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Abstract

Prolate rotation is characterized by a significant rotation around the major axis of the galaxy which is in
contrast to the more common oblate rotation. Prolate rotation is thought to be due to major mergers and
thus studies of prolate-rotating systems can help us better understand the hierarchical process of galaxy
evolution. Dynamical studies of such galaxies are important to find their gravitational potential profile,
total mass, and dark matter fraction. Recently, it has been shown from the cosmological simulation that it
is possible to form a prolate-rotating dwarf galaxy following a dwarf-dwarf merger event. The simulation
also shows that the unusual prolate rotation can be time enduring. In this particular example, the galaxy
started rotating around its major axis about 7.4 Gyr ago and it is continuing at present. In this project, we
use mock observations of the hydro-dynamically simulated galaxy to fit various stages of its evolution with
Jeans dynamical models. The Jeans model successfully fits the early oblate state before the major merger
event, and also the late prolate stage of the simulated galaxy, recovering the anisotropy, mass distribution,
velocity dispersion, and rotation of the simulated galaxy. This project also highlights the importance of
hydrodynamic simulations in understanding the dynamics of galaxies, and how they can be used to make
predictions and test hypotheses about real galaxies.
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Zusammenfassung

Prolate Rotation ist durch eine signifikante Rotation um die Hauptachse der Galaxie gekennzeichnet, was im
Gegensatz zur häufigeren oblaten Rotation steht. Man nimmt an, dass prolate Rotation durch größere Ver-
schmelzungen verursacht wird, weshalb Studien von prolate-rotierenden Systemen dazu beitragen können,
den hierarchischen Prozess der Galaxienentwicklung besser zu verstehen. Dynamische Studien solcher
Galaxien sind wichtig, um ihr Gravitationspotenzialprofil, ihre Gesamtmasse und ihren Dunkle-Materie-
Anteil zu ermitteln. Kürzlich wurde in einer kosmologischen Simulation gezeigt, dass es möglich ist, eine
prolate-rotierende Zwerggalaxie nach einem Zwerg-Zwerg-Verschmelzungsereignis zu bilden. Die Simu-
lation zeigt auch, dass die ungewöhnliche prolate Rotation über eine lange Zeit bestehen kann. In diesem
speziellen Beispiel begann die Galaxie vor etwa 7,4 Milliarden Jahren, sich um ihre Hauptachse zu drehen,
und dies setzt sich bis heute fort. In diesem Projekt verwenden wir Mock-Beobachtungen der hydrody-
namisch simulierten Galaxie, um verschiedene Stadien ihrer Entwicklung mit Jeans-Dynamikmodellen zu
fitten. Das Jeans-Modell passt erfolgreich den frühen oblaten Zustand vor dem größeren Verschmelzungsereig-
nis und auch den späten prolaten Zustand der simulierten Galaxie an und ermittelt dabei die Anisotropie,
die Massenverteilung, die Geschwindigkeitsdispersion und die Rotation der simulierten Galaxie. Dieses
Projekt unterstreicht auch die Bedeutung hydrodynamischer Simulationen für das Verständnis der Dynamik
von Galaxien und wie sie verwendet werden können, um Vorhersagen zu treffen und Hypothesen über reale
Galaxien zu testen.
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Chapter 1

Introduction

The challenge in astrophysics lies in deciphering the true nature of celestial objects since we can only ob-
serve their projected images in the sky. Galaxies, varying in size, shape, color, and brightness, present a
wide spectrum of appearances, from majestic spirals to unassuming ellipticals, from massive cluster mem-
bers to scarcely visible satellites nearby. Their appearance can change when observed from different angles
and through various filters, such as optical and infrared imaging capturing starlight and far-infrared reveal-
ing dust emissions. While gravity is a fundamental force shaping galaxies, understanding their complete
evolution involves the intricate interplay of radiation physics, hydrodynamics, nuclear fusion, and chemistry
(Abraham et al., 1994; Abraham et al., 2003; Bovy & Rix, 2013; Bovy & Tremaine, 2012).

Dwarf galaxies, primarily consisting of dark matter, constitute the fundamental building blocks of larger
galaxies, although they still elude complete comprehension. Dwarf galaxies, despite their smaller size and
lower luminosity compared to larger galaxies, are subject to the same dynamic processes that shape the
universe (Kado-Fong et al., 2020). They undergo major merger events, interact with other galaxies, and
evolve over time, which also causes the galaxy to change its rotation axis (Cardona-Barrero et al., 2021).

Understanding the formation and evolution of galaxies remains a complex realm within extragalactic as-
trophysics (Cimatti et al., 2019). This encompasses comprehending the intrinsic nature of galaxies and
exploring the distant universe. Key questions persist in deciphering the cosmic chronicle of star formation
and black hole growth, especially their dependency on fundamental traits such as mass. The mechanics
of star formation in the early universe are still unknown, but lots of new research is ongoing (Chaisson et
al., 2014). Additionally, unraveling how galaxies procure and process their gas, alongside comprehending
the influence of the environment on their evolutionary trajectories, poses significant challenges (Romano,
2022). Equally crucial is grasping the impact of feedback mechanisms arising from both stellar activities
and black hole growth on the overall evolution of galaxies.

Galaxy rotation curves are another hot topic in astrophysics. Angular momentum plays a major role in
galaxy formation and subsequent evolution. The majority of galaxies are found to be flat spinning disks
(the Milky Way being no exception) (Hammer et al., 2007). However, it has been observed that galaxy
shapes tend to be prolate at low mass and high redshifts and oblate at high mass and low redshifts (H. Zhang
et al., 2019). This suggests that galaxies evolve from prolate to oblate, but the exact processes driving this
evolution are not fully understood. Typically, prolate-shaped galaxies tend to be pressure-supported systems
with very little angular momentum, if any (e.g. Tsatsi et al., 2017).
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Most galaxies are generally assumed to exhibit oblate rotation due to the influence of gravity and centrifugal
forces, there is also a possibility of prolate rotation in massive galaxies. Prolate rotation in galaxies is indeed
a rare phenomenon and has been primarily observed in massive elliptical galaxies (Tsatsi et al., 2017) , but
also rarely in dwarf galaxies like AND II(Amorisco et al., 2014) and Phoenix (Kacharov et al., 2017) within
our Local group. This phenomenon is often attributed to major merger events during a galaxy’s evolutionary
history. While prolate rotation is more commonly associated with giant elliptical galaxies (Krajnović et al.,
2018), its occurrence in dwarf galaxies is exceptionally rare, and the underlying mechanisms driving this
phenomenon remain poorly understood (Ebrová & Łokas, 2017).

Deason et al. (2014) suggested that approximately ⇠ 10% of satellite dwarf galaxies experience merger
events within the virial radius and the stellar mass ratio is close to 0.1. This finding aligns with previous
studies in the field, such as the work by Klimentowski et al. (2010), which also suggested that such merger
events were more prevalent in the early universe. But If we move further out from the virial radius, the
frequency of the dwarf-dwarf merger events almost doubles. This suggests that we have frequent major
mergers in the outskirts of the galaxy or galaxy clusters (Deason et al., 2014; Martin et al., 2021; Rodriguez-
Gomez et al., 2015; Wetzel et al., 2015).

The presence of prolate rotation in dwarf galaxies is not a common phenomenon in cosmological simula-
tions, as noted by Deason et al. (2014). However, idealized N-body simulations, exemplified by the work
of Łokas et al. (2014), have illuminated scenarios where prolate rotation can manifest. For instance, their
study focused on AND II, the remnant of a merger involving two disk dwarf galaxies. Through N-body
simulations, they crafted an evolutionary model illustrating the emergence of prolate rotation in this unique
context. Furthermore, in hydrodynamical cosmological simulations akin to the Local Group’s environment,
Cardona-Barrero et al. (2021) unearthed just two prolate-rotating dwarf galaxies resulting from major merg-
ers. This implies that prolate rotation in dwarf galaxies is indeed a rare occurrence, necessitating specific
conditions like mergers or interactions to take place.

The possibility of prolate motion in galaxies is widely supported in cosmological simulations, particularly
in giant galaxies with masses exceeding 1012M�. In the Illustris simulation, for instance, 9 out of 21 studied
galaxies were found to exhibit prolate rotation (Li et al., 2018). Additionally, observations using ground-
based integral field spectrophotometry, such as the CALFIA (Tsatsi et al., 2017), also provide support for the
prolate motion in giant galaxies. According to the CALFIA survey, approximately 27% of massive galaxies
with masses exceeding 2 ⇥ 1011M� display prolate rotation. This strengthens the notion of a correlation
between galaxy mass and the presence of prolate motion.

Due to observational limitations, researchers often rely on simulated data to study the dynamics of galaxies.
Simulations provide a powerful tool for investigating the complex physical processes and interactions that
govern galaxy evolution. They allow researchers to control various parameters, study different scenarios,
and obtain detailed information that is not easily accessible through observations alone (Katz et al., 1995;
Springel, 2005; Vogelsberger et al., 2014; Vogelsberger et al., 2020).

One particularly useful approach is zoom-in simulations, which focus on specific regions of interest, such
as the Local Group, compact groups, or individual galaxies. By zooming in on these smaller scales, re-
searchers can study the detailed dynamics and interactions occurring within these systems. This provides a
more comprehensive understanding of the processes shaping their evolution. Zoom-in simulations offer the
advantage of higher resolution and more accurate modeling of the physics at play. They allow for a detailed
examination of the interplay between baryonic matter (such as gas and stars) and dark matter, as well as
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the effects of various astrophysical processes, such as feedback from supernovae and black holes. This
level of detail is crucial for understanding the formation and evolution of galaxies on small scales (Revaz &
Jablonka, 2018; Revaz et al., 2009; Schaller et al., 2023; Vogelsberger et al., 2020).

Kinematics of the galaxy provides us with crucial information about its structure, internal dynamics, and
gravitational interactions and allows us to reconstruct its formation histories, along with studying different
substructures such as supermassive black holes (SMBH), dark matter halos, and baryonic physics (Bertin,
2014; Binney & Tremaine, 2011; Cappellari, 2008, 2016; Cimatti et al., 2019; Courteau et al., 2014;
Gregory et al., 2019; Mo et al., 2010; Nevin et al., 2021; Schulze et al., 2018). One of the main problems
in studying the kinematics of galaxies is obtaining accurate tracers, such as the 3D positions and velocities
of individual stars within a galactic system (Binney & Tremaine, 2011; Cappellari, 2016). Thankfully,
the GAIA mission has significantly contributed to overcoming the challenge of obtaining the positions and
velocities of stars. It has provided extensive data on the positions and velocities of stars in the Milky Way
galaxy, nearby dwarf galaxies, and even some stars in the Andromeda galaxy (Brown et al., 2021; Gaia
et al., 2018).

Furthermore, in the case of galaxies that aren’t perfectly edge-on, determining the intrinsic stellar luminosity
density by de-projecting the observed star surface brightness becomes a mathematically non-unique task,
even when assuming axisymmetry. This inherent ambiguity becomes more pronounced as the galaxy’s
inclination angle increases, adding an extra layer of complexity to the process of dynamical modeling for
external galaxies. Detailed explanations will be provided in Chapter 3.

This study’s fundamental aspect lies in its use of dynamical models fitted to mock observed stellar kinemat-
ics, obtained from a cosmological simulation. In most galaxies, the rotation will shift from prolate to oblate
(H. Zhang et al., 2019), but in this particular system, we noticed the shifting of the rotation from oblate
to prolate. Our primary objective is to assess the applicability of the Jeans axisymmetric model within the
framework of a cosmological simulation. We have a specific focus on a dwarf galaxy that experienced
a change in its axis of rotation over its evolutionary history. Additionally, we are exploring whether the
core-cusp problem might explain the dynamics of this galaxy. Significantly, this research represents the
first attempt to apply the Jeans model to a prolate rotator.

We chose this topic inspired by the Cardona-Barrero et al. (2021) work. They delved into 27 simulated
dwarf galaxies within a stellar mass range similar to those in the Local Group. Remarkably, they uncovered
a prolate rotator, an unusual finding in low-mass galaxies, with a total mass of 2.8 ⇥ 109M� and a stellar
mass of 1.4 ⇥ 107M� at z = 0. Despite a low-amplitude velocity gradient, their analyses using mock
datasets convincingly excluded the possibility of such a gradient arising from a non-rotating system. This
discovery marks the first identification of a prolate rotating galaxy with such modest mass through non-
idealized cosmological simulations.

The transformation from an oblate to a prolate rotator was primarily induced by a major merger event,
occurring roughly 6 billion years ago, and subsequently stabilizing. Notably, the level of rotation observed
in this galaxy at z = 0 is notably lower than that detected in known prolate rotating dwarfs within the Local
Group. Their findings reveal a steep metallicity gradient akin to that observed in the Phoenix and AND II

galaxies (Kacharov et al., 2017), primarily shaped by the merger event responsible for the prolate rotation
and subsequent star formation processes concentrated in the inner regions.

This study stands out by examining the application of Jean models to a dwarf galaxy characterized as
a prolate rotator in a cosmological simulation. This unique choice is motivated by recent findings, as
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suggested by Cardona-Barrero et al. (2021), that prolate rotation can result from major mergers during the
early stages of galaxy evolution, and this prolate rotation can persist for extended periods. This long-lasting
prolate rotation prompted our investigation into the effectiveness of the Jeans model for such systems and
its overall suitability in quasi-equilibrium.

Our main goal is to assess how well the Jeans model can determine the galaxy’s mass in a prolate system.
This is important because it allows us to uncover hidden components within the galaxy, like dark matter.
Essentially, we’re checking if our model’s predictions match the actual mass distribution of the galaxy. It’s
worth noting that according to El-Badry et al. (2017), this can be especially challenging in low-mass dwarf
galaxies, where the Jeans model may predict more mass than what’s there. In this work, we are testing if
the Jeans model can adequately reproduce the prolate rotation of the galaxy.

Furthermore, we are employing N-body simulations to forecast the future evolution of the galaxy. To
achieve this, we’ve generated a mock dataset with a million stars, mirroring the projected surface brightness
derived from the cosmological simulation, complete with spatial coordinates. We’ve assigned 3D velocities
sampled from Gaussian distributions for each component, with a mean of 0 km s�1 and standard deviations
measured in three distinct directions. This approach allows us to explore the potential trajectories and
behaviors of the galaxy’s components (Cardona-Barrero et al., 2021; Fouquet et al., 2017).

