2 \, j+1} &= \frac{-\tau_{j-1}^2 + 2\tau_j^2 - \tau_{j+2}^2}{(\tau_j - \tau_{j+1}) \, D} \\ C_{j \, 2 \, j+1} &= \frac{-\tau_{j-1}^2 + 2\tau_j^2 - \tau_{j+2}^2}{(\tau_j - \tau_{j+1}) \, D} \\ C_{j \, 2 \, j+2} &= \frac{-(\tau_j + \tau_{j+1})}{D} \\ \end{split}$$

Integration matrix

Quoted from Kurucz (here n = 1 for J_{λ} and n = 2 for flux):

$$\eta_{nljk} = \frac{1}{2} \operatorname{sign}(\tau_j - \tau_l)^{n-1} \int_{\tau_j}^{\tau_{j+1}} t^{k-1} E_n |\tau_l - t| \, dt$$

is an integral that can be evaluated analytically. To evaluate η_{nljk} , we use the indefinite integral

$$\int E_n(x) \, dx = -E_{n+1}(x)$$

and integrate by parts, obtaining

$$\eta_{nljk} = \frac{1}{2} \operatorname{sign}(\tau_j - \tau_l)^{n-1} \\ \left| \left(\tau_j^{k-1} E_{n+1} \left| \tau_l - \tau_j \right| - \tau_{j+1}^{k-1} E_{n+1} \left| \tau_l - \tau_{j+1} \right| \right) \right. \\ \left. + \left(k - 1 \right) \operatorname{sign}(\tau_j - \tau_l) \\ \left(\tau_j^{k-2} E_{n+2} \left| \tau_l - \tau_j \right| - \tau_{j+1}^{k-2} E_{n+2} \left| \tau_l - \tau_{j+1} \right| \right) \\ \left. + \left(k - 1 \right) \left(k - 2 \right) \\ \left(\tau_j^{k-3} E_{n+3} \left| \tau_l - \tau_j \right| - \tau_{j+1}^{k-3} E_{n+3} \left| \tau_l - \tau_{j+1} \right| \right) \right|.$$

$$(2.56)$$

We must evaluate η_{nljk} carefully when the τ 's are small because of two cases of numerical cancellation. First, for $|\tau_l - \tau_j|$ small, we write out the expression for η_{nljk} explicitly using the power-series expansion for the exponential integrals and grouping terms in such a way that no loss of accuracy occurs. The power series is

$$E_n(x) = \frac{(-x)^{n-1}}{(n-1)!} \left(-\log x - \gamma + \sum_{m=1}^{n-1} \frac{1}{m} \right) - \sum_{\substack{m=0\\m \neq n-1}}^{\infty} \frac{(-x)^m}{(m-n+1)\,m!},$$
(2.57)

where $\gamma = 0.577215664901533$ is Euler's constant. Second, for τ_j/τ_l small, we use the power-series expansion around τ_l and evaluate only those terms that do not cancel analytically. The expansion is

$$E_n(x-y) = E_n(x) + y E_{n-1}(x) + \frac{1}{2}y^2 E_{n-2}(x) + \dots + + \frac{y^{n-2}}{(n-2)!} E_2(x) + \frac{y^{n-1}}{(n-1)!} E_1(x) + + e^{-x} \sum_{m=0}^{\infty} \frac{y^{m+n}}{(m+n)!} \left[1 + \frac{m}{x} + \frac{m(m-1)}{x^2} + \dots + \frac{m!}{x^{m-1}} + \frac{m!}{x^m} \right]$$

For more information see program PRETAB or Mihalas, page 156, first edition.

Flux integration (IFSURF = 1)

$$H = \Phi S$$

= $M_2(\tau)$
= $H(\tau) = \Phi S(\tau)$
 $M_2(\tau) = \frac{1}{2} \int_0^\infty \operatorname{sign}(t - \tau) S(t) E_2 |t - \tau| dt$

