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ABSTRACT

Context. Spectral synthesis calculations based on three-dimensional stellar atmosphere models are limited by the affordable angular
resolution of the radiation field. This hampers an accurate treatment of rotational line broadening.
Aims. We aim to find a treatment of rotational broadening of a spherical star when the radiation field is only available at a modest
number of limb-angles.
Methods. We apply a combination of analytical considerations of the line-broadening process and numerical tests.
Results. We obtain a method which is closely related to classical flux convolution and which performs noticeably better than a
previously suggested procedure. It can be applied to rigid as well as differential rotation.
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1. Introduction

Spectral synthesis calculations based on time-series of three-
dimensional (3D) background structures from hydrodynamical
model atmospheres are computationally demanding and pose
limits on the affordable resolution for representing the an-
gular dependence of the radiation field. In such calculations,
the number of employed azimuthal directions typically ranges
from four to eight, the number of inclined directions represent-
ing the center-to-limb variation being between three and five.
Obviously, the resolution is not high, and in particular makes
an accurate implementation of rotational line broadening some-
what difficult. To our knowledge, the only published method
handling rotational broadening in the 3D case is that of Dravins
& Nordlund (1990). Here, we describe an alternative procedure
which provides higher accuracy at similar computational com-
plexity. It is closely related to standard flux convolution (e.g.,
Gray 1992). Its development was motivated by the demand for
an accurate description of the rotational broadening of spectral
lines in the solar spectrum (Caffau et al. 2007).

2. The problem and basic assumptions

For the moment, we neglect differential rotation, and treat the
star as spherical and rigidly rotating. Local-box hydrodynami-
cal model atmospheres provide a statistical realization ofa small
patch of the surface flow pattern. Formally, we want to obtain
an estimate of the expectation value of a rotationally broadened,
disk-integrated line profile. Rotational symmetry with respect to
the stellar disk center implies that there is no azimuthal depen-
dence of the radiation field. All we need to know for evaluating
the disk-integrated rotationally broadened line profile are tempo-
ral and azimuthal averages of the emergent radiation intensity of
the local model as a function of asterocentric angleϑ. Hence, the
problem is equivalent to the rotational line broadening problem
in standard, plane-parallel model atmospheres.
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Fig. 1. Illustration of the apparent radial velocity distributionon
a stellar disk for solid body rotation: vertical lines of constant
radial velocity are labeled by their velocity in units ofV sin(i).
They lie parallel to rotational pole – disk center direction. For
further explanations see text.

3. The method of Dravins & Nordlund

We start by describing the procedure of Dravins & Nordlund
(1990, section 2.1) who model rotational broadening as a super-
position of line profiles at variousµ ≡ cos(ϑ), broadened by the
velocity field along circlesµ = const around the stellar disk cen-
ter. We refer to one of these circles as “µ-circle” (see Fig. 1).
The broadening effect of the projected rotational velocity along
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a µ-circle located atµ = µm can be expressed as a convolution
according to

Ĩ (v, µm) =
1
π

∫

+ṽ

−ṽ
dξ

I (v− ξ, µm)
√

ṽ2 − ξ2
(1)

where we expressed the wavelength-dependence of the intensity
I (λ, µm) in the line in terms of the Doppler speedv, I (v, µm). Ĩ is
the intensity in the line profile broadened under the action of the
radial velocity along the consideredµ-circle. ṽ is the maximum
projected rotational velocity atµm given by

ṽ(µm) = V sin(i)
√

1− µ2
m. (2)

V sin(i) is the usual projected rotational velocity of the star as
a whole. An obvious feature of the convolution expressed by
Eq. (1) is the singularity of the integrand atξ = ±ṽ, i.e., the
presence of sharp spikes. One might already suspect at this point
that their presence will be apparent in the fully disk-integrated
profile. Numerically, one can handle the singularities by analyti-
cally integrating the expression over each resolution element as-
suming a certain functional dependence ofI (v) within them, and
summing over all contributions in the interval [−ṽ,+ṽ]. We as-
sumed a constant behavior ofI in each resolution element so
that the integral of the kernel function over a resolution element
stretching over an interval

[

ξ1, ξ2
]

can be conveniently expressed
as
∫ ξ2

ξ1

dξ
√

ṽ2 − ξ2
= arcsin

(

ξ2

ṽ

)

− arcsin
(

ξ1

ṽ

)

. (3)

The disk-integrated, rotationally-broadened flux profileF̃(v) is
obtained by integrating̃I over the disk according to the standard
relation

F̃(v) = 2π
∫ 1

0
dµ µĨ (v, µ) ≃ 2π

Nµ
∑

m=1

wmĨ (v, µm). (4)

The second approximate equality is the discrete approximation
to the integral employing a total number ofNµ limb-angles of
weightwm at positionsµm.