This step is essential to see if the prolate rotation we observed in the galaxy stays the same over a long time.
We are using the Jeans equation to model a mock galaxy, and we predict the mass of the dark matter halo
with this model. This helps us understand if the Jeans model works well for a long time.
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Chapter 2

THEORETICAL BACKGROUND

2.1 Structure of galactic systems

The primary goal of this work is to comprehend the structure and characteristics of galaxies. To begin, it is
essential to grasp the composition of galaxies. Galaxies mainly consist of stars, gas and DM. For example,
our Milky Way hosts approximately 100 billion stars, with a combined mass of about 5 ⇥ 1010M� solar
masses. Most of these stars are concentrated in the central region of the galaxy and within a flat disk.
Additionally, some stars are found in a spherical halo surrounding the disk, along with globular clusters.

Another significant component of galaxies is the interstellar medium, comprising gaseous and dust parti-
cles. Atomic and molecular hydrogen are its primary constituents. The mass of this interstellar medium is
roughly 10% of the stellar mass. Although it does not contribute significantly to the galaxy’s gravitational
potential, it serves as a tracer of this potential.

Normal galaxies also contain a central supermassive black hole, which constitutes around 0.01% of the
galaxy’s total mass (Binney & Merrifield, 1998). The most substantial component of galaxies, however, is
DM. The nature of DM remains elusive, but it is believed to consist of an undetected particle that interacts
solely through gravity.

There is an alternative perspective proposing that DM does not exist, and instead, our understanding of
gravity needs modification, as suggested by theories like Modified Newtonian Dynamics (MOND) (Milgrom,
2001, 2014).

2.1.1 Distribution of galactic components inside galaxy

As mentioned earlier, galaxies consist of various components, and here we delve into how these components
are distributed within a galaxy. Stars within a galaxy are distributed exponentially concerning their distance
from the galactic center. This distribution can be observed by examining the galaxy’s light profile, a concept
first elucidated by Freeman (1970). However, it’s important to note that the distribution of light varies within
the galaxy, with differences in the central region compared to the outer disk areas. Fig. 2.1 illustrates the
Phoenix dwarf galaxy and the distribution of its stars.
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Figure 2.1: The Phoenix dwarf galaxy. Credit: European Southern Observatory
https://www.eso.org/public/images/potw1838a/

Another crucial component of galaxies is gas, which constitutes all the baryonic matter in gaseous form.
Gas exists within the galaxy in both atomic and molecular forms. However, quantifying the exact amount of
gas in a galaxy is a challenging task. This difficulty is especially pronounced when attempting to determine
the quantity of hot gas residing in the galactic halo (McKee et al., 2015; W. Zhang et al., 2009).

We have covered the distribution of stars and gas within a typical galaxy. However, a significant contributor
to a galaxy’s mass is its dark matter halo. Dark matter is a mysterious and abundant component of the
universe, comprising nearly 5 times Ade et al. (2016) of the total matter content, vastly dominating the
ordinary matter.

Another significant component of galaxies is star clusters, encompassing both open and globular clusters.
Open clusters are loosely bound associations of stars confined within a relatively small region, typically
around 10 pc in size. Thousands of open clusters have been identified in the Milky Way’s galactic disk, as
documented in studies such as Kharchenko et al. (2013).

In contrast, globular clusters are typically much denser and can contain anywhere from thousands to millions
of stars, spanning a size range of a few to 10 parsecs. These clusters formed in the early stages of galaxy
evolution, dating back almost to the age of the universe itself. Detailed catalogs of these globular clusters,
like the one by Harris et al. (2013), provide valuable insights into their properties. Additionally, kinematic
studies, such as those mentioned in Koch et al. (2018), contribute to our understanding of these fascinating
cosmic structures.

Fig. 2.2 illustrates the mass contributions from different components of the galaxy, including the disk, bulge,
dark matter, and the combined mass. It is evident that the mass of the dark matter component dominates
over the other components, highlighting its significant influence on the overall dynamics of the galaxy.
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Figure 2.2: Mass of the each galactic components of the Milky way galaxy using the fitted models taken
from (McMillan, 2016).

2.2 Dwarf Galaxies

Dwarf galaxies, with their diverse types based on factors like mass and gas content, are pivotal components
in the formation of larger galaxies. They offer insights into galactic evolution, responding sensitively to
factors like stellar feedback and heating. Moreover, these galaxies, submerged in dark matter, play a signif-
icant role in understanding the hierarchical evolution of galaxies (Crnojević & Mutlu-Pakdil, 2021; Lelli,
2022).

In particular, dwarf galaxies are crucial for comprehending the formation of galaxies in general, with the
halos of more massive galaxies believed to form in part through the interaction and with accretion of the
lower mass galaxies. Multi-billion particle N-body simulations have been instrumental in shedding light
on the formation and evolution of dwarf galaxies, refining predictions made by the ⇤CDM cosmology and
enhancing our understanding of dark matter (Ebrová & Łokas, 2015, 2017; Łokas et al., 2014).

Studying dwarf galaxies within the Local Group is especially valuable due to their proximity, enabling
detailed observations of their star formation processes and providing prototypical examples of galaxy evo-
lution. These galaxies, potentially the building blocks of larger galaxies, are essential for unraveling the
mysteries of dark matter and comprehending the processes that shape our Universe. By characterizing the
composition and properties of dwarf galaxies, we gain insights into galactic chemical evolution and the
mechanisms driving star formation (Fattahi et al., 2020; Mateo, 1998; Tolstoy et al., 2009).

Moreover, these studies shed light on the dynamics and evolution of this group of galaxies. The interactions
between the Milky Way and its dwarf satellites offer insights into the mechanisms of galaxy formation.
Dwarf galaxies play a pivotal role in advancing our understanding of structure formation, star formation
processes, feedback mechanisms, and chemical evolution. Their simplicity and relatively undisturbed na-
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Figure 2.3: Dwarfs spanning six orders of magnitude in stellar mass. The LMC, WLM, and Pegasus are
dwarf irregular galaxies, with gas and ongoing star formation. Image credits: Eckhard Slawik (LMC);
ESO/Digitized Sky Survey 2 (Fornax); Massey et al. (2007; WLM, Pegasus, Phoenix); ESO (Sculptor);
Mischa Schirmer (Draco), Vasily Belokurov and Sergey Koposov (Eridanus II, Pictoris I). Abbreviations:
LMC, Large Magellanic Cloud; WLM, Wolf–Lundmark–Melotte (Bullock & Boylan-Kolchin, 2017) .
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ture make them ideal for studying these processes in isolation (Ricotti & Gnedin, 2005).

In summary, dwarf galaxies in the Local Group are essential testbeds for theoretical ideas related to cosmol-
ogy, dark matter, and galaxy formation. Additionally, they serve as valuable laboratories for understanding
the physical processes driving galaxy evolution, offering insights into these galactic clusters’ dynamics
and evolution. Simple comparision with the different dwarf galaxies with their internal masses and their
photometric differences are shown in Fig. 2.3.

2.3 Cosmological Simulations

Cosmological simulations are powerful tools for studying the universe’s fundamental questions, provid-
ing insights into cosmic formation and evolution. These simulations model physical processes like gravity
and gas dynamics, allowing us to understand observable features and test theoretical models. They help
researchers explore phenomena occurring over vast cosmic scales, complementing observations and en-
hancing our comprehension of the universe (Vogelsberger et al., 2013; Vogelsberger et al., 2020).

Two common types of cosmological simulations are dark matter-only and those including both baryonic
matter and dark matter. These simulations are essential for studying processes within galaxies, like star
formation and changes in metal content. By including baryonic matter, they capture the complex interplay
of gas, stars, and dark matter, offering deeper insights into galaxy evolution and various physical processes
(Springel et al., 2005; Vogelsberger et al., 2014).

Zoom-in simulations are specialized cosmological simulations that focus on smaller-scale processes within
galaxies or galaxy clusters. They enable the study of detailed phenomena, such as galaxy interactions, star
formation, and the effects of supernovae and black hole feedback. These simulations are invaluable for
comprehending the universe’s cosmic evolution and addressing significant questions in astrophysics and
cosmology (Oñorbe et al., 2014; Sparre & Springel, 2016).

2.4 Jeans Equations

2.4.1 Collisionless system

We discussed above that galaxies are made of different components but one of their important properties
is that they are collisionless stellar systems. Ideally, galaxies are not in the exact equilibrium state but
keep being perturbed by infalling gas and small halos. However, collisionless is a good approximation to
studying the dynamics of the galaxy on an evolutional timescale.

The gravitational force that acts between the stars in a galaxy is long-range. This means that stars in a
galaxy are subject to a more constant gravitational force, unlike the violent and short-lived accelerations
experienced by molecules in a diffuse gas as they collide with each other. The two-body relaxation time is
way larger than the current age of the Universe for all galaxies (Binney & Tremaine, 2011).

Stellar systems are driven to equilibrium by non-collisional forces such as violent relaxation and phase
mixing, which operate on the dynamical time scale rather than the two-body relaxation time scale. The
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dynamical time for a typical galaxy is ⇠ 100 Myr, which means that galaxies reached a quasi-equilibrium
state at present time. Dynamical time is roughly related to the velocity as tdyn = R/v dynamical time
increases with increasing R, as for all galaxies v ⇠ constant for large R. This suggests that dynamical
time at the outer end (⇠ 100 kpc) of the galaxy is nearly equal to the age of the universe. This suggests that
we can assume equilibrium for most of the places inside the galaxy (Binney & Merrifield, 1998; Binney &
Tremaine, 2011).

2.4.2 Collisionless Boltzmann equation (CBE)

The most fundamental equation to discuss a collisionless system is the Collisionless Boltzmann Equation,
in which the position and the velocity of a large systems of stars inside galaxy can be explained by the
distribution function (DF) which is a phase space function of six variables (3 positional and 3 velocity
components).

The DF of the stars in a steady-state gravitational system must fulfill the steady-state Boltzmann equation,
which is the primary equation governing stellar dynamics. The Boltzmann equation describes the statistical
behavior of many objects, including stars, when gravitational forces are present. In a steady-state system,
the star’s DF remains constant throughout time and the forces pulling on them are balanced, creating an
equilibrium (Binney & Tremaine, 2011; Cappellari, 2008).

@f

@t
+

3X

i=1

(vi
@f

@xi
�

@�

@xi

@f

@vi
) = 0 (2.1)

where i = x, y, z in Cartesian coordinate system.

f is the DF, so the above equation 2.1 can have infinite family of solutions. For a practical implementation
of the equation, additional presumptions and simplifications are required. The problem can be severely
constrained by investigating only the velocity moments of the DF, instead of reconstructing the DF as is
usually done, which leads to the Jeans equations (Binney & Tremaine, 2011; Jeans, 1922).

2.4.3 The Jeans equations

As stated in the section above, equarion 2.1 takes a wide range of solutions depending upon the boundary
conditions. We can solve 2.1 by, (i) by finding the equilibrium distribution function for a given potential and
a given density, (ii) measuring the mass distribution from the observables (position and velocity) assuming
the system is in equilibrium.

It is very difficult to get the distribution function of all the stars in a galaxy. So, it is not a easy task to solve
the CBE. However, we can solve equation 2.1 by multiplying with x or v and integrating over a phase-space
to obtain moment equations which are known as Jeans equations (Cappellari, 2008; Jeans, 1922).

Basically, the Jeans equations give us the moments of the distribution function. We do the astronomical
observations at a fixed position on the sky, multiplying the collisionless Boltzmann equation by v and
integrating over all the velocity components, it connects with the quantities which can be measured directly.
The number density of the system is given by,
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⇢(x) =

Z
dff(x, v) (2.2)

And the mean velocity of the equilibrium system is,

v(x) =
1

⇢(x)

Z
v df f(x, v) (2.3)

which has components of vi. where i = 1, 2, 3 for the three different axes.

We can describe the velocity dispersion tensor �(x) with components of �ij(x), where i, j = 1, 2, 3

�ij(x) =
1

⇢(x)

Z
dv (vi � v̄i) (vj � v̄j) f(x, v) (2.4)

We can also define the higher order moments in similar fashion but it will become more complicated.

Multiplying equation 2.1 by v
� (where � = 0, 1, 2, 3...) and integrating over v we can derive a set of Jeans

equations that relate the above mentioned moments.

For simplicity , let us integrate equation 2.1 over v, we get,

Z
dv
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Z
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@f
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(2.5)

On simplification this equation takes the form,

@⇢(x)

@t
+r.[⇢(x) v(x)] = 0 (2.6)

This is the continuity equation for density. This equation contains both density and the 3D- mean velocity.
Therefore, single equation is not sufficient to solve for the mean velocity.

Similarly we can multiply equation 2.1 by v and integrating over all v and substracting the vj times the
continuity equation leads the following equation (Binney & Merrifield, 1998; Jeans, 1922),

⇢
@vj

@t
+ ⇢ vi

@vj

@xi
+ ⇢

@�

@xj
+

@[⇢�2
ij
]

@xi
= 0 (2.7)

This Jeans equations relates density, mean velocity, velocity dispersion tensor and the gravitational po-
tential. However, in this equation we have additional three equations (one for each direction), and we
introduce six components of the velocity dispersion tensor. Therefore the system of the Jeans equations
can’t be solved directly and we need to make additional assumptions discussed in the next sections.

Continuing this process of multiplying higher powers of v and integrating over velocity gives us the Jeans
equations involve higher moments of the DF.

Jeans equations are very powerful as they involve the quantities that can be easily observed such as the spa-
tial density (can be traced through surface brightness or by counting stars), mean velocity and the velocity

11



dispersion.

The Jeans equations in cylindrical coordinates

The equation 2.1 can also be expressed in the standard cylindrical coordinate system (R, z,�) under the
assumption of axial symmetry, a common characteristic observed in many galaxies (Krajnović et al., 2011):
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(2.8)

This approach simplifies the problem by considering that (@�/@� = @f/@� = 0) (Binney & Merrifield,
1998). However, it’s important to note that while many galaxies exhibit axial symmetry, there are excep-
tions, and more complex models may be needed for those cases (Hofmeister & Criss, 2020).

We multiply equation 2.8, with the vR and vz we get two Jeans equations, (Binney & Merrifield, 1998;
Jeans, 1922)
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The Jeans equations in spherical coordinates

We can solve the CBE 2.1 in spherical polar coordinates by assuming the axial symmetry, which will further
simplifies the equation. On the assumption of axial symmetry, @�
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= 0 we get the CBE as,
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where pr = vr, p✓ = rv✓, p� = r sin ✓v� are the conjugate momenta of the system.