Similar formulation as for $M_1(\tau)$ (page 27) yields:

$$M_2 = \sum_{j=1}^N \Theta_{lj}^* S_j$$

Surface flux: $\tau = 0 \stackrel{.}{=} l = 1$

$$\Rightarrow H_{\text{surface}} = \sum_{j=1}^{N} \Theta_{1j}^* S_j$$

Intensity integration (IFSURF = 2)

$$I(\mu) = \int_{0}^{\infty} S(\tau) e^{-\tau/\mu} \frac{d\tau}{\mu}$$

=
$$\sum_{i=1}^{N-1} \int_{\tau_{i}}^{\tau_{i+1}} S(\tau) e^{-\tau/\mu} \frac{d\tau}{\mu} + \int_{\tau_{N}}^{\infty} S(\tau) e^{-\tau/\mu} \frac{d\tau}{\mu} \quad \text{with } N = \text{number}$$
of depth points, NMA

Approximate $S(\tau)$ in interval (τ_i, τ_{i+1}) with weighted backward and forward parabolas (see PARCOE, page 37):

$$S_i = a_i + b_i \tau + c_i \tau^2$$

$$\begin{split} I(\mu) &= \sum_{i=1}^{N-1} \int_{\tau_i}^{\tau_{i+1}} e^{-\tau/\mu} \left(a_i + b_i \tau + c_i \tau^2 \right) \frac{d\tau}{\mu} + \int_{\tau_N}^{\infty} e^{-\tau/\mu} \left(a_i + b_i \tau + c_i \tau^2 \right) \frac{d\tau}{\mu} \\ &= \sum_{i=1}^{N-1} \left\{ -e^{-\tau/\mu} \left[a_i + b_i (\tau + \mu) + c_i \left((\tau + \mu)^2 + \mu^2 \right) \right] \right\}_{\tau_N}^{\tau_{i+1}} + \\ &\left\{ -e^{-\tau/\mu} \left[a_i + b_i (\tau + \mu) + c_i \left((\tau + \mu)^2 + \mu^2 \right) \right] \right\}_{\tau_N}^{\infty} \\ &= \sum_{i=1}^{N-1} \left\{ e^{-\tau_i/\mu} \left[a_i + b_i (\tau_i + \mu) + c_i \left((\tau_i + \mu)^2 + \mu^2 \right) \right] - \\ &e^{-\tau_{i+1}/\mu} \left[a_i + b_i (\tau_{i+1} + \mu) + c_i \left((\tau_{i+1} + \mu)^2 + \mu^2 \right) \right] \right\} + \\ &e^{-\tau_N/\mu} \left[a_N + b_N (\tau_N + \mu) + c_N \left((\tau_N + \mu)^2 + \mu^2 \right) \right] - 0 \end{split}$$

$$FLUX = \sum_{i=1}^{N-1} \left\{ e^{-\tau_i/\mu} [S_i + (\underbrace{b_i + 2c_i\tau_i}_{b2ct(n)})\mu + \underbrace{2c_i}_{ctwo(n)}\mu^2] - e^{-\tau_{i+1}/\mu} [S_{i+1} + (\underbrace{b_i + 2c_i\tau_{i+1}}_{b2ct1(n)})\mu + 2c_i\mu^2] \right\} + e^{-\tau_N/\mu} [S_N + (b_N + 2c_N\tau_N)\mu + 2c_N\mu^2]$$

Summation stops prematurely if $\frac{\tau_{i+1}}{\mu} > 70$. For small optical depths, *i.e.* $\Delta = \frac{\tau_{i+1}}{\mu} - \frac{\tau_i}{\mu} \le 0.03$:

$$\int_{\tau_i}^{\tau_{i+1}} S(\tau) e^{-\tau/\mu} \frac{d\tau}{\mu} = e^{-\tau_{i+1}/\mu} \left\{ S_i \Delta + [S_i + (b_i + 2c_i \tau_i)\mu] \frac{\Delta^2}{2} + [S_i + (b_i + 2c_i \tau_i)\mu + 2c_i \mu^2] \sum_{n=3}^m \frac{\Delta^n}{n!} \right\}$$
(26)

with

 Δ

$$m = \begin{cases} 4 & \text{if } \Delta \le 0.001 \\ 9 & \text{if } 0.001 < \Delta \le 0.03 \end{cases}$$

d ddddd

help variable used in recursive expansion of eqn. (26):

$$\begin{cases} 1 & \text{if } \Delta \le 0.001\\ \frac{\sum_{n=4}^{9} \Delta^{n}}{\Delta^{4}/24} & \text{if } 0.001 < \Delta \le 0.03 \end{cases}$$