The original implementation of Dravins & Nordlund did not
use a formulation as convolution but a discrete integrationover
µ-circles using polar coordinates. While mathematically equiva-
lent to Eq. (1), it somewhat obscures the critical role of themost
extreme velocities on aµ-circle for the smoothness of the rota-
tionally broadened spectrum.

Figure 2 illustrates the result of a test of Dravins &
Nordlund’s procedure. We broadened an artificial Gaussian line
profile with a rotational speedV sin(i) of three times the line’s
Doppler width. The rotational speed was chosen to be particu-
larly critical. Effects of smaller rotational velocities become less
pronounced due to the smoothing by the Gaussian line profile,
at larger rotational speeds deviations are less conspicuous since
less localized. For the test case we assumed that the relative line
shape is independent ofµ, and that the intensity in the continuum
follows a linear limb-darkening law with a limb-darkening coef-
ficient of 0.6. Hence, standard flux convolution can be applied to
obtain theexactdisk-integrated line profile. Figure 2 shows the
convergence of the numerical approximation towards the exact
result with an increasing total number of limb-anglesNµ. As ev-
ident in the figure, noticeable deviations between the exactand
the numerical result are present up to and includingNµ = 3.
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Fig. 2. Rotationally broadened line profiles (solid lines) for dif-
ferent total numbers of asterocentric anglesNµ employing the
broadening procedure of Dravins & Nordlund in comparison
to the exact profile (diamonds). For clarity, the broadened line
profiles have been vertically offset. Wavelengths are given as
Doppler velocities in units of the width of the Gaussian non-
broadened profile (dash-dotted line).

4. An improved method

The major reason for the “wiggly” behavior of the broadened
line profile shown in Fig. 2 are the pronounced spikes in the
integrand in Eq. (1). One can reduce their impact by associating
a given I (µ) not only with an infinitely thinµ-circle but with
a µ-ring (see Fig. 1) of finite extent. The contributioñF(µ) to
the rotationally broadened flux profile stemming from the stellar
disk area subtended byµ ∈

[

µm, 1
]

is given by the convolution

F̃(v, µm) =
2

V2 sin2(i)

∫

+ṽ

−ṽ
dξ I (v− ξ, µ0)

√

ṽ2 − ξ2. (5)

ṽ is again given by relation (2). Here, we assume that the inten-
sity profile is constant within

[

µm, 1
]

represented by the intensity
at µ = µ0 – presumably but not necessarily lying in the interval
[

µm, 1
]

. Note, that relation (5) takes into account the surface area
corresponding to the interval

[

µm, 1
]

. Its result is a flux-like inte-
gral, different from the result of relation (1) which expresses an
average intensity since the kernel function is normalized to one.
A µ-ring extending over the interval

[

µm, µm+1
]

can be obtained
by subtracting contributions

[

µm+1, 1
]

from the contribution of
[

µm, 1
]

(assumingµm+1 > µm) keeping the same intensity atµ0.
One can build up the whole visible stellar disk by a number ofµ-
rings. Their surface area is reflecting the integration weight wm

in Eq. (4). As stated before, in eachindividual ring the intensity
is assumed to beµ-independent.

Figure 3 illustrates the outcome of this procedure. A com-
parison with Fig. 2 shows a more rapid convergence towards the
exact result. The improvement is related to the fact that thenew
method can at least handle exactly the simple case of a globally
µ-independent intensity which is not the case for the method of
Dravins & Nordlund. One could further refine it by introducing
an analytical expression for theµ-dependence of the intensity
in eachµ-ring – perhaps motivated from a fit to the continuum
intensity available at the discreteµm. However, we did not im-
plement this since from the test it appeared that the accuracy at
an affordable number ofNµ = 3 is already sufficient. There is a
caveat to this statement: the accuracy of the methods also hinges
on the level of the differential line-shift and -broadening as a
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Fig. 3. As for Fig. 2 for our broadening procedure.

function ofµ which we did not test here. This should be checked
on a case by case basis.