Multiplying equation 2.11 by vr, v✓ respectively and integrating over all (pr, p✓, p�) using dprdp✓dp� =

r
2 sin ✓dvrdv✓dv�, we get the Jeans equations in spherical coordinates.
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As we explained before, this equation is solely derived from the CBE, and the assumption of the axisym-
metry. These equations don’t depend on the DF and also do not require self-consistency (In self-consistent
systems the gravitational potential is determined by the luminous density distribution.) In the equation 2.9,
2.10, if we know the density and assume the potentials, we can solve the unknowns, v2

R
, v2

�
, vRv�, v2z , we

can get the velocity moments of the galaxy. On the other hand, if we assume the potential also we see in
both equation 2.12, 2.13 there are four unknowns, v2r , v2✓ , v

2
�
, vr v✓ . So we don’t have the unique solution

of Jeans equations.

Velocity ellipsoid

To obtain the unique solution to the Jeans equations, one needs to assume a shape and orientation of the ve-
locity ellipsoid. Orbit integration calculations have shown that the velocity ellipsoid has a prolate spheroidal
alignment in most galaxies with axisymmetric potentials. However working within this formalism is com-
putationally prohibitive. Viable approximations for the velocity ellipsoid are to assume that it is either
spherically, or cylindrically aligned with the gravitational potential. For more details about the velocity
ellipsoid and its importance, I strongly suggest to read Cappellari (2008).

2.4.4 Solution of the Jeans equations in cylindrical coordinates

To solve the cylindrical Jeans equations, we assume that the velocity ellipsoid is alligned with the cylindrical
coordinate system and the anisotropy is constant, and quantified with some constant, v2

R
= b v2z , above

equations 2.9, 2.10 reduce to,
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b = 1 corresponds to the semi-isotropic case (two integral), with the boundary condition, v v2z = 0 as
z ! 1 which gives the very general solution of above equations.
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To get the solutions of the Jeans equations, we choose the parametrization of the stellar density and the total
density (in our case only the dark matter). In the JAM models, light and mass profiles are parameterized as
MGEs following the method introduced by Emsellem et al. (1994). In this framework, the projected surface
brightness (I) of the object is given by

13



I
�
x
0
, y

0� =
NX

k=1

Lk

2⇡�2
k
q
0
k

exp


�

1

2�2
k

✓
x
02 +

y
02

q
02
k

◆�
, (2.18)

In this equation, for each of the N Gaussian components, Lk represents the total luminosity, qk ranges from
0 to 1 and signifies the observed (projected) axial ratio, while �k represents the dispersion along the major
axis. x0, y0 and z

0 represents the projected major, minor and along the line of sight in the plane of sky.

The deprojection of the surface brightness to get the intrinsic luminosity density is not unique, as it depends
on the viewing angle. The degeneracy becomes more problematic at low inclination angles (Magorrian,
1999). The MGE method has the benefit of being able to maintain the roundness of the model, as stated
by (Cappellari, 2002). This leads to the creation of realistic densities that resemble actual galaxies when
viewed from any perspective. However, the method is unable to remove the inherent ambiguity of the
deprojection. This factor must be taken into account when analyzing the results of galaxies that are nearly
viewed from the front (Cappellari, 2008).
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where, the intrinsic axis ratio is related to the projected axis ratio via

qk =

q
q
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. (2.20)

where, i is the inclination angle of the system. For face-on system i = 0� and for edge on systems, i = 90�

We also describe the mass of the system as the series of different set of gaussians similar to the light profile
as,
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In the self-consistent scenario, the Gaussians are identical to those in equation 2.19, and we have M =

N,�j = �k, qj = qk, andMj = �kLk where �k represents the mass-to-light ratio (M/L), which can vary
across different components. In the non-self-consistent scenario, the density can be expressed as the sum
of two sets of Gaussians: the first set is derived by deprojecting the surface brightness using equation , and
the second set is obtained, for instance, by fitting a one-dimensional MGE model to an adopted analytic
parameterization for the dark matter, such as the one proposed by (Navarro et al., 1997).

The gravitational potential generated from above density equation 2.21 is given by, (Binney & Merrifield,
1998; Emsellem et al., 1994)
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Furthermore, the mass of black holes can be incorporated by introducing the Keplerian potential into the
equation described above. For further details we suggest to read (Cappellari, 2008).

Using the above equations we can find a solution for the cylindrical Jeans equations by solving the velocity
moments analytically for each Gaussian component of the luminous and potential MGEs:
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where, vk = vk(R, z), ⇢0,j = ⇢0(0, 0) and,
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In this solution, the index k refers to the luminous MGE components and the index j to the potential MGE

components, as elaborated in 2.19 and 2.21, respectively (bk is an anisotropy parameter Cappellari, 2008;
Watkins et al., 2013).

If bk is not same for the individual Gaussians, the total luminosity-weighted anisotropy at certain spatial
location (R,z) of an MGE model is given by standard definition (Binney & Mamon, 1982):
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The final approximation is derived from the fact that
h
v2z

i

k

, which is primarily a function of the total MGE

potential, exhibits minimal variation across different Gaussians. In contrast, vk can differ significantly and
can vary by several orders of magnitude for various luminous MGE components. This permits the global
anisotropy of an MGE model at a specific spatial location in the meridional plane to be approximately
calculated from a straightforward luminosity-weighted sum of bk.
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The inherent values must be integrated along the line-of-sight (LOS) to produce observable data that can
be compared with the kinematics of the galaxy. For this purpose, we establish a system of sky coordinates
where the z

0-axis is along the LOS and the x
0-axis is aligned with the projected major axis of the galaxy.

The galaxy coordinates (x, y, z) are related to the plane of the sky as,
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where the z-axis coincides with the galaxy symmetry axis and the cylindrical radius is defied by R
2 = x
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The total second moment for the whole MGE model is then:
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By substituting equations 2.24, 2.25, 2.26 in 2.31 we can get the second velocity moment of the galaxy.

The second moment obtained from the substitution serves as a good estimate for the observed quantity
Vrms = V

2 + �
2 , where V represents the mean stellar velocity and � denotes the velocity dispersion.

However, calculating the first velocity moment can be challenging. The projected first velocity moments,
represented as vlos = vz0 are given by the following equation,

X
vlos =

Z 1

�1
vv� cos� sin i dz0 (2.33)

The Jeans equations 2.14 and 2.15 only provide predictions for the second velocity moment v2
�

. Therefore,
it is necessary to consider how to separate the ordered motion from the random motion. This is a crucial
step in understanding the dynamics of the system (Cappellari, 2008).

v
2
�
= v�

2 + �
2
�

(2.34)

To accomplish this, we require an additional parameter on the tangential anisotropy. This is a fundamental
constraint of the first-moments equations, implying that we need a distinct parameter for the first moment
V. This different parameter will enable us to solve the Jeans equation for both V and �. This approach helps
us to better understand the dynamics of the system by separating the ordered and random motions.

To quantify the rotation of the galaxy we need the first moment equation which can be done by two ways,
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i) assuming the cobstant anisotropy for each of the Gaussian component, in the (vR, v�) coordinates and
analogously the equation 2.24 becomes,
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Which implies
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But the mean velocity depends in a non-linear way on Ck parameter. For this reason we adopted the semi-
isotropic case, which consists of defining a constant  which gives an idea about how much the model
velocity field scaled with respect to the isotropic rotator.

Here, we used the anisotropic case, which gives the direct measurement of the amount of the rotation. We
define for each of the Gaussian component,
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k = 0: This indicates a non-rotating galaxy where random motions, rather than rotation, dominate the
balance of forces.

k > 0: As  increases, rotational support becomes more significant, indicating that rotation plays a more
prominent role in balancing the gravitational forces. The stars exhibit more ordered motion aligned with
the rotation axis.

k = 1: As  The stars move predominantly along circular orbits aligned with the rotation axis, which
means the velocity ellipsoid is a sphere everywhere. The upper limit of the k is estimated by �

2
�
> 0

For all the Gaussian MGEs, we can get the first velocity moment as
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We need to assume that the velocity ellipsoid is aligned with the spherical coordinate system in order to
solve the above Jeans equations. In this case, the cross terms of the second velocity moment tensor vanishes
and we get much simpler equations to solve.

2.4.5 Solution of the Jeans equations in spherical coordinates

Assuming that the velocity ellipsoid is aligned spherically, the Jeans equations reduces into,
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One can solve the equation 2.40, as it does not contain the radial velocity dispersion. But for the global so-
lution of the Jeans equations, we can relate the radial velocity dispersion and the angular velocity dispersion
which is termed as anisotropy.
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Using the so called velocity anisotropy, the Jeans equation becomes,
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Now, let’s consider the simplest Jeans equations for a spherically aligned velocity ellipsoid. By solving the
aforementioned equations, we can obtain the solution for ⇢v2r (r, ✓), which represents the second velocity
moment along the radial direction. In a similar manner, we can derive the solutions for the other components
of the second velocity moment tensor.
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When fitting velocity dispersion relations, we may encounter difficulties when galaxies exhibit counter-
rotation of their stellar components. To account for this, we introduce a rotation parameter known as 

which is almost similar to the cylindrical case.
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For further details about solving Jeans equations in Spherical coordinate system I will suggest to read
Cappellari (2020).
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Chapter 3

METHODOLOGY

Studying the motion of stars or gas within galaxies helps us map the galaxy’s gravitational potential and,
consequently, the total mass contained within a specific radius. (Leung et al., 2018) In dynamical models,
we construct the distribution of stars in phase space based on the galactic potential, which is determined
by the integral of motion. We assume that the distribution function is in a steady state and apply Jeans’
theorem accordingly.

The Jeans dynamical models link the generally derived observations of stellar density and the kinematics of
the modeled system to its gravitational potential. In this study, we utilized a cosmological simulation as an
input parameter for the Jeans dynamical models.

In this study, we utilize the Python version of the axisymmetric JAM code developed by M. Cappellari (Cap-
pellari, 2008). Our analysis relies on the 3D velocity map and velocity dispersion data for the transitioning
dwarf galaxy, as specified in Cardona-Barrero et al. (2021). The JAM code incorporates a MGE to charac-
terize both the surface luminosity density, obtained from the cosmological simulation, and the gravitational
potential, including the contribution of dark matter.

From the simulation, we know the surface brightness profile of the galaxy and perform a simple Sérsic
profile fit (equation 3.1) to obtain its total surface brightness given by equation 3.2, half-light radius, and
Sérsic index.

I(R) = Ie · exp

(
�bn

"✓
R

Re

◆ 1
n

� 1

#)
(3.1)

In the Sérsic profile equation, Re denotes the scale radius, and bn represents a constant. The value of bn is
obtained from a numerical solution, while the Sérsic index n varies depending on the type of galaxy. (Sérsic,
1963) For Sérsic index n=4, value for the Sérsic constant is 7.66924944 from the numerical solution (Ciotti
& Bertin, 1999).

For elliptical galaxies, the Sérsic index typically ranges from 2 to 10, while disk galaxies have a value of
around 1. Disky bulge-type galaxies have a Sérsic index between 1 and 2. Fitting the surface brightness
profile using a single Sérsic index can be challenging. To improve the fit, it is common to fit the outer and
inner surface brightness with two different Sérsic indexes and then combine the fits to obtain a single fit that
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yields lower errors. However, given the spatial resolution of the cosmological simulation, we use a single
Sérsic model in this work.

Integrating equation 3.1 over the radial component while assuming an ellipticity (✏) yields the total intensity
of the galaxy,

L = 2⇡(1� ✏)R2
eIe ⇥

n ebn

(bn)2n
⇥ �(2n) (3.2)

Solving the Jeans equations using Equation 3.2, which provides the total surface brightness of the galaxy, is
significantly more computationally intensive and approximately an order of magnitude slower. To stream-
line the process, we represent the resulting total luminosity with a MGE of the galaxy’s surface brightness,
utilizing the desired Gaussian profiles. This approach greatly enhances the efficiency of solving the Jeans
equations and simplifies the deprojection of the density profile, as detailed in Cappellari (Cappellari, 2002).

We determined the system’s potential according to the equation 2.22, employing a mass density representa-
tion composed of a series of Gaussians. Importantly, it’s worth noting that the mass Gaussians are separate
from the luminous Gaussians, and the two are independent of each other.

On applying these inputs in the Jeans’ equations in the cylindrical polar coordinate system, we can finally
get the unique solution for the second moment. In doing that we further assume that the velocity ellipsoid
is aligned with the cylindrical coordinate system which makes it easier to solve the equations.

In this study, we are investigating the evolutionary journey of a dwarf galaxy, specifically focusing on its
transition from oblate rotation to prolate rotation. We have gathered approximately 200 snapshots of the
galaxy’s evolution, ranging from its early stages at redshift 6.4 to its current state at redshift 0. We selected
three significant stages in the galaxy’s evolution for detailed analysis. The first stage represents the early
period when stars within the galaxy exhibit oblate rotation. The second stage corresponds to a significant
event where the galaxy collides with a satellite galaxy. Lastly, we examine the final stage, where the galaxy
changes its axis of rotation, transforming into a prolate rotator.

We utilized Voronoi binning data provided by Cardona-Barrero et al. (2021), with each bin containing 200
stars. We calculated the mean values of the surface brightness, and velocity moments for the stars within
each bin. These binned values were subsequently employed in solving the Jeans’ equation.

We have also created Voronoi maps (Cappellari & Copin, 2003) of the line of sight velocity (vlos) and
velocity dispersion (�) at different snapshots from the simulation. We assigned uncertainties to these values
based on the local surface brightness (uncertainties increase with decreasing surface brightness).

In our dynamical model, the gravitational potential is driven by DM only. We used a generalized Herenquist
(see equation 4.1) density profile to represent the gravitational potential to solve the Jeans equations.

In our analysis, we explored various dark matter profiles, including the cored NFW profile with (↵ = 1,� =

3, � = 0), the cusped NFW profile with (↵ = 1,� = 3, � = 1), and the generalized Hernquist profile. Our
objective was to determine which of these models provides the best fit for the kinematic data derived from
the cosmological simulation.

Our goal is to model the Voronoi binned dataset, where the number of bins varies with each snapshot based
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on the simulated star points. This involves comparing models against the binned dataset using maximum-
likelihood analysis. We calculate the maximum likelihood function by comparing the model obtained from
the assumed parameter sets. Let ⇥j represent the parameter set for a particular model; then, the likelihood
of observing bin i have given model j is given by (Watkins et al., 2013)

Lij = p (vi xi �i ✏vi ✏�i |⇥j ) . (3.3)
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The best model is the set of parameters ⇥j that maximizes Lij . We should be very careful to select the
starting parameters.