Calculation of contributions from individual layers to emergent flux/intensity

Done if $\texttt{KCONTR} \ge 0$ and either continuum calculation or at center of desired line

ch
$$\mu = \begin{cases} \cos \vartheta & \text{if } I_{\lambda}(\mu) \\ \frac{2}{3} & \text{if } F_{\lambda} \end{cases}$$

 $1\ldots$ NMA

 $\sum^{\rm NMA} a_i$

a(n)

$$a_{i} = \begin{cases} \frac{1}{2} (S_{i} e^{-\tau_{i}/\mu} + S_{i+1} e^{-\tau_{i-1}/\mu}) (\frac{\tau_{i}}{\mu} - \frac{\tau_{i-1}}{\mu}) & \text{if } \frac{\tau_{i}}{\mu} \text{ or } \frac{\tau_{i-1}}{\mu} \le 87\\ 0 & \text{else} \end{cases}$$

f

SUMETA(N,DL,SUMET2) (Function)

Calculates $\sum \eta$.

N	INTEGER	input	Depth point
DL	REAL	input	Distance [mÅ] from line/synthesis center
SUMET2	REAL	output	see below

LINLTE

For continuum calculation (CONTI = .TRUE.):

SUMETA	$= \texttt{ETAC}(N) = \eta_c = \frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c}}{\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}}}$
SUMET2	with η_c calculated beforehand in Function CONT. = SUMETA
dlam	In line calculations (CONTI = .FALSE.): $\Delta \lambda$ Distance from line center of blend line k:
	$= DL - DLK(\mathbf{k}) / 1,000 \ [\text{\AA}]$
	$\kappa_l = C b_l \left(1 - \frac{b_u}{b_l} e^{c'} \right)$ $= C \left(b_l - b_u e^{c'} \right)$
	\Rightarrow
	$\kappa_{l}^{*} = C\left(1 - e^{c'}\right)$
	\Rightarrow
	$\frac{\kappa_l}{\kappa_l^*} = \frac{b_l - b_u e^{c'}}{1 - e^{c'}}$
	\Rightarrow
SUMETA	$= \eta_c + \sum_{k=1}^{\text{KMA}} \eta_{0,k}^* \Phi \frac{b_{l_k} - b_{u_k} e^{-h\nu_k/kT}}{1 - e^{-h\nu_k/kT}}$
	$= \frac{\kappa_{\bar{\lambda},c} + \sigma_{\bar{\lambda},c} + \sum_{i=1}^{KMA} \kappa_{\lambda,l_i}}{\kappa_{\mathrm{ref}} + \sigma_{\mathrm{ref}}} \text{for depth point } N$

with

$$\Phi = \begin{cases} H(\alpha_k, \frac{\Delta\lambda}{\lambda_k} \underbrace{v_D}) & \text{Metal lines} \\ & \\ \text{VDOP}(\mathsf{N}, \mathsf{KJ}(\texttt{k})) \\ & \\ \text{PROFHY}(\alpha_k, \Delta\lambda, \mathsf{N}, \texttt{k}) & \text{Hydrogen lines} \end{cases}$$

SUMET2
$$= \eta_c + \sum_{k=1}^{\texttt{KMA}} \eta_{0,k}^* \Phi b_{u_k}$$

PROFHY(R,D,N,K) (Function)

Profile for Hydrogen lines.

R	REAL	input	α ; damping constant
D	REAL	input	$\Delta \lambda$; distance [mÅ] from line/synthesis center
Ν	INTEGER	input	Depth point
К	INTEGER	input	Line number in blend

dld

 $\Delta \lambda_D = v_D \, \lambda_k (\text{VDOP}(\mathsf{N,1}) * \text{LAMK}(\mathsf{K}))$

$$\mathsf{PROFHY} \qquad = \left\{ \begin{array}{l} \frac{1}{17.7245} \left(\mathsf{ASH}(\mathsf{R}, \Delta\lambda, \mathsf{N}, \mathsf{K}) + \\ \left[\sum_{i=1}^{25} \mathsf{ASH}(\mathsf{R}, \Delta\lambda + i \cdot 0.1\Delta\lambda_D, \mathsf{N}, \mathsf{K}) + \\ \mathsf{ASH}(\mathsf{R}, \Delta\lambda - i \cdot 0.1\Delta\lambda_D, \mathsf{N}, \mathsf{K}) e^{-\frac{i \cdot 0.1\Delta\lambda_D^2}{\Delta\lambda_D^2}} \right] \right) \\ \mathsf{ASH}(\mathsf{R}, \mathsf{D}, \mathsf{N}, \mathsf{K}) \qquad \qquad \Delta\lambda \ge 5 \Delta\lambda_D \end{array} \right\}$$