5. Remarks on differential rotation

Up to this point we considered solid body rotation only.
However, the previous discussion made clear that integration
overµ-rings should also perform better in the case of differen-
tial rotation. The referee made the point that putting efforts into
3D model and spectral synthesis calculations warrants the inclu-
sion of effects of differential rotation to maintain highest level of
accuracy. In the following we give a brief demonstration that dif-
ferential rotation on the level observed in the Sun can indeed be
relevant for resulting line profiles. We implemented our method
for a case of differential rotation.

We chose the possibly simplest parameterization of the solar
differential rotation pattern of the form

Ω = Ωeq

(

1− α cos2ψ
)

. (6)

Ω is the angular velocity at co-latitudeψ, Ωeq the equatorial an-
gular velocity, andα a dimensionless parameter measuring the
degree of differential rotation.α ≈ 0.2 for the Sun (see, e.g.,
Reiners & Schmitt 2002). Knowing the stellar radius, the angu-
lar velocity can be transformed into a relation for the radial ve-
locity as a function of position on the stellar disk. However, its
complex functional dependence does not allow the expression
of the rotation kernel by elementary functions analog to Eq.(5)
(Huang 1961). We evaluated the kernels for individualµ-rings
numerically by discretizing the stellar disk employing polar co-
ordinates. While seemingly straight-forward it proved difficult
to obtain sufficient numerical accuracy, in particular at low ra-
dial velocities, and higher-than-expected resolution wasneces-
sary. We ensured numerically that the symmetry of the kernel
functions with respect to the origin (i.e., zero radial velocity)
was maintained so that no artificial line asymmetries were intro-
duced in the resulting line profiles.

Figure 4 depicts an example comparing rotationally broad-
ened profiles assuming rigid as well as differential rotation. We
arbitrarily selected an Fe I line (at 6082 Å) of a 3D spectral syn-
thesis calculation for the Sun, and solar-like rotational parame-
ters,V = 1.8 km s−1, sin(i) = 1.0, and for the case of differen-
tial rotationα = 0.2. The plot shows that – as expected – our
procedure of integrating overµ-circles (hereNµ = 4) leaves no
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Fig. 4. Comparison of rotational broadening assuming a rigidly
(solid line) and differentially (diamonds) rotating Sun. Thirty
times enlarged differences of the resulting profiles (in the sense
differential–rigid) are plotted in the lower part of the panel. For
further explanations see text.

obvious imprint of spikes in the resulting profiles. Moreover, no-
ticeable differences are present forfixed V andsin(i). One might
interpret the smaller degree of broadening in the differentially
rotating case as simply a result of the the smaller disk-averaged
rotation rate forα > 0. However, from Eq. (6) we obtain for the
root-mean-square radial velocityvRMS due to the rotation over
the stellar disk

vRMS =

√

2
3

V sin(i)

√

1− α

(

3
4

cos(i) +
1
5
α

)

. (7)

For our test case Eq. (7) gives a 0.4% smallervRMS whenα = 0.2
instead of zero. Changing the equatorial velocityV by this
amount assuming rigid rotation, leads to much smaller changes
in the line profile than are visible in Fig. 4. However, for thepar-
ticular Fe line it is possible to closely emulate its profile for dif-
ferential rotation assuming rigid rotation whereV is 3% smaller
than its nominal value.

6. Conclusions

The approach suggested in this paper provides an accurate treat-
ment of rotational line broadening of a spherical star employ-
ing intensities at a modest number of limb-angles only. Thisis
of practical importance in the context of 3D spectral synthesis
calculations where angular resolution is computationallyexpen-
sive. This also holds for differential rotation but the rotational
kernel functions must be evaluated numerically. Our approach is
not restricted to the 3D case but could be equally well applied in
the standard 1D case. The issue is of course less pertinent in1D
since high angular resolution is affordable making the broaden-
ing method uncritical.
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