We employed the emcee Goodman and Weare (2010) Python package to implement the affine invariant
Markov Chain Monte Carlo (MCMC) method for obtaining the maximum likelihood of the fitted parameters.
The parameters we fit for include the central density (⇢0) and scale radius (r0) of the dark matter profile,
along with the velocity anisotropy (�z = 1� v

2
z

v2r
) and rotation amplitude () of the galaxy. Our MCMC setup

involved 98 random walkers and 1000 steps, providing sufficient iterations for the fit to converge.

With the obtained parameters from the fit, the JAM model predicts the velocity moments, first (v) and second
(v2) for each of the binned points in the dataset. Additionally, we calculate the volume mass density of the
galaxy to estimate its total mass based on the fitted parameters.

Furthermore, we also calculate the mass of the galaxy using the Wolf mass estimator (Wolf et al., 2010)
using the line-of-sight velocity dispersion and the half-light radius. The method is applicable to globular
cluster, dwarf galaxies and the elliptical galaxies.
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where
⌦
�
2
los

↵
is the luminosity-weighted square of the line-of-sight velocity dispersion and the Re is the 2D

projected half-light radius (Wolf et al., 2010).

Performing the Jeans model is crucial for comprehensive dynamical modeling of the system. This allows
us to create a mock dwarf galaxy that aligns with our predicted velocity moments. To achieve this, we
implement inverse transverse sampling. By 3D deprojecting the fitted Sérsic profile of our galaxy, we
obtain the positions of the star particles. Subsequently, using the JAM model, we derive the individual 3D

velocities for our mock galaxy.

Now, armed with a complete galaxy model, including the desired number of points with the 3D positions
and 3D velocities of the star particles, we conduct N-body simulations. This step allows us to explore and
understand the future dynamics of the galaxy.
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Chapter 4

RESULTS AND DISCUSSION

In this project, our objective was to assess the viability of Jeans models in capturing the kinematic evolution
of prolate rotating systems using a well-established cosmological simulation. We analyse the evolution of
the simulated galaxy at different cosmological times using the JAM model. We fit JAM model to predict the
line-of-sight velocity and velocity dispersion of the galaxy and compared with the cosmological simulation.
We aim to thoroughly investigate and analyze the simulation results to gain a deeper understanding of the
evolution of rotation in merging galaxies.

Typically, low-mass dwarf galaxies exhibit intricate rotation patterns. As demonstrated by H. Zhang et al.
(2019), a comprehensive analysis of galaxy shape and size distributions revealed that low-mass dwarf galax-
ies tend to have elongated shapes, while higher-mass galaxies exhibit a disc-like morphology. However, our
current study, focused on a simulated galaxy, presents a distinctive scenario. Initially, the simulated galaxy
rotates in an oblate manner, but subsequent to a merger event with a satellite halo, its rotation undergoes
a significant transformation, as detailed in Cardona-Barrero et al. (2021). This departure from the typi-
cal behavior observed in low-mass dwarfs underscores the complexity and diversity of galactic evolution
processes.

Previous studies have extensively tested the Jeans equations in galactic systems, primarily focusing on
oblate rotation scenarios. However, our present study marks a notable departure by undertaking the first
attempt to rigorously test the applicability of the Jeans equations in systems exhibiting prolate rotation.
Moreover, our analysis encompasses the entire spectrum of the galaxy’s evolutionary phases, providing a
comprehensive examination of its rotational dynamics.

To study the kinematics of the simulated galaxy, we created mock observations that mimic the data obtained
from Integral Field Units (IFUs). These mock observations allowed us to derive spatially resolved velocity
and velocity dispersion maps, as well as surface brightness distributions. By analyzing these simulated
observations, we were able to gain insights into the internal dynamics and structure of the galaxy.

On doing so, we solved the Jeans equations using the density obtained from the surface brightness MGE and
the kinematics from the cosmological simulations. which we will briefly describe in the coming sections.

A crucial aspect to consider in solving the Jeans equations is the concept of velocity ellipsoids, which
characterize the velocity dispersion along each axis of the galaxy. However, for the purpose of solving the
Jeans equations, we made the assumption that the velocity ellipsoids are aligned with the chosen coordinate
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system representing the orientation of the galaxy (Cappellari, 2008, 2020).

Another important criteria on doing the JAM model is angle of inclination. It’s noteworthy that we employed
an inclination angle of i = 90� (i.e., edge-on) to measure the galaxy’s rotation accurately. The distance to
the galaxy is another important factor for calculating its kinematics. In our analysis, we set the distance to
the galaxy such that the angular size of 1 pc is 100 , i.e. 206265 pc.

This thesis systematically presents our JAM model applied to three distinct stages of the galaxy evolution:
the oblate rotation phase, representing the early stage of evolution; the early prolate rotation phase, occur-
ring after the merger with the halo; and the late prolate rotation phase, representing the present stage of
the galaxy’s evolution. This comprehensive approach allows for a thorough examination of the galaxy’s
kinematics across various evolutionary states.

4.1 Initial inputs for JAM modeling

4.1.1 Surface Brightness

We only see the galaxy as a projected image in the sky. Studying the properties of the galaxy is still a
complicated topic, especially the mass of the galaxy. For that, we first need to get more information from
the image of the galaxy. More massive galaxies tend to have more stars and, therefore, emit more light.
However, the relationship between mass and luminosity is not always straightforward, and different types
of galaxies can have different mass-to-light ratios.

The surface brightness of the galaxy is the measurement of the light emitted by the individual stars inside
the galaxy per unit area. As we discussed earlier, the brightness profile of the galaxy drops exponentially
from the inner to the outer part (de Vaucouleurs, 1948).

From the observed surface brightness of a galaxy, one can construct isophotes, which represent the contours
of equal brightness. These isophotes provide valuable information about the shape, structure, and orienta-
tion of the galaxy. Additionally, by analyzing the distribution of surface brightness, one can determine the
half-light radius, which is a measure of the radius within which half of the galaxy’s total light is emitted.

We can model the emitted surface brightness from a galaxy using various profiles, such as an exponential
profile. However, the most accurate way to model it is using the Sérsic profile using the equation 3.1. The
Sérsic profile provides a better representation of the photometric structure of the galaxy, capturing important
features such as the central concentration and outer profile shape. This profile is widely used in analyzing
galaxy photometry to study their properties and understand their formation and evolution.

In this study, we used the surface brightness profile obtained from the cosmological simulation, considering
that the galaxy is in a state of quasi-equilibrium. We then fit the amplitude of the surface brightness I(0),
the half-light radius r 1

2
, the Sérsic index n, and perform background corrections to obtain a more accurate

representation of the galaxy’s surface brightness distribution. The fitted parameters can be seen in Fig. 4.1.

In our simulations, we maintain a fixed projected ellipticity, a value derived from the simulation, and a con-
stant total luminosity calculated using Equation 3.2, also based on simulation data. This ensures consistency
with the known characteristics of the galaxy from our simulated model.
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Figure 4.1: MCMC post-burn distributions depict the results of fitting a Sérsic model to the surface brightness
profile of an oblate galaxy obtained from a cosmological simulation. The scatter plot shows the projected
two-dimensional distributions and the solid lines show 1�, 2�, and 3� regions of the projected covariance
matrix. The fitted parameters are logarithmic central brightness log I(0), logarithmic half-light radius
log

⇣
r 1

2

⌘
, Sérsic index n, and the background level ✏.

We utilized the fitted parameters to employ the Sérsic profile, to model the surface brightness of the galaxy
derived from our cosmological simulation. Through the process of fitting the Sérsic profile to the observed
surface brightness data, we were able to estimate crucial structural properties of the galaxy, including its
size, shape, and luminosity.

As seen in the right panel of Fig. 4.2, the brightness profile produced from the Sérsic modeling has an excel-
lent similarity to the one obtained from the cosmological simulation (the left panel). This visual agreement
increases our trust in the Sérsic model’s capacity to precisely and reliably represent the fundamental prop-
erties of the galaxy’s surface brightness distribution.
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Figure 4.2: Comparision of the surface brightness profile from the cosmological simulation and the fitted
Sérsic profile. The black ellipse represents the half-light radius of the galaxy.

Multi-Gaussian expansion (MGE)

We utilized the MGE approach to deproject the observed surface brightness of the galaxy. This method in-
volves representing the stellar density distribution using a sequence of Gaussian functions. In our study, we
specifically employed the Sérsic MGE model as a representative of the projected stellar density distribution
(Emsellem et al., 1994).

In Fig. 4.3, the left panel showcases the one-dimensional Sérsic profile of the galaxy, incorporating the
background correction, represented by the solid line. The blue dots correspond to the fitted Sérsic points
obtained from the modeling process, while the red dots represent the data points derived from the cosmo-
logical simulations. It is important to note that the 1D Sérsic model shows the surface brightness profile
along the major axis, while the dots are the individual Voronoi bins. Owing to the ellipticity and varying
polar angles, the data points consistently fall below the solid line in our analysis.

Indeed, for the dynamical modeling, we utilize the surface brightness profile without the background cor-
rection. This decision is made under the assumption that the galaxy is in a state of perfect isolation, where
external factors such as background noise or contamination are negligible. Consequently, we consider the
galaxy to strictly adhere to the idealized Sérsic profile, as demonstrated in the right panel of Fig. 4.3, which
shows the MGE. This simplified representation allows us to focus specifically on the intrinsic properties and
dynamics of the galaxy itself.
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Figure 4.3: The left panel of the figure displays a side-by-side comparison between the surface brightness
profiles derived from the cosmological simulation and the fitted Sérsic profile of the galaxy. The red dots
represent the data points, whereas the blue points are representative of the the Sérsic fit in the same Voronoi
bins. The solid line is along the major axis. In the right panel, we present the fitted MGE to the Sérsic
model. Each of the colored lines represents an individual Gaussian components. The bottom panel shows
their combined residuals.

Figure 4.4: Evolution of the Sérsic index of the galaxy across different redshifts in the cosmological simu-
lation.

Fig. 4.4 illustrates the dynamic evolution of the Sérsic index throughout various stages of the galaxy’s
evolution. The varying Sérsic index indicates the continuous transformation of the galaxy’s shape over time.
Notably, the Sérsic index predominantly falls within the range of 1 < n < 2 indicative of a predominantly
disk-like structure for the galaxy throughout its evolutionary phases. However, the specific morphology can
depend on other factors as well, so it’s always good to consider additional information when classifying
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galaxies (Vika et al., 2015; Zahid & Geller, 2017).

4.1.2 Kinematics of the Galaxy

As previously mentioned, an essential component for the dynamical modeling of the galaxy is its kinematic
data. In Cardona-Barrero et al. (2021), the line-of-sight velocity and velocity dispersion of the galaxy were
mapped using Voronoi binning, as illustrated in Fig. 4.5. This approach is crucial as it involves binning the
final dataset, enabling the calculation of velocity moments within each bin for a comprehensive kinematic
analysis.

4.1.3 Jeans Anisotropic Multi-Gaussian Expansion (JAM) model

The JAM model is a powerful tool used to study the dynamics of galaxies. It relies on three main compo-
nents: i) the density distribution ii) the gravitational potential and iii) kinematics of the system. In order to
accurately solve the Jeans equations and derive meaningful results, it is crucial to have information about
both the density and potential.

In this study, we utilize the density distribution derived from the Sérsic MGE, which provides a represen-
tative representation of the stellar density in the galaxy. Additionally, we obtain the gravitational potential
from the mass distribution derived using the NFW MGE. By combining the density and potential infor-
mation, we can effectively model and analyze the kinematics and dynamics of the galaxy using the Jeans
equations.

Here in our models, we used the generalised Herniquist profile, which is defined as follows. (Hernquist,
1990)

⇢(r) =
⇢s

⇣
r

rs

⌘
�
h
1 +

⇣
r

rs

⌘
↵
i(���)/↵

(4.1)

In this context, ⇢s denotes the central density, rs stands for the scale radius, and ↵ represents the sharpness
parameter governing the transition from the inner slope � to the outer slope �.

The parameters (↵,�, �) in Equation 4.1 determine the specific DM profile. For instance, when (↵,�, �)
equals (1, 3, 0), it corresponds to the cored NFW profile, while (↵,�, �) equal to (1, 3, 1) represents the
cusped NFW profile. By considering these different DM profiles, we explored their impact on our dynamical
models and their implications for the galactic dynamics.

Comparing the results of the two models which are crucial to evaluate their fit to the kinematics and mass
profile of the galaxy. We can compare the predicted kinematic properties, such as line-of-sight velocity
and velocity dispersion, from each model with the observed values to determine the best fit. Additionally,
comparing the mass profiles from each model with the simulated mass will help assess their accuracy
in capturing the mass distribution. Analyzing the deviations between the models and observed data will
identify discrepancies and strengths/weaknesses. This comparison will determine the most reliable model
for fitting the kinematics and mass profile of the galaxy.

The corner plots (Figs. 4.6 and 4.7) depict the fitted parameters and their correlations for each of the models,
offering a comprehensive view of the parameter space exploration. In our model, the free parameters include
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Figure 4.5: The presented image displays a velocity map of the galaxy at a redshift of z = 1.58. Notably,
the map showcases a distinct rotational motion occurring along the galaxy’s minor axis. The small points
are particles from the simulation, while the larger dots are the surface brightness Voronoi bins, where the
radial velocity is derived.

the central density and scale radius of the NFW profile, the velocity anisotropy, and the rotation of the galaxy.
By examining the corner plots, we can gain insights into the relationships between these parameters and
better understand their impact on the model’s predictions.

4.2 Oblate rotation

We would like to remind readers that prior to the major merger event, which occurred approximately 7
Gyrs, the galaxy exhibited oblate rotation. The initial phase of the galaxy is important as the JAM model
was successfully applied to such systems before which will be our point of reference for the further evolution
of the galaxy.

4.2.1 Dynamical model of the galaxy at z = 1.58

In the simulation, the galaxy was initially an oblate rotator until redshift z ' 1.58. We chose to fit the Jeans
Anisotropic MGE (JAM) model to this early stage because fitting the JAM model to oblate galaxies has been
extensively studied. However, fitting the JAM model to prolate systems is not done before. Therefore, we
used the oblate case as a benchmark to test the applicability of the JAM model to prolate systems. Fig. 4.5
shows the velocity map of the galaxy at redshift z ' 1.58, obtained from the cosmological simulation.