ASH(R,D,N,K) (Function)

Asymptotic form of Hydrogen line profile for line wings

R	REAL	input	α ; damping constant
D	REAL	input	$\Delta \lambda$; distance [mÅ] from line/synthesis center
N	INTEGER	input	Depth point
K	INTEGER	input	Line number in blend

ASH
$$= \frac{1 + R^* \sqrt{\Delta} \lambda + \frac{C_e}{C_H} \frac{p_H}{p_e}}{\Delta \lambda^{5/2}}$$
 following Griem; see BHT

$$\left(\frac{1}{R^*\sqrt{\Delta}\lambda}\right)^4 = 1 + \left(\frac{1}{R\sqrt{\Delta}\lambda}\right)^4$$

LINLTE

INTEG(X,F,FINT,N,START) (Subroutine)

Integration routine (Kurucz).

X(1) E(1)	REAL	input	independent variable
FINT(1)	REAL	output	integral
N START	INTEGER REAL	input input	number of points start value; added to integral

'Simple integrals like (2.44) are performed by fitting parabolas to the integrand for each depth interval in the atmosphere, as follows:

$$\begin{split} \int_0^{x_N} f(x) \, dx &= \sum \int_{x_j}^{x_{j+1}} f(x) \, dx \\ &= \sum \int_{x_j}^{x_{j+1}} (a_j + b_j x + c_j x^2) \, dx \\ &= \sum \left[a_j (x_{j+1} - x_j) + \frac{b_j (x_{j+1}^2 - x_j^2)}{2} + \frac{c_j (x_{j+1}^3 - x_j^3)}{3} \right] \\ &= \sum \left[a_j + \frac{b_j (x_{j+1} + x_j)}{2} + \frac{c_j (x_{j+1}^2 + x_{j+1} x_j + x_j^2)}{3} \right] (x_{j+1} - x_j) \end{split}$$

Calls PARCOE to determine the interpolation coefficients a_j , b_j , and c_j .

PARCOE(F,X,A,B,C,N) Subroutine

Computes parabola coefficients.

F(1)	REAL	input	function to fit
X(1)	REAL	input	independent variable
A(1)	REAL	output	fit coefficient
B(1)	REAL	output	fit coefficient
C(1)	REAL	output	fit coefficient
N	INTEGER	input	number of points

'In ATLAS, the interpolation coefficients a_j , b_j , and c_j are determined by weighting forward and backward parabolas inversely by their second derivatives, as shown in the following diagram:

This weighting avoids large overshoots, which are a problem with simple parabolic interpolation. The unweighted parabolas are given by the expressions

$$c_{j} = \frac{f_{j+1}}{(x_{j+1} - x_{j})(x_{j+1} - x_{j-1})} - \frac{f_{j}}{(x_{j} - x_{j-1})(x_{j+1} - x_{j})} + \frac{f_{j-1}}{(x_{j} - x_{j-1})(x_{j+1} - x_{j-1})},$$

$$b_{j} = \frac{f_{j} - f_{j-1}}{x_{j} - x_{j-1}} - (x_{j} + x_{j-1})c_{j},$$

and

and

$$a_j = f_{j-1} - x_{j-1} \frac{f_j - f_{j-1}}{x_j - x_{j-1}} + x_j x_{j-1} c_j.$$

The weight is

$$w_j = \frac{|c_{j+1}|}{|c_{j+1}| + |c_j|},$$

so the weighted mean parabola is

$$\bar{a}_j = w_j a_j + (1 - w_j) a_{j+1} \bar{b}_j = w_j b_j + (1 - w_j) b_{j+1} \bar{c}_j = w_j c_j + (1 - w_j) c_{j+1}$$

MAP1(XOLD,FOLD,NOLD,XNEW,FNEW) Function

Parabolic interpolation for entire vector. Same formalism as PARCOE.

XOLD(1)	REAL	input	independent variable
FOLD(1)	REAL	input	function to interpolate
NOLD	INTEGER	input	number of points
XNEW(1)	REAL	input	independent variable to interpolate
FNEW(1)	REAL	output	interpolated function

MAP1 number of points needed for inverse interpolation

DERIV(X,F,DFDX,N) Subroutine

Computes derivatives. Used only for calculation of S_{λ} in large optical depths.

X(1)	REAL	input	independent variable
F(1)	REAL	input	function values
DFDX(1)	REAL	output	derivatives at $X(i)$
N	INTEGER	input	number of points

Code taken from Kurucz:

'Derivatives are taken by bisecting the angles formed by the extension of the line segments as shown in the following diagram:

LINLTE

The result is

$$\left(\frac{df}{dx}\right)_j = \frac{S\left(T_{j+1} + T_j\right)}{1 - T_{j+1}T_j},$$

where

$$T_j = \frac{D_j}{1 + \sqrt{1 + D_j^2}},$$

with

$$D_j = \frac{1}{S} \frac{f_j - f_{j-1}}{x_j - x_{j-1}},$$

and where

$$S = \frac{\max\left(|f_{j-1}|, |f_j|, |f_{j+1}|\right)}{|x_j|}$$

The scaling factor S converts f and x to the same magnitude.

Index

ASH, 35 FLUX, 32 POL, 18 PROFHY, 35 **SUMET2, 35** SUMETA, 34 UCG, 18 ABUI(I), 2 ABUK(k), 7 ALGK(N), 2 ALGS(N), 2ALKL(N,L), 2 ALPHA(n,k), 11, 12 ALSL(N,L), 2 ANFLAM, 6 ANM, 12 BETA(n), 20BLAM(n), 16 BLEND(k), 6 C1...C43, 27 C4LG(k), 7, 9, 12 CHIJ(J), 2CHIK(k), 7 COEFH(1,1), 31 COEFJ(1,1), 25 CONTI, 6 CONTRC(n), 33 CONTRL(n), 33 COSTHE, 6 DEL, 3 DELLAM, 6, 7 DIO(k), 7 DIU(k), 7 DLDOP, 8 DLK(k), 7, 8 DLOGC4, 6 DLOGC6, 6 DLOGGR, 6 DRRCA(k), 7, 9, 11, 12 ENDLAM, 6, 8, 15 ETAO(n,k), 8, 11

ETAC(n), 16 FCLAM, 8, 12, 13 GFLG(k), 7, 11 GLOG, 2 HE, 3 HY(k), 7 IFABS, 6 IFATM, 2, 3 IFDEP, 2, 3 IFNLTE, 5 IFSCAT, 5 IFSPHA, 5 IFSURF, 5 IMA, 2 ISYN, 6 IT, 15 ITMA, 3, 15 ITV, 6 JMA, 2 KCONTR, 6 KJ(k), 7 KMA, 6 LAMK(k), 7 LASCAN(m), 12, 17 LMA, 2 LO(k), 7 LOW(k), 7 LU(k), 7 MLAM, 6, 8, 12 MMA, 12, 17 MT, 3 MULT(k), 6 NAMI(I), 2NAMIJ(I), 2NAMJ(J), 2 NAMK(k), 6 NMA, 2 NTMIN, 3 NXTAU, 22, 23 OLAM(L), 2PELG(N), 2

42

PGLG(N), 2 PHLG(n), 5 R(N), 2 RAD(k), 7, 11 REFLAM, 2 RMIN, 3 ROPTOT(N), 2 RRCA, 9 RRCAO(k), 9, 12 RRCAU(k), 9, 12 RSCAN(m), 12, 17 RSU, 2 RTAU(N), 2 SIGMAC(n), 16 SINGLE, 6 SLAM(n), 22 TAULAC(n), 33 TEFF, 2 THETA(N), 2 UP(k), 7 VDOP(n,j), 4 WCAL, 14 WLIM, 6 WNOTE(k), 7 WOBS, 7 WTI(I), 2 WTJ(J), 2 XI(N), 2XTAU(1), 22, 23 ZETAJ(N,J), 2 DEP, 17 FLUX, 31 MAP1, 39 SUMET2, 34 a(n), 33 c4fak, 10 ch, 33 d, 33 ddddd, 33 ddl, 14 diag(1), 25 dl, 12, 14 dlam, 34 dld, 35