The selection of the DM halo profile continues to be a subject of active discussion, particularly when applied
to galactic systems. The ⇤CDM model predicts a cusped DM profile, while observational evidence often
supports a cored DM profile for galaxies and dwarf galaxies (Hayashi et al., 2020; Wang et al., 2022). In
this study, we aimed to reconcile this disparity by incorporating both cusped and cored DM profiles in our
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Figure 4.6: MCMC post-burn distributions depict the results of fitting a JAM model of the cored DM profile,
and the solid lines show 1�, 2�, and 3� regions of the projected covariance matrix. The fitted parameters
are central density (log ⇢), scaled radius (log rs) for the DM halo and anisotropy (�z), rotation () for
explaining the dynamics of the galaxy.

dynamical model. Through a thorough comparison of the results and fitting parameters obtained from these
two profiles with the observed kinematics and mass profiles, we endeavored to discern which profile more
accurately characterizes the underlying dynamics of the galaxy.

In the model shown in Fig. 4.6, we utilized a cored spherical DM profile. The corner plot showcases the fitted
parameters for the dynamical models, including the rotation parameter  and anisotropy �z . The analysis
indicates that our model exhibits anisotropy, with positive values for  suggesting that the galaxy has an
oblate velocity ellipsoid. This signifies that the galaxy’s random motion is not uniform in all directions,
but rather elongated along a major axis. The inclusion of the rotation parameter  in our dynamical model
allows us to capture and quantify the rotational behavior of the galaxy, providing further insights into its
intrinsic structure and dynamics.

The MCMC post-burn distributions in Fig. 4.7 depict the results of fitting a JAM model of the cusped
DM profile. The fitted parameters are central density (log ⇢), scaled radius (log rs) for the DM halo and

29



Figure 4.7: The same as Fig. 4.6, but for a cuspy NFW DM profile.
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Figure 4.8: Density comparison of the fitted NFW profiles using the parameters obtained from the dynamical
modeling, for both the cored and cusped density models.

anisotropy (�z), rotation () for explaining the kinematics of the galaxy.

Similarly, for the cusp model, the fitted parameters can be visualized in Fig. 4.7. This corner plot provides
an overview of the parameter values obtained from the dynamical models using the cusp DM profile.

In the analysis of the two different DM halo profiles, we observed a remarkably close approximation of
the rotation and velocity anisotropy (�z), as well as the scale radius of the halo. However, a significant
difference was evident in the density profile of the two fitted models. The core model exhibited a flattened
density profile at the center, while the cusp model displayed a steeper density slope, as expected. This
discrepancy in the density profiles highlights the impact of the different halo profiles on the overall mass
distribution and kinematics of the galaxy shown in Fig. 4.8.

The top panel of Fig. 4.9 compares the line-of-sight velocities obtained from the cosmological simulation
with the velocities predicted by the two different DM profiles used as gravitational potentials in the JAM

model. This comparison allows us to evaluate the agreement between the simulated and modeled velocities,
providing valuable insights into the accuracy of the JAM model in capturing the galaxy’s kinematics.

In the upper panel of Fig 4.9 (middle), we see the results of the JAM model with the cored DM profile.
It is evident that at the outer skirts of the galaxy, where the uncertainties are higher, we observe a larger
mismatch. This indicates that the JAM model’s performance is relatively less accurate in those regions.
However, within the half-light radius of the galaxy, the JAM model demonstrates a remarkable level of
accuracy in predicting the line-of-sight velocities. The closely clustered data points and the small error bars
reflect the strong agreement between the modeled and simulated velocities in this region (see Fig 4.5).

The JAM model, particularly with the cored DM profile, effectively captures the galaxy’s kinematics, pro-
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Figure 4.9: The upper panel displays the 2D line-of-sight velocity of the galaxy from three sources: the
cosmological simulation (top left), the JAM model with a cored DM profile (top middle), and the JAM model
with a cusped DM profile (top right). The lower panel shows the 1D line-of-sight velocity for both models.
Red dots represent the location of the Voronoi bins, while blue dots indicate the corresponding line-of-sight
velocities from the model. Blue solid lines show the rotation profile along the major axis obtained from the
JAM model.
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viding reliable predictions for line-of-sight velocities within the half-light radius. Discrepancies in the outer
regions may stem from limited data points and complex dynamics. Overall, this comparison allows us to
assess the JAM model’s performance. Interestingly, the cusped DM profile predicts almost the same line-
of-sight velocity as the cored profile, suggesting minimal differences in the first velocity moment. Both
models offer a good match to observed velocities, showcasing their reliability in reproducing the galaxy’s
kinematics.

It is evident from the lower panel of Fig. 4.9 that the galaxy is rotating around its minor axis at the given
time. The plot displays the distribution of data points, which exhibit a dispersion indicative of the expected
range of velocities. This observation is further supported by the spread of the posterior distribution, indi-
cating that our model accurately captures the variability and predicted behavior of the galaxy’s rotational
motion.

Similarly, in Fig. 4.10, we compare the velocity dispersion of the galaxy with the fitted JAM model. The
upper panel of the plot displays the comparison of the velocity dispersion plot with the cosmological simu-
lation and the fitted JAM models.

Upon examination of the plots, we observe that both models predict relatively similar velocity dispersion
profiles for the galaxy. This indicates that the choice of the DM profile, whether cored or cusped, has a
minimal impact on the overall velocity dispersion predictions.

In the lower panel of Fig. 4.10, the velocity dispersion profile is well revealed by the JAM model. The plot
showcases the distribution of velocity dispersion values as a function of radial distance from the galactic
center. The JAM model effectively captures the trends and variations in the velocity dispersion, providing a
comprehensive understanding of how the dispersion changes across different regions of the galaxy.

Furthermore, it is worth noting that the vlos/� ratio in our model is very low see in Fig. 4.11. This suggests
that the galaxy is mostly pressure-dominated, with a limited amount of ordered motion.

Additionally, we also fitted the anisotropy parameter for the galaxy in both the cored and cusped gravi-
tational potential models. The results indicate the presence of anisotropy in the second velocity moment,
which corresponds to the velocity dispersion tensor. This suggests that the galaxy exhibits unequal velocity
dispersions in different directions, indicating a non-spherical distribution of velocities.

Furthermore, the increasing anisotropy parameter indicates that the galaxy is more flattened (oblate) (Cap-
pellari et al., 2007) implying that the galaxy’s velocity distribution is elongated along the major axis, re-
sulting in a flattened shape. This observation suggests that velocity anisotropy plays a significant role in
providing dynamic support to the galaxy.

The presence of velocity anisotropy implies that the velocities of stars or other celestial objects within the
galaxy are not randomly distributed, but exhibit preferential motions in certain directions. This anisotropy
in the velocity distribution influences the overall dynamics of the galaxy, affecting its stability, shape, and
mass distribution.

The dynamics of the galaxy plays a crucial role as it allows us to estimate the mass of the galaxy, which is a
fundamental quantity in astrophysics. Utilizing the fitted dynamical parameters obtained from our analysis,
we can predict the mass of the galaxy at a given time. This predicted mass can then be compared with
the mass derived from the cosmological simulation, enabling us to assess the consistency and accuracy of
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Figure 4.10: The figures above illustrate the galaxy’s velocity dispersion: the top-left panel displays es-
timates from the cosmological simulation, the middle panel depicts the line-of-sight velocity dispersion
predicted by the JAM model with a cored DM profile, and the top-right panel presents predictions with a
cusped DM profile. The bottom panels show velocity dispersion along the major (blue lines) and minor
(black lines) axes obtained from the posterior distribution, with thick solid lines representing the median
model.
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Figure 4.11: vlos/� diagram of the galaxy at its oblate rotation phase from the JAM models: core (left), cusp
(right). Red and blue dots represent the observed and modeled values in the respective Voronoi bins. The
blue lines show the posterior distribution of the vlos/� along the major axis.

our model in capturing the galactic mass. Fig. 4.12 highlights the comparison between the predicted mass
from the JAM model and the mass obtained from the cosmological simulation. Notably, the JAM model
demonstrates good agreement with the simulated mass within the half-light radius of the galaxy. However,
discrepancies become apparent in the outer regions.

The discrepancies observed in the outer regions of the galaxy between the predicted and simulated masses
could indeed be attributed to multiple collisions between the galaxy and its satellite halos during the con-
sidered time period. These collisions may have led to an increase in the galaxy’s mass, influencing its
dynamics. Comparisons between modeled and simulated masses provide valuable insights into the validity
of dynamical modeling approaches and their ability to accurately reproduce the fundamental properties of
galaxies.

In Fig. 4.12, we have plotted and compared the predicted mass profiles from two different models that were
fitted for this stage of the galaxy. We observe that the mass predicted by the core model shows a more
promising agreement with the observed mass distribution in the inner core of the galaxy. On the other hand,
the cusped model fails to accurately predict the total mass of the galaxy, even in the inner regions. The
cusped model predicts slightly higher mass at the half-light than the cored model.

The comparison between the modeled mass profiles and the mass derived from the cosmological simulation
provides insights into the accuracy and validity of our models in capturing the galactic mass. While the core
model performs relatively better in reproducing the mass distribution within the inner core, both models
show discrepancies in predicting the total mass of the galaxy at larger radii.

These findings highlight the complexity and challenges associated with modeling the mass profile of galax-
ies. It suggests that alternative models or additional physical processes may need to be considered to
improve the accuracy of mass predictions, particularly in the outer regions of the galaxy.

Indeed, further investigations and refinements in the models are essential to better understand the underlying
physics and to develop more accurate representations of the mass distribution in galaxies. The study of
galaxy formation and evolution is a complex and evolving field, and continuous efforts are necessary to
advance our knowledge. By gaining deeper insights into the fundamental properties of galaxies, we can
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Figure 4.12: Comparison of the best-fitted mass profiles obtained from the JAM model with the cosmological
simulation. The figures show the cored DM density profile (left) and cusped DM density profile (right)
models. The blue horizontal and vertical line represents the half-light radius and virial mass of the system
calculated from the modeled line-of-sight velocity dispersion and the half-light radius, following the method
outlined in (Wolf et al., 2010).

uncover the very complicated processes that shape their dynamics and evolution. Such research not only
contributes to our understanding of the universe but also has implications for broader cosmological and
astrophysical studies.

4.3 Prolate Rotation

During the evolutionary process of the galaxy, significant mergers occur between the host galaxy and its
satellite galaxies. These mergers involve the transfer of angular momentum, which can result in the galaxy
rotating around its major axis (Amorisco et al., 2014). This particular stage of the galaxy’s evolution
presents an intriguing opportunity to test the effectiveness of dynamical models.

Approximately 7.5 billion years ago in the simulation (z ' 0.86), the galaxy experienced a significant
merger event with a halo that had a mass approximately one-fifth that of the galaxy. This massive merger had
a profound impact on the kinematic properties of the galaxy, resulting in a notable alteration. Specifically,
the galaxy transformed into a prolate rotator, indicating that its rotation became around its major axis as a
consequence of this merger event (Cardona-Barrero et al., 2021).

What is particularly intriguing is that after the alteration of the galaxy’s rotation axis, it exhibits remarkable
stability and continues to rotate predominantly around its major axis. This stable rotation suggests that the
dynamics of the galaxy have settled into a state where the major axis serves as the primary axis of rotation
(see in Fig. 4.13). The angle (✓) between the stellar angular momentum vector and the orientation of the
principal axes of the ellipsoid provides insights into the evolution of the galaxy’s rotation. When observing
the blue curve, representing the angle between the stellar angular momentum and the principal minor axis,
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Figure 4.13: Principal axes orientation concerning the stellar angular momentum as a function of look-back
time. Major, minor, and intermediate axes are represented by blue, red, and green, respectively. Thin lines
indicate values from individual snapshots, while thick lines show the running average using a window of
six snapshots (⇠ 0.34 Gyr) Cardona-Barrero et al., 2021.

it shows the galaxy initially rotating along the major axis, evidenced by a cosine of angle approaches to
0, indicating perpendicular alignment. However, approximately 8 Gyr ago, this angle began to change,
coinciding with a merger event involving a satellite halo. Subsequently, the cosine of the angle approaches
1, signifying that these axes become parallel. This alignment indicates that the rotation axis is now parallel
to the major axis of the galaxy and it continues to the present day.

This persistence of rotational behavior around the major axis highlights the long-term stability and quasi-
dynamical equilibrium achieved by the galaxy following the significant merger event.

4.3.1 Dynamical Model of the galaxy at z ' 0.58

We applied the Jeans dynamical model to the galaxy shortly after the merger event, specifically at a redshift
of z ' 0.58 (see in Fig. 4.14). During this phase, the galaxy was assumed to be in a quasi-equilibrium state,
indicating that its dynamical properties had reached a relatively stable configuration following the merger.

In this phase of the galaxy’s evolution, we explored both cored and cusped DM profiles as possible op-
tions for the potential in our models. But in addition we also introduced a model variation by considering
different values of ↵, �, and � (outer, intermediate and the inner slope) of the generalised Herniquist DM

profile described in Equation 4.1 to determine the best-fitted mass profile obtained from the cosmological
simulation. This approach allowed us to explore the sensitivity of the mass profile to variations in the DM

halo parameters and assess the model’s capability to accurately capture the galaxy’s mass distribution.

The JAM modelling technique is analogous to the one described in section (4.2). The fitted parameters
utilizing the cored NFW central density, scale radius, velocity anisotropy, and rotation of the galaxy, are
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Figure 4.14: The image depicts a velocity map of the galaxy captured at a redshift of z = 0.58. Notably,
the map illustrates a noticeable rotational motion aligned with the galaxy’s major axis. In the visualization,
smaller dots denote the particle positions derived from the cosmological simulation, while larger dots rep-
resent the Voronoi binned data points.

displayed in Fig. 4.15. These parameters provide valuable insights into the dynamics of the galaxy and its
DM distribution.

In contrast to the previous scenario of oblate rotation, in this case, we observed a negative anisotropy (�z)
in the galaxy’s dynamics, indicating a prolate velocity ellipsoid. This suggests that the galaxy’s random
motion is elongated along its major axis. Despite attempts to solve the Jeans equations using an oblate
velocity ellipsoid, we were unable to obtain such solutions for the second velocity moments of the galaxy.
This highlights the novelty of our findings, as it suggests that only a prolate velocity ellipsoid is feasible in
this scenario, a hypothesis that has not been previously tested.

Our second model employs the cusped DM profile, using the same kinematics as above, to solve the Jeans
equations. The corresponding fitted parameters are displayed in the corner plot (Fig. 4.16). This model
exhibits similar values for the galaxy’s anisotropy and rotation parameters, but the scale radius and central
density of the galaxy are slightly higher compared to the cored model.