dum(n), 20 eldplg(n), 5 f, 33 ia, 6 ijma, 2 lowk, 7 new_abu, 6 sc, 20 strue(n), 21 sumet2, 20 taum, 3 upk, 7 vdwlg(n), 4 xbeta(1), 25 xblam(1), 25 xs(1), 22, 25 A(1), 18, 37 A(N), 17 B(1), 18, 37 B(N), 17 C(1), 37 CONT, 17 DEPS, 17 DFDX(1), 39 DL, 17, 19, 34 D, 35 F(1), 36, 37, 39 FINT(1), 36 FNEW(1), 39 FOLD(1), 39 K, 35 L, 18 MA, 18 MI, 18 MLAM, 16 NOLD, 39 N, 17, 34--37, 39 R, 35 START, 36 SUMET2, 34 W, 18 X(1), 36, 37, 39 XNEW(1), 39 XOLD(1), 39

X, 17, 18 Y, 17 BOA(1), 6 BOA(2), 6 BOA(3), 6 BOA(4), 6 C6LG(k), 9 delxs, 25 taulam(n), 21

ow of Pro	gram and	l Formu	lae														
READIN(1)		• • •	• • • •			• •	• •	•••	• •	•••	• •		·	•	• •	·
PUTOUT	(1)		• • • •				• •		•••		• •			·	•		•
KAPGAN	1(1)		• • • •				• •		•••		•••	• •	• •	•	•		•
READIN((2)		• • • •								• •			•			
Com	mands .																
Line	data																
Spec	trum syntł	nesis															
Line	analysis																
LINLTE																	
KAPGAM	I(2)																
Meta	l lines .																
Hydi	ogen lines																
LINLTE																	
Synt	hesis																
Line	analysis																
	Coarse a	analysis															
	Calculat	tion of ea	uivaler	nt wid	th		• •	•••	•••	•••	• •	• •	• •	•	•	•••	•
	Fine and	alvsis	urvarer	10 1010			•••	• •	•••	•••	•••	• •	• •	•	•	•••	·
ibroutines CONT(M	and Fun LAM)	\mathbf{ctions}	•••														
ibroutines CONT(M	and Fun LAM)	$ ext{ctions}$															
ibroutines CONT(M NEW(DE	and Fun LAM) PS)	$ ext{ctions}$	••••	••••			 	 	 	 	 	 	•••				•
ibroutines CONT(M NEW(DE DEP(DL)	and Fun LAM) PS)	ctions	· · · ·	• • • • •	· · ·	 	 	· · · ·	 	 	 	 	 	•		 	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCC(W)	and Fun LAM) PS) X,Y,A,B,N	ctions	· · · · ·	· · · · ·	· · · ·	· · · ·	· · · · ·	· · · ·	· · · ·	· · · ·	· · · ·	 	 			 	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W)	and Fun LAM) PS) X,Y,A,B,N	ctions		· · · · ·	· · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	 	· · · · · ·	 			 	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A	and Fun LAM) PS) X,Y,A,B,N 	$\begin{array}{c} \textbf{ctions} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$		· · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		•	 	
CONT(M NEW(DE DEP(DL) ORDER(X UCG(W) POL(X,A FLUX(DI	and Fun LAM) PS) X,Y,A,B,N B,MI,MA,	$\begin{array}{c} {\bf ctions} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot &$		· · · · ·	· · · ·	· · · ·	· · · · · · · · ·	· · · · · · · · ·	 . .<	· · · · · · · · · · ·	 . .<	· · · · · ·	 		• • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · ·
ibroutines CONT(M NEW(DE DEP(DL) ORDER(X UCG(W) POL(X,A FLUX(DI Scat	(and Fun LAM) PS) X,Y,A,B,N , B,MI,MA, , tering treat	$\begin{array}{c} \textbf{ctions} \\ \vdots \\ $	e abso		· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	 . .<	 . .<	 . .<	· · · · · · · · · · · ·	· · · · · · · · · · · ·		•	· · ·	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, .) tering treat	ctions	e abso	rption	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · SCAT	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	 . .<	 . .<	 . .<	· · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · ·	•	· · · · · · · · ·	• • • • • • •
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat	and Fun LAM) PS) X,Y,A,B,N ,B,MI,MA,) tering treat calculat	$\begin{array}{c} \textbf{ctions} \\ \vdots \\ $	e abso	rption FSCAT	(IFS) = 1	· · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · D) ·	 . .<	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · ·	• • • • • • •	· · · · · · · · ·	· · · · · · · · ·
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b) tering treat calculat Matrix o	$\begin{array}{c} \textbf{ctions} \\ \vdots \\ $	te abso	rption	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · = (· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · ·	• • • • • • •	· · · · · · · · · · · ·	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(1 UCG(W) POL(X,A FLUX(DI Scat Scat	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b, tering treat tering treat Calculat Matrix o integratio	$\begin{array}{c} \textbf{ctions} \\ \vdots \\ $	e abso ctly (II F = 1)	rption FSCAT		 SCAT) 	· · · · · · · · · · · · = (· ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · ·	• • • • • • •	· · · · · · · · · · · ·	••••••••••
ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b, B,MI,MA, c) Calculat Matrix of integration	$\begin{array}{c} \textbf{ctions} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	the abso ctly (II F = 1) SURF =			· · · · · · · · · · · · · · · · · · ·	· ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · ·	•	· · · · · · · · · · · · · · · · · ·	
ibroutines CONT(M NEW(DE DEP(DL) ORDER(I UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, a) B,MI,MA, bering treat calculat Matrix of integration integration	$\begin{array}{c} \textbf{ctions} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	the abso ctly (IF F = 1) SURF = ions from		(IFS 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(I UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c) B,MI,MA, c)	$\begin{array}{c} \textbf{ctions} \\ \dots \\ $	the abso ctly (II F = 1) SURF =		(15)			 	· · · · · ·	· ·	 	· · · · · · · · · · · · · · · · · · ·	· ·			· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(I UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA PROFHY	and Fun LAM) PS) K,Y,A,B,N B,MI,MA,) B,MI,MA,) tering treat Calculat Matrix of integration sity integr ulation of of (N,DL,SUN (R,D,N,K)	$\begin{array}{c} \textbf{ctions} \\ \vdots \\ $	te abso ctly (II F = 1) SURF =		(IF_{1})			· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· ·	· · · · · · · · · · · · · · · · · · ·	· ·	· ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(I UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA PROFHY ASH(R,D	and Fun LAM) PS) K,Y,A,B,N B,MI,MA,) B,MI,MA,) B,MI,MA, (b, B,MI,MA, (c, Calculat Matrix (c) integration nsity integr ulation of (c) (N,DL,SUN (R,D,N,K) , N,K)	ctions \ldots \ldots \ldots $)$ \ldots \ldots \ldots $)$ \ldots \ldots \ldots \vdots \ldots \ldots \ldots ted as true ted correction of S_{λ} operators in (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI ration (IFSURI) \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	e abso ctly (II F = 1) SURF =						· · · · · ·	· · · · · ·	 	· · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(1 UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA PROFHY ASH(R,D INTEG(X	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b, B,MI,MA, calculate tering treat Calculate Matrix of integration integration integration sity integr ulation of of (R,D,N,K) N,K) F,FINT,N	ctions ctions (1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	e abso ctly (II F = 1) SURF = ions fro		(IFS = 1)	SCAT 		 	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA PROFHY ASH(R,D INTEG(X PARCOE	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b, B,MI,MA, calculate tering treat Calculate Matrix of integration integration integration sity integr ulation of of (N,DL,SUN (R,D,N,K) .,F,FINT,N (F,X,A,B,O	ctions ctions (1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	the abso totly (II F = 1) SURF = ions fro			SCAT))) 	 	 	· ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Ibroutines CONT(M NEW(DE DEP(DL) ORDER(2 UCG(W) POL(X,A FLUX(DI Scat Scat Flux Inter Calc SUMETA PROFHY ASH(R,D INTEG(X PARCOE MAP1(XC	and Fun LAM) PS) X,Y,A,B,N B,MI,MA, b, B,MI,MA, calculat tering treat Calculat Matrix of integration sity integr ulation of of (N,DL,SUN (R,D,N,K) .,F,FINT,N (F,X,A,B,C DLD,FOLD	ctions (1, 2, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 2, 3) (1, 3	the abso totly (II F = 1) SURF = ions fro	rption FSCAT	(IFS = 1)		 	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	 			· · · · · · · · · · · · · · · · · · ·	