For our last dynamical model, we attempted to fit the generalized Hernquist profile as the DM profile to
assess which profile best describes the dynamics of the galaxy. We employed Equation 4.1 and utilized
the mass profile obtained from the cosmological simulation to constrain the parameters describing the DM

profile, including the intermediate and outer slopes ↵, �, and �, as well as the central density r0 and the
scale radius r. The fitted parameters are displayed in Fig. 4.18. This approach allowed us to directly incor-
porate the specific mass distribution derived from the cosmological simulation, providing a more accurate
representation of the galaxy’s mass profile in our dynamical modeling (see the fitted mass profile in Fig.
4.17).

Using the fitted DM profile, we once again utilized the kinematics obtained from the cosmological simu-
lation to solve the Jeans equations. We fitted the central density of the galaxy, its scale radius, velocity
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Figure 4.15: Posterior distributions and covariance matrices are obtained from our MCMC analysis, derived
for the parameters employed in fitting the JAM model using a cored NFW profile. These parameters comprise
the logarithm of the central density and scale radius (log ⇢) and (log rs) for the DM halo, as well as the
anisotropy (�z) and rotation () factors governing the galaxy’s dynamics. The contours illustrate the 1, 2,
and 3� constraints for each parameter.
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Figure 4.16: The same as Fig. 4.15, however, for the cusped NFW DM profile.
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Figure 4.17: Cosmological mass vs modelled mass using equation 4.1, using the fitted parameters shown in
Fig. 4.28.

anisotropy, and rotation parameters, as shown in the corner plot (Fig. 4.19). The JAM model incorporated
these fitted parameters to calculate the line-of-sight velocity and velocity dispersion profiles of the galaxy.

In all these three different density profiles, only negative anisotropy (�z) gave the feasible solution to the
Jeans equations, which means the velocity ellipsoid of the galaxy is prolate.

In Fig. 4.20, we present a comparison of the fitted density profiles of the galaxy using the JAM model.
The differences between the three different density profiles are evident, particularly in the inner and outer
regions of the galaxy. While the cored and cusped DM profiles exhibit similar density profiles in the outer
regions, the generalized Hernquist profile predicts a slightly higher density. However, in the inner region of
the galaxy, all three models predict significantly different densities, which can have a significant impact on
the dynamics of the galaxy.

In Fig. 4.21, we present a comparison of the line-of-sight velocity vlos obtained from three different JAM

models using different DM profiles. The top two rows show the 2D histogram for the first velocity moment
calculated from the JAM code. The vlos values from the three models are almost identical, with only slight
discrepancies observed at the outskirts of the galaxy.

The analysis of the line-of-sight velocity along the X-axis (minor axis) in the last row of Fig. 4.21 provides
further confirmation. The plot shows a clear rotation of the stellar particles along the minor axis, indicating
prolate rotation. The solid line represents the median vlos profile of the galaxy, while the thin curves rep-
resent random draws from the posterior distribution. This prolate rotation pattern aligns with our previous
study done by Cardona-Barrero et al. (2021) and contributes to a better understanding of the dynamics of
the galaxy.

Using the fitted parameters, the second velocity moment, directly related to the velocity dispersion of the
galaxy, can be calculated. The velocity dispersion obtained with different potentials in solving the Jeans
equations is then compared with reference data derived from the cosmological simulation to determine
which model best describes the velocity dispersion of the galaxy. (see in Fig. 4.22)

In Fig. 4.22, we present the comparison of the velocity dispersion obtained from the cored, cusped, and
generalized DM halo profiles with the reference data from the cosmological simulation. The 2D projection
plot of the velocity dispersion along the minor and major axes reveals that the cored and cusped DM pro-
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Figure 4.18: Corner plot displaying the posterior distributions of the fitted density profile parameters for
the galaxy, obtained through MCMC analysis. The fitted parameters include the logarithmic central density
(log ⇢), logarithmic scale radius (log rs), and the slopes of the density profile (↵,�, �) outlined in Equation
4.1. The contours represent the 1�, 2�, and 3� constraints of the fitted parameters.
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Figure 4.19: We apply a generalized Herniquist profile, using above-fitted parameters shown in Fig. 4.18,
to fit the JAM model, and the results of our MCMC analysis yield posterior distributions and covariance
matrices. Together with the anisotropy (�z) and rotation () factors controlling the galaxy’s dynamics,
these parameters include the logarithm of the central density and scale radius (log ⇢) and (log rs) for the DM
halo. The 1, 2, and 3� restrictions for each parameter are depicted by the outlines.
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Figure 4.20: Comparison of the density profiles modeled with fitted parameters derived from dynamical
modeling, representing the cored, cusped NFW DM models, and the generalized Hernquist model.

files produce almost identical velocity dispersion, while the generalized DM halo predicts a lower velocity
dispersion for the galaxy. This analysis allows us to assess the accuracy of each model in describing the
velocity dispersion of the galaxy.

The rotational velocity of the galaxy is relatively low compared to the velocity dispersion. This indicates
that the galaxy is primarily supported by pressure rather than ordered motion along a specific axis. The
presence of significant random velocities along different axes contributes to the pressure support and makes
the system against the gravitational collapse. In the context of galaxies, pressure support can come from the
random motion of gas and stars, which creates pressure that counteracts the gravitational pull of the galaxy’s
mass. This can be an important factor in determining the overall dynamics and stability of a galaxy.

Pressure support in galaxies can be maintained over long timescales because when gas is converted into
stars, any reduction in support is balanced by an inward flow of gas (Dalcanton & Stilp, 2010). This
continuous cycle of gas inflow and star formation helps to sustain the overall pressure within the galaxy,
allowing it to maintain its structural integrity and stability over time.

Indeed, all three models successfully reproduce the line-of-sight velocity distribution of the galaxy. How-
ever, when it comes to the velocity dispersion, the cored and cusped models perform relatively well, while
the generalized DM halo model predicts a lower velocity dispersion. This suggests that the generalized DM

potential might not be able to fully capture the dynamics of the galaxy, and the cored and cusped models
provide a better fit to the observed velocity dispersion data.

In this stage of the galaxy’s evolution, we achieved a significantly improved fit for the line-of-sight velocity
and velocity dispersion when compared to the previous case of oblate rotation. The dynamical model em-
ployed was able to accurately reproduce the observed data, indicating a better agreement between the model
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Figure 4.21: Comparison of the 2D line-of-sight velocity of the galaxy obtained from the cosmological
simulation (top left) and the line-of-sight velocity dispersion predicted by the JAM model using different
DM profiles, including cored (top right), cusped (middle left), and generalized DM halos (middle right). The
black ellipses represent the half-light radius of the galaxy. The lower panel displays the 1D line-of-sight
velocity profiles for all three models.
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predictions and the actual kinematic properties of the galaxy, both in the inner core and in the outskirts.

As seen in Fig. 4.23, the vlos/� ratio is notably lower compared to the oblate rotation phase depicted in
Fig. 4.11. This suggests that, at this stage, the galaxy was primarily influenced by pressure forces, leading
to an increase in randomness. This effect is observed for both cored and cusped NFW dark matter profiles,
compared to the generalized NFW dark matter profile.

The effect of a merger is a plausible explanation for these observations. Mergers can significantly disrupt the
structure and dynamics of galaxies, often leading to an increase in random motion and pressure forces that
can dominate over rotational motion, especially in the central regions. This can result in a more pressure-
dominated, spheroidal structure (Nipoti et al., 2003).

The distribution of matter in cosmological structures plays a crucial role in shaping the evolution and dy-
namics of galaxies and galaxy clusters. Mass is a fundamental property of these systems, and it strongly
influences their formation, growth, and interactions. Understanding the mass distribution within these struc-
tures is essential for studying their evolution, the processes of star formation, the growth of black holes, and
the overall large-scale structure of the universe (Courteau et al., 2014).

Based on the dynamical model discussed above, we can estimate the mass profile of the entire galaxy. The
results indicate that the mass predictions from the JAM model are generally in good agreement with the
mass profile obtained from the cosmological simulation, particularly within the inner regions of the galaxy.

Figure 4.24: Comparison of dynamical mass estimates derived from JAM models with observations obtained
from the cosmological simulation. Shown are the cored density profile (left), cusped density profile (mid-
dle), and a generalized Hernquist halo (right). The blue lines indicate the virial mass (calculated according
to the method detailed in Wolf et al. (2010)), while the vertical lines represent the half-light radius of the
modeled system.

The plots in Fig. 4.24 provide interesting insights into the mass distribution of the galaxy as predicted by
different models. The core model shows a slight deviation in the very inner core of the galaxy compared to
the simulated mass, but it closely matches the simulated mass at the half-light radius. In contrast, the cusped
profile predicts a slightly higher mass in the inner core. However, despite these differences in the inner
regions, both models yield similar total mass estimates for the galaxy. This suggests that while there may
be some variations in the mass distribution within the galaxy, the overall mass content remains consistent
between the models and the cosmological simulation. These findings are crucial for understanding the
dynamics and evolution of galaxies and provide valuable insights into the reliability of the models used in
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Figure 4.22: The figures present the 2D velocity dispersion estimates obtained from different models and
simulations: the cosmological simulation (top left), the line-of-sight velocity dispersion predicted by the
JAM model using a cored DM profile (top right), a cusped DM profile (middle), and a generalized Hernquist
density profile (bottom). The lower panel illustrates the 1D velocity dispersion along both the major and
minor axes.
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Figure 4.23: vlos/� diagram of the galaxy at z = 0.58 calculated from the JAM models: cored DM (left),
cusped DM (middle), and generalised DM (right) . Red and blue dots represent the observed and modeled
values in the respective Voronoi bins. The blue lines show the posterior distribution of the vlos/� along the
minor axis.

our study.

Indeed, the generalised DM halo model shows promising results in predicting the mass of the galaxy, as it
closely matches the simulated mass from the cosmological simulation. However, it falls short in reproducing
the kinematics of the galaxy, despite using the kinematics as the initial condition for our model. This
discrepancy indicates that the generalised DM halo model may not be suitable for accurately describing the
dynamics of the galaxy. It highlights the importance of carefully choosing the appropriate DM halo profile
to capture the complex dynamics and evolution of galaxies.

4.3.2 Dynamical Model of the galaxy at z ' 0.00

Studying the present stage of a galaxy is crucial for understanding its dynamics and evolution. By com-
paring the observations of the present stage of a galaxy with theoretical models, scientists can validate and
refine their models, and gain insights into the physical processes that shape galaxies.

In addition, studying the present stage of a galaxy can provide important information about its past and
future evolution. By constraining different models with observations, scientists can learn about the distri-
bution and properties of DM, which plays a key role in shaping the structure of galaxies. This information
can also be used to compare real galaxies and to validate the simulation.

The present time (z = 0.00) is indeed the most significant stage in galaxy evolution. As mentioned earlier,
at a lookback time of 7 Gyrs, the galaxy has already transformed its axis of rotation, aligning itself predomi-
nantly with the major axis (see in Fig 4.13). This shift in the rotation axis indicates a change in the galaxy’s
dynamics. Furthermore, even at present, the galaxy continues to exhibit prolate rotation, maintaining a
rotational motion that is elongated along its major axis which can also be seen from the velocity map of
the galaxy (see Fig. 4.25). The galaxy’s pressure support ensures long-term stability, leading to its prolate
rotation at the present stage.

We employed the photometry and kinematics acquired from the cosmological simulation as the input for
our JAM model. Subsequently, we conducted three distinct JAM models, each assuming different gravita-
tional potentials for the galaxy: i) cored DM, ii) cusped DM, and iii) generalised DM gravitational potential.
Using these three different models, we analyzed and described the kinematics of the galaxy, as well as pre-
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Figure 4.25: The image illustrates a velocity map of the galaxy at a redshift approximately z ⇠ 0.00.
Notably, the map reveals a noticeable rotational movement along the galaxy’s major axis. Smaller dots
represent particle positions obtained from the cosmological simulation, while larger dots denote the Voronoi
binned data points.

dicted its mass profile. By comparing the results of the three JAM models with the observed data from the
cosmological simulation, we aimed to gain deeper insights into the dynamics and mass distribution of the
galaxy and to understand the role of different DM halo profiles in shaping its properties.

Continuing our analysis, we extended the Jeans modeling to explore the dynamics of the galaxy at different
stages in its evolution. After investigating the galaxy’s behavior before and just after a major merger, we
now examine its state several billion years post-merger. In all cases, we maintain the assumption that the
galaxy is in a quasi-equilibrium state (where the galaxy is not undergoing any major changes on a short
time scale), allowing us to further understand its current behavior and dynamics.

To conduct the dynamical modeling of the galaxy’s present stage, we utilize input files derived from the
cosmological simulation. These files provide us with essential data, including the galaxy’s density distri-
bution obtained from its surface brightness profile. Additionally, we obtain the mean line-of-sight velocity
and velocity dispersion of the galaxy through Voronoi binning, as illustrated in Fig. 4.25, where the larger
dots represent the Voronoi bins.

By analyzing the line-of-sight velocity and velocity dispersion, we were able to gain a better understand-
ing of the galaxy’s internal kinematics. The fitted models successfully reproduced the observed velocity
distributions, indicating that they captured the underlying dynamics of the galaxy.

Building upon the aforementioned methodology, we have employed three distinct DM profiles to conduct
the dynamical analysis of the galaxy at its current stage. Of particular significance is the cored DM profile,
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Figure 4.26: MCMC post-burn distributions depict the results of fitting a JAM model of the cored DM profile,
and the solid lines show 1�, 2�, and 3� regions of the projected covariance matrix. The fitted parameters
are central density (log ⇢), scaled radius (log r0) for the DM halo and anisotropy (�z), rotation () for
explaining the dynamics of the galaxy.

50



Figure 4.27: The same as Fig. 4.26, but for the cusped NFW DM profile.

with its corresponding fitted parameters illustrated in Fig. 4.26. It’s noteworthy that we obtained a negative
anisotropy for the galaxy, which signifies that the prolate rotation of the galaxy persists even at this stage.
This finding provides valuable insights into the persistent rotational motion of the galaxy’s stars.

Likewise, the fitted parameters derived from the dynamic modeling of the galaxy utilizing the cusped DM

profile are presented in Fig. 4.27. Notably, this model exhibits a nearly identical anisotropy parameter for
the galaxy. However, the rotation parameter is relatively smaller in comparison to the cored DM profile,
indicating potential differences in the rotational motion of the galaxy’s stars between the two profiles.

In this scenario, even after 7 Gyr, the velocity anisotropy (�z) of the galaxy remains negative and shows
little variation. This consistent negativity suggests that the velocity ellipsoid maintains its prolate nature,
and only a prolate velocity ellipsoid yields viable Jeans models. This stability in the velocity anisotropy
post-merger indicates a relatively stable system, with minimal changes in the velocity distribution over time.

Similarly to the previous snapshots, we followed the same approach to directly fit the mass distribution ob-
tained from the cosmological simulation with the widely recognized Hernquist density profile. We assume
that this profile can provide an accurate description of the DM and the density distribution within the galaxy,
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potentially offering a more precise explanation for the galaxy’s kinematics and dynamics.

We display in Fig. 4.28 the corner plot of the fitted parameters used to describe the density profile of the
galaxy. These parameters include the central density of the DM halo, its scale radius, as well as the inner,
intermediate, and outer slope of the halo. These values are crucial for accurately characterizing the galaxy’s
density distribution. The result of the fit is presented in Fig. 4.29.

Utilizing the fitted density profile based on the observed mass distribution, we conducted the dynamical
modeling of the galaxy, following the same approach as before. The fitted parameters for the galaxy’s
dynamics are displayed in Fig. 4.30. These parameters are essential for understanding the kinematics and
behavior of the galaxy at this specific stage in its evolution. Our analysis revealed the presence of negative
anisotropy in all models, indicating a prolate velocity ellipsoid. This implies that the ordered motion within
the galaxy predominantly occurs along the minor axis.

As we can see from the comparison with the other fitted galaxy models we see that the anisotropy of the
galaxy is almost the same in all three models, but the central density and the scale radius are very different
with the cored and cusped density profile which is demonstrated in Fig. 4.31.

We employed the JAM model with the same observational data and fitting parameters. The model utilizes
these parameters as input to determine the line-of-sight velocity and velocity dispersion profiles of the
galaxy. Subsequently, we plotted these profiles for visual comparison with the observed data. We compared
the fitted first velocity moment with all three different DM halo profiles. The 2D velocity projections of all
these different predictions are depicted in Fig. 4.32.

The top-left plot in Fig. 4.32 displays the cosmological simulation, while the others depict the predictions
based on cored, cusped, and generalized DM profiles respectively. It’s evident from these plots that all
three different models provide an excellent fit within the galaxy’s half-light radius. However, towards the
outskirts of the galaxy, due to higher error counts in the surface brightness data, all three models exhibit
relatively less accurate predictions compared to the cosmological simulation.

The cusped density profile model exhibits lower first velocity moments in comparison to the observed data,
indicating an underestimation of the line-of-sight velocities. Nevertheless, it performs relatively better
within the galaxy’s half-light radius, suggesting that the cusped model is more effective at capturing the
inner dynamics of the galaxy.

Similarly, the generalised Hernquist halo model preserves the first velocity moments quite well, as shown in
the lower panel of Fig. 4.32. This suggests that the generalised Hernquist profile is capable of reproducing
the velocity distribution of the galaxy, providing a reasonable fit to the observed line-of-sight velocities.

This is further supported by the 1D plot of the line-of-sight velocity calculated using dynamical modeling
and the cosmological simulation shown in Fig 4.32. The dark solid blue line represents the line-of-sight
velocity along the rotation axis, while the fainter solid blue lines represent the line-of-sight velocity distri-
bution drawn from the posterior distribution of the MCMC fitting.

In Fig. 4.33, we analyze the second velocity moment, which is related to the velocity dispersion, predicted
by the three different models and compare them with the results obtained from the cosmological simulation.
Both the cored and cusped density models exhibit a strong agreement with the observed velocity dispersion
profile, closely matching the dispersion values derived from the cosmological simulation.
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Figure 4.28: Corner plot illustrating the posterior distributions of the derived density profile parameters
for the galaxy, acquired via MCMC analysis. The fitted parameters encompass the logarithm of the central
density (log ⇢), the logarithm of the scale radius (log rs), and the slopes defining the density profile (↵,�, �)
outlined in Equation 4.1. Contours within the plot outline the 1, 2, and 3� boundaries, showcasing the
constraints of the fitted parameters.
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Figure 4.29: A generalized Hernquist profile using the parameters obtained from a direct fit to the simulated
mass distribution shown in Fig. 4.28.

Figure 4.30: We utilize the parameters obtained from Fig. 4.28 to fit the JAM model with a generalized
Hernquist profile. Subsequently, the MCMC analysis yields posterior distributions and covariance matrices.
These parameters, encompassing the logarithm of the central density and scale radius (log ⇢, log r) for the
DM halo, in addition to the anisotropy (�z) and rotation () factors governing the galaxy’s dynamics, are
shown with their respective 1, 2, and 3� boundaries in the figures.
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Figure 4.31: Density comparison of the fitted NFW profiles using the parameters obtained from the dynam-
ical modeling, for both the cored and cusped density models.

However, the generalised Hernquist halo model, represented by the lower panel of Fig. 4.33, exhibits a
noticeable deviation from the observed velocity dispersion. The predicted velocity dispersion from the
generalised NFW profile is relatively lower compared to the simulation results. This discrepancy suggests
that the generalised Hernquist model may not be as effective in reproducing the velocity dispersion profile
of the galaxy, potentially due to its assumptions or limitations in capturing the true dynamics of the system.

Despite the generalised NFW model showing some deviations in reproducing the velocity dispersion profile,
it still demonstrates a notable capability to recover the mass of the galaxy. This suggests that while the
generalised NFW model may not be the most widely accepted model for capturing detailed kinematics, it
still provides reasonable estimations of the galaxy’s mass. This highlights the importance of considering
multiple aspects, such as dynamical properties and mass estimates when evaluating the effectiveness of
different models in understanding the galaxy’s overall dynamics.

A low vlos/� ratio at the center of the galaxy suggests that the galaxy is pressure-dominated, with high-
velocity dispersion compared to the line of sight velocity. This could indicate a more elliptical or spheroidal
structure in the central region.

As we move outward and the vlos/� ratio increases, this suggests that the rotational motion becomes more
significant, approaching the level of the velocity dispersion. This could indicate a transition to a more disk-
like structure in the outer regions. The increase in rotational motion could indeed help to stabilize the galaxy
and contribute to a prolate rotation shown in Fig. 4.34. As well as here cored NFW DM profile predicts more
accurate vlos/� than other JAM models.

Upon comparing the mass predictions from the cored and cusped DM profiles, it becomes evident that the
cored density profile provides a more accurate fit for both the outer and inner parts of the galaxy displayed
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Figure 4.32: Comparison between the 2D line-of-sight velocities of the galaxy derived from the cosmo-
logical simulation (top left) and those predicted by the JAM model employing various DM profiles: cored
(top right), cusped (middle left), and generalized DM halo (middle right). The black ellipses indicate the
galaxy’s half-light radius. The lower panel illustrates the 1D line-of-sight velocity profiles across all three
models.
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Figure 4.33: The images display 2D velocity dispersion data derived from various models and simulations:
the cosmological simulation (top left), line-of-sight velocity dispersion projected by the JAM model using
a cored DM profile (top right), a cusped DM profile (middle), and a generalized Hernquist density profile
(bottom). The lower panel showcases the 1D velocity dispersion along both major and minor axes.
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Figure 4.34: vlos/� diagram of the galaxy at z = 0 calculated from the JAM models: cored DM (left),
cusped DM (middle), and generalised DM (right) . Red and blue dots represent the observed and modeled
values, respectively, with the modeled values shown as thick blue lines and their posterior distribution as
light blue lines.

in Fig. 4.35. This implies that the cored DM profile is better suited for capturing the underlying mass
distribution of the galaxy, as it aligns more closely with the mass profile derived from the cosmological
simulation. This suggests that the cusped model may capture the mass distribution more effectively in the
outer regions, while the cored model excels in reproducing the mass profile in the inner regions.

Figure 4.35: Comparison of the calculated dynamical masses from the JAM models with the observational
data extracted from the cosmological simulation. The figures illustrate the cored density profile (left),
cusped density profile (middle), and a generalized Hernquist halo (right). The blue lines depict the virial
mass computed based on the methodology described in Wolf et al. (2010), while the vertical lines indicate
the half-light radius of the simulated system.

4.4 N-body Simulation

To investigate the evolution of the rotational behavior of the galaxy in the future, we performed an N-body
simulation. The simulation allows us to track the evolution of the galaxy’s dynamics and assess whether it
continues to exhibit prolate rotation or undergoes any changes over time.

In the ongoing exploration of the galaxy’s dynamics, we closely monitor the stars’ orbital angular mo-
mentum and velocity distribution within the simulation. This observation aims to discern any shifts in
the rotational axis or persistent prolate rotation patterns, contributing significant insights into the galaxy’s
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long-term stability and evolutionary dynamics.

Moreover, leveraging the fitted Jeans model and the resultant 6D phase space distribution, we undertake N-
body simulations to follow up the galaxy’s phase space distribution’s evolution. By simulating the galaxy’s
dynamics over a defined timeframe (400 Myr after the last snapshot with a time step of 1 Myr), we analyze
the potential changes in the phase space distribution and kinematics, providing a comprehensive view of
its evolutionary trajectory. Through these simulations, we trace the positions and velocities of individual
particles, considering their mutual gravitational interactions and assessing how the galaxy’s kinematics
evolve, particularly observing the continuity or alteration of the prolate rotation pattern. For this analysis,
we utilized the SWIFT code (Schaller et al., 2016), which is a parallel code designed to work in conjunction
with the GADGET-2 code (Springel, 2005).

Our N-body model has two components - one is the mass distribution of the stars and the other is the DM

mass distribution. The first step is to create initial conditions for the N-body run.

Creating a mock galaxy for the initial conditions of the N-body simulation poses a challenge due to our
limited access to only a projected image, which offers solely 2D insights into the galaxy. Deriving the
intrinsic 3D density distribution from this 2D image remains a complex task and a crucial step in accurately
modeling the galaxy’s dynamics.

In our study, we opted not to decompose the galaxy into separate disk and bulge components, instead relying
on the Sérsic brightness profile fitted to the surface brightness of the cosmological simulation (equation 3.1;
Ciotti and Bertin (1999) and Sérsic (1963)). Utilizing the MGE method outlined in Cappellari (2002), we
performed a deprojection process. Initially, we deprojected each Gaussian component individually from the
2D MGE surface brightness to acquire their 3D intrinsic density distributions. Subsequently, we combined
the 3D density distributions of all components to represent the entire galaxy.

We used the inverse transform sampling to generate the positions of the star particles according to the
de-projected brightness profile.

Inverse Transform Sampling

For a 1D case, let f(x) represent a probability distribution function (PDF) defined on the interval [a, b], with
its corresponding cumulative distribution function (CDF) FX(x) being a strictly increasing function. To
generate N samples (x1, x2, . . . , xN ) that follow the distribution described by f(x), the inverse transform
sampling method uses the inverse of the CDF:

xj = F
�1
X

(uj), where uj is uniform random value in the interval [0, 1].

In practical applications, obtaining the inverse transform F
�1
X

directly may not be straightforward. There-
fore, to find xj , the equation FX(xj) = uj is solved iteratively to find its roots, as F

�1
X

might not have
a simple analytical expression. Generating N samples using this method involves solving N root-finding
problems to obtain the desired random samples following the given PDF f(x) (An et al., 2022).
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Stars

The stellar distribution in galaxies is commonly characterized using brightness measurements, often de-
scribed by generalized exponential profiles like the Sérsic profile given by Equation 3.1. The Sérsic index
plays a crucial role in understanding the galaxy’s structural properties. In our simulated galaxy, the best-
fitted Sérsic index falls within the range (1 < n < 2), indicating a low central light concentration similar to
the disks of spiral galaxies.

The 3D luminosity density of the galaxy is obtained from the surface brightness (I(R)), by de-projection
which is done by using the Abel integration (see Tonelli, 1928).

However, in our study, we employ the MGE approach for de-projecting the surface brightness, which offers
computational advantages for solving the Jeans equations and obtaining higher velocity moments. The 3D

luminosity density profile resulting from the deprojected Sérsic profile in the axisymmetric case is expressed
by Equation 4.2, where N represents the number of Gaussian functions, Lj represents the surface brightness
for each Gaussian, qj represents the axis ratio.

⇢(R, z) =
NX

j=0

Lj

(�j
p
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2

q
2
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!#
(4.2)

Using Equation 4.2, we can compute the cumulative luminosity of each Gaussian component and we employ
inverse transform sampling to generate random star positions assuming that the luminosity is a proxy to the
stellar density.

Fig. 4.36 compares the 3D number density of the mock galaxy with the volume density derived from the
MGE method. The close correspondence between the number density of the test particles and the density
profile obtained from the cosmological simulation validates our mock galaxy model.

Through the 1D inverse transform sampling method, we obtained random samples representing the elliptical
radial coordinates of our star particles. These samples were then transformed to 3D position coordinates of
the test particles by generating the spherical angles ✓ and�. ✓ is sampled as the arccos of a uniform random
variable between [�1,+1]. � is a uniformly sampled in the interval [0, 2⇡]. These sample points represent
the spherical coordinates. The Cartesian coordinates of the generated points are calculated from the radial
distances and the spherical angles, taking into account the galaxy’s ellipsoidal shape. The projected 3D

position of the galaxy in three coordinates axes are shown in Fig. 4.37

For the construction ICs of the mock galaxy, various methods can be employed, including DF-based,
moment-based, orbit-based, and others. Each method offers unique advantages and challenges in creat-
ing a stable and realistic galaxy model. In this project we used Jeans equations (moment-based) to get the
velocity distribution of the mock galaxy.

The best fit JAM model provides the mean velocity and velocity dispersion for the mock galaxy at the
position of each star. Subsequently, we sample the random velocities of each particle by sampling from a
normal distribution centered around the mean velocity and the dispersions predicted by the JAM model.
The resultant line-of-sight velocity and the velocity dispersion of sampled galaxy and the JAM model is
shown in Fig. 4.38.
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Figure 4.36: Random sample generated from the inverse transform sampling of deprojected density profile.

Figure 4.37: Random sample generated from the 3D intrinsic density profile from the deprojection of the
2D brightness profile.
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Figure 4.38: Comparision of the sampled galaxy with the JAM model: line of sight velocity (Left), and
velocity dispersion along the line of sight (Right). Blue dots represent the binned data points of the random
sample, while the solid red line represents the JAM model.

Dark Matter

In our N-body simulation, we employ an embedded cored NFW DM profile with parameters according to
our best fit JAM model.

The density profile of any halo can be described by the equation (Navarro et al., 1997):

⇢(r)

⇢crit,0
=

�char

(r/rs)(1 + r/rs)2
(4.3)

This describes the density profile of any halo with only two parameters, a characteristic density contrast,
�char and the scale radius rs. In this context, the term ”density contrast” refers to the density expressed in
terms of the critical density, denoted as ⇢crit =

3H2

8⇡G , where H(z = 0) = 70 km s�1 Mpc�1 represents the
Hubble constant.

By defining the mass of a halo as the mass enclosed within r200, the radius of a sphere with a mean density
contrast of 200, we introduce a single adjustable parameter that fully describes the mass profiles of halos
with a given mass (Navarro et al., 1997; Power et al., 2003).

The scale radius rs is defined by rv/c where rv is the virial radius and c is the concentration parameter
which is related to the characteristic density (Łokas, 2001): �char = 200 c3 g(c)/3 where,

g(c) =
1

ln(1 + c)� c

1+c

(4.4)

Assigning the total mass of the DM to match the mass derived from the galaxy’s Jeans modeling ensures
a consistent framework for the mass distribution within the model. This implies that our star particles
reside within a spherical DM structure, with their combined mass matching the value obtained from the JAM

model. Here, we set the mass of each star particle as calculated from the galaxy’s luminosity, which is
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Figure 4.39: Density variation of the galaxy during ongoing evolution over the next 300 Myr.

approximately 11M� for 1000000 test particles.

The softening parameter is crucial in N-body simulations as it mitigates the impact of gravity between
closely positioned gravitational bodies. To determine this parameter, we consider the maximum stochastic
acceleration caused by close approaches to a single particle, amax = Gm/✏

2, which should be less than
the minimum mean-field acceleration in a virial halo, amin = GM200/r

2
200. This argument sets a lower

limit for the softening length necessary to avoid strong discreteness effects, ✏ > ✏acc ⇠ r200/
p
N200, where

N200 is the number of particles within the virial radius. This criterion ensures that discreteness effects are
effectively managed within the simulation (Dehnen & Read, 2011; Power et al., 2003; T. Zhang et al.,
2019).

We employed the SWIFT hydrodynamical simulation code, which is a parallel code built upon the foundation
of GADGET-2. This newly developed open-source cosmological code is specifically designed to solve the
equations of hydrodynamics using a particle-based approach (Schaller et al., 2023; Schaller et al., 2016).

In our straightforward N-body simulation, we employed 1000000 particles to represent the galaxy. We
chose a softening length of 0.001 kpc and set the virial mass of the galaxy to 1⇥ 109M� in accordance to
our JAM model. This configuration yielded a concentration parameter for the DM halo of c = 25, with a
scale radius of 0.8 kpc. The N-body simulation was conducted over a duration of 400Myr with a step of
1Myr.

Fig. 4.39, illustrate the spherically averaged density profiles along galaxy’s radius, when evolved with time.
The distinct drop in density suggest that after 200 Myr, the galaxy is primarily influenced by the DM density,
potentially leading to a loss of its prolate nature.

Indeed, the extended nature of the DM profile, which dominates the galactic potential, has a profound effect
on the behavior of the star particles within the galaxy. As the DM distribution extends far beyond the stellar
component, the central compactness of the galaxy diminishes. Consequently, the influence of random
motion within the galaxy increases, leading to a reduction in the rotational velocity of the galaxy. This can
be clearly illustrated in the 2D projection plot of the galaxy with the color-coded line-of-sight velocity in
Fig. 4.40.
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Figure 4.40: 2D plot illustrating the projected line-of-sight stellar velocity field. The left panel displays the
galaxy’s initial phase, while the right panel depicts its state after 100 Myr.

The projected 2D positions of the stars in the N-body galaxy provide valuable insights into the distribution
of ordered motion. We observe a rapid loss of ordered motion, and the velocity distribution becomes
randomized due to the pressure forces. This randomization contributes to the overall stability of the system,
allowing the galaxy to maintain its dynamic equilibrium.

Fig. 4.41 shows the radial profiles of the velocity dispersion along the line-of-sight (upper) and the mass
profiles (lower) produced by SWIFT both at the initial time and after different times of evolution. Upon the
time evolution, the velocity dispersion profiles decrease at the center, while increasing at the outer radius.
This trend may be influenced by presence of the DM halo, with its gravitational effects causing the outer
edges of the galaxy to move faster, as expected. Which can also be observed from the lower panel of Fig.
4.41, where the spherically averaged mass of the galaxy is dominated at the outer radius after 200 Myr,
sufficiently suppressing the inner velocity dispersion and the rotational velocity of the galaxy.

The initialization of the initial conditions could significantly impact the equilibrium state of the galaxy. For
instance, in the prolate rotation scenario of the galaxy, our assumption of a spherical DM potential might
influence the transition of stars from a prolate to a spherical nature, as indicated in the right panel of Fig.
4.40. This suggests that a prolate DM halo might be possible explanation of the prominent prolate nature of
the galaxy’s shape.

On the other hand, in this simplified scenario, the rotation of the galaxy diminishes after approximately 100-
200 Myr. This implies that the initialization approach may not be accurate, as it does not account for gas
dynamics, molecular clouds, and potentially a central DM component. The exclusion of these components
directly impact the rotational dynamics of the galaxy.

We aim to explore alternative methods for generating more accurate ICs for N-body simulations in future
projects. One approach involves sampling the DM halos to better capture the shape of the galaxy. Addition-
ally, we plan to create ICs using GalIC, a method that offers more sophisticated techniques for constructing
galaxy models. These endeavors will contribute to refining our understanding of galaxy dynamics and
evolution in N-body simulations, especially in a prolate rotating system.
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Figure 4.41: Variation of the velocity dispersion along line-of-sight velocity (Upper panel), and the cumu-
lative mass of the galaxy (Lower panel) over next 400 Myr.
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Chapter 5

CONCLUSION

This work presents the study of an equilibrium modeling of a cosmologically simulated galaxy at the dif-
ferent times of its evolution. The interesting thing about this particular galaxy is that it transforms into a
prolate rotator after a major merger event. We summarize the obtained results in this section, along with
highlighting the caveats of the study and suggesting avenues for future research.

First of all, we used the data generated by a hydrodynamical cosmological simulation of the dwarf galaxy
which shows the rotation around the major axis (Cardona-Barrero et al., 2021). The main goal of this work
is to perform the equilibrium Jeans Axisymmetric Modeling (JAM), for all the different evolutionary stages
of the galaxy assuming it is at quasi-equilibrium state. JAM was extensively used to understand the dynamics
of equilibrium systems, mostly for oblate rotators (q < 1). But this work is entirely new as this is the first
attempt to do the JAM modeling for a prolate rotating system (q > 1) and the results are encouraging.

As a first step, we utilized the Voronoi binned data of the galaxy’s luminosity to calculate its luminosity
density profile. This profile was then fitted to a Multi-Gaussian Expansion MGE model, which facilitated
the analytical solution of the Jeans equations. Additionally, we incorporated the kinematics, specifically
the velocity moments of the galaxy, as the second input for the JAM model. The gravitational potential of
the galaxy was a crucial component, modeled using an NFW spherical halo, as the majority of the galaxy’s
mass is composed of DM. We examined cored, cusped, and generalised DM density profiles to determine
which best aligned with the simulated data. During the kinematic analysis, we fitted the velocity anisotropy
parameter (�z) and the rotation parameter () of the galaxy. These parameters provide insights into the
distribution of velocity ellipsoids and the deviation of the velocity field with respect to an isotropic rotator.

We initiated our modeling process from the early stage of the galaxy’s evolution, specifically at z = 1.58,
when the simulated galaxy exhibited clear oblate rotation. This initial phase served as a benchmark for
further analysis, as the JAM model has been successfully applied to galaxies with similar rotation charac-
teristics in previous studies. The result of the JAM model suggests that it can regenerate the kinematics of
the galaxy as assumed by the simulation. But we saw that the cored NFW DM profile is more favored than
the cusped NFW DM in recovering the kinematics and the mass of the galaxy. During the initial phase of the
galaxy’s evolution, we observed a positive velocity anisotropy (0 < �z < 1), indicating that the velocity
ellipsoids are not perfectly spherical but slightly oblate in nature. Similarly, the rotation parameter ( 6= 1),
implying that the velocity ellipsoid is not spherical everywhere and exhibits specific rotation. This suggests
that rotational support plays a significant role in the galaxy’s dynamics during this phase.
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Moreover, we extended our study to evaluate whether the JAM model could explain the dynamics of the
galaxy at various time intervals. We tested the JAM model at different stages of the galaxy’s evolution,
but here we focused on two significant steps: shortly after the major merger (z = 0.58), when the galaxy
begins rotating around its major axis, and at the present time (z = 0), which is a crucial stage as the galaxy
continues to exhibit rotation around its major axis.

The results indicate that the JAM model also successfully recovered the prolate kinematics of the galaxy at
z = 0.58 and its mass with the cored NFW DM profile, which provided more accurate dynamics than the
cusped profile.

Furthermore, when fitting the velocity anisotropy and rotation parameter, we obtained �z < 0, indicating
a prolate velocity ellipsoid, and  6= 1, suggesting the galaxy is not an isotropic rotator. In this case, we
found that only prolate velocity ellipsoids can solve the Jeans equations, strongly favoring the orientation
of the velocity ellipsoid to be prolate. In contrast, we remind the reader that both prolate and oblate velocity
ellipsoids are viable solutions to the Jeans equations for oblate rotating systems.

Additionally, we introduced the generalized NFW DM profile, which better matched the mass obtained from
the hydrodynamical cosmological simulation. However, this model couldn’t accurately reproduce the actual
velocity moments predicted in the simulation.

In the third JAM model, we explored the present stage of the evolution (z = 0). Here also, we compared
the dynamics obtained from the model with the simulated data. We obtained results similar to those when
the galaxy was at z = 0.58. One important finding was that the mass profile predicted by the JAM model
almost matched even better with the simulation. In this case also, the dynamical parameters �z < 0 and
 6= 1, indicating a prolate velocity ellipsoid.

We also evaluated the dynamical stability of the JAM model through N-body simulations, as the last stage of
the cosmological simulation appears to be time enduring. To accomplish this, we employed the de-projected
luminosity density to generate 3D positions of a corresponding mock galaxy. Then we utilized the Jeans
equations to obtain the 3D velocity field for our N-body system. For the N-body simulation, we used the
SWIFT code, which is a derivation of the GADGET-2 code.

We assigned a stellar mass of each N-body particle, obtained from the luminosity profile of the galaxy,
which is embedded within the spherical NFW DM halo. We ran our N-body model for the next 400 Myr, but
the results were not entirely surprising. The prolonged prolate rotation observed in the cosmological simu-
lation suddenly disappeared after 100-200 Myr in contrast to its longevity in the cosmological simulation.
This discrepancy could stem from various factors. One possibility is that the initial conditions (IC) of the
N-body model were not as accurate as those in the cosmological simulation. Another factor could be the
influence of the DM halo, which might increase the random motion within the galaxy, thereby suppressing
the ordered motion.

Overall, it remains an open question what are the main factors responsible for the time endurance of the
prolate rotation in the cosmological simulation.
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Caveats and Future work

It is worth noting that the dynamics of galaxies are influenced by a multitude of factors, including the
interplay between dark matter, baryonic matter, and the hierarchical merging processes that shape galaxy
formation and evolution. Therefore, further investigations and refinements in the simulation setup, such as
incorporating more detailed baryonic physics or exploring alternative merger scenarios, may also contribute
to a better understanding of the behavior and persistence of prolate rotation in galaxies.

The rotational velocity of the galaxy at the cosmological simulation is low, with the average slope of the
rotational velocity being dvrot/dr = 0.88± 0.12 km s�1 kpc�1 at z = 0 (Cardona-Barrero et al., 2021). It
is noteworthy that despite the caveat of a low V

max
rot /�3D ratio observed in the galaxy, the overall test was

successful.

However, it is important to acknowledge that there are certain discrepancies in the early stage of the galaxy
with the best fit model. It can be attributed to several factors. Firstly, the lack of detailed information at the
outer scale of the galaxy can limit the accuracy of model predictions. Outer regions of galaxies often have
sparse data, making it challenging to constrain the dynamical models effectively.

Additionally, the accuracy of the kinematic estimates heavily relies on the surface brightness profile, which
is used as a crucial tracer. Errors or uncertainties in the surface brightness measurements can propagate into
the estimation of kinematics and potentially introduce discrepancies in the results.

During the fitting process of the JAM model with the available data, we encountered some intricacies. We
found that there is a narrow �z and space of the valid model. This can make it harder to find a model that
fits the data well while also satisfying the physical constraints of the system.

In the future, we plan to conduct observational studies to measure the proper motion and positions of the
majority of stars in the Phoenix dwarf galaxy. This galaxy exhibits characteristics similar to those of our
simulated galaxy. Through this observational endeavor, we aim to evaluate the reliability and accuracy of
our model in capturing the dynamics and kinematics of real-world celestial objects. Such observations will
provide valuable insights into the behavior of galaxies and help refine our understanding of their evolution-
ary processes.

We also intend to perform more dynamic modeling, such as the orbit-based Schwarzschild model, which is
comparable to our fitted JAM model and takes into account the galaxy’s triaxial structure. This comparison
analysis is helpful in determining if the two equilibrium models can realistically fit the simulated data.

Additionally, our N-body simulation reveals that the prolate rotation diminishes prematurely. We can con-
sider alternative approaches to investigate potential errors during the N-body simulation. One option is to
introduce an external prolate dark matter halo, while another involves sampling the halo from the mass
predicted by the Jeans model. These strategies will help us identify and address the factors contributing to
the observed discrepancy.

Indeed, the JAM models have provided valuable insights into the velocity anisotropy, rotation, mass profile,
and kinematics of the galaxy. They have successfully reproduced the observed data and yielded meaningful
results.

The utilization of data from the cosmological simulation in this study has provided valuable insights and
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benefits. By testing the viability of the dynamical models on simulated data, this study offers a robust
assessment of the models’ performance and their ability to reproduce the observed kinematics and mass
profile of a prolate rotating galaxy.

The test results analysed using the cosmological simulation provide a valuable benchmark for evaluating
the accuracy and effectiveness of the dynamical models. This study validates the use of simulated data,
increasing confidence in the analysis and interpretation of observational data from galaxies.
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