
Universität Potsdam

Leibniz-Institut für Astrophysik Potsdam
(AIP)

MASTER THESIS

Analysis of the statistical properties
of structures in the ISM using
hydrodynamical simulations

Bogdan-Vasile Corobean

Advisor: Dr. Tobias Buck
First reviewer: Prof. Dr. Christoph Pfrommer

Second reviewer: Prof. Dr. Tim Dietrich

Potsdam, December 2021





3

Abstract

The interstellar medium (ISM) is a dilute, highly non-uniform medium, made
up of gas, dust, magnetic fields, cosmic rays, and radiation. These components
interact through physical processes on a wide range of spatial and density scales,
which are currently unfeasible for cosmological simulations to resolve in a self-
consistent manner. In this work we put forth a statistical model of the density
structures in the ISM based on the analysis of results from the high resolution
SILCC simulation. We first verify that the analysis is robust to changes in simu-
lation resolution and, in preparation for future work, present a simple model for
stellar winds using data from stellar evolution tracks. Next, starting from the
widely accepted assumption than the interstellar gas follows a log-normal proba-
bility distribution function (PDF), we derive a model which relates the covering
fraction, κ, (a measure the optical thickness of a spherical region) to the spatial
scale of a region within the ISM, the volume-averaged density, and the clumping
factor, Cρ, (a measure of how structured a spherical region is). The model shows
that κ evolves with density in a manner described by the error function (which
is the cumulative of a log-normal PDF), however with a high degree of scatter
which can be modelled using the clumping factor.
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1 Introduction

The interstellar medium (ISM) is, alongside stars and stellar remnants, the most
important visible component of a galaxy. It is a dilute, but highly non-uniform
medium with densities ranging from less than 1, to a few hundred particles per
cubic centimeter, consisting of atoms, ions (including cosmic rays), molecules,
and dust. Radiation and magnetic fields are also ubiquitous.

An important feature of the ISM is that it is where star formation occurs.
More precisely, this occurs in cold, dense structures called molecular clouds, which
fragment, cool and collapse to form stars, binaries, and stellar clusters. The stars
in turn influence molecular clouds through various so-called feedback mechanisms.
UV radiation ionizes the surrounding gas and can dissociate molecules, while
stellar winds and supernova explosions inject energy and momentum into the gas
clouds and are also responsible for the chemical enrichment of the ISM. This
complex interplay of physical processes on a wide range of scales is crucial for
regulating star formation and, ultimately, galaxy evolution, however it is still not
understood in a consistent way.

The goal of this project is to perform a statistical analysis of the density
structures in the ISM with data from high-resolution numerical simulations. This
work can potentially form the basis of a sub-grid model to be used in large scale
simulations.

This thesis is structured as follows: Chapter 2 provides a brief review of the
properties of the ISM and the most important physical processes that are at play
there. In Chapter 3 we outline analysis methods used in this work, as well as the
most important results. Finally, in Chapter 4 and Chapter 5 we summarize and
discuss our findings.
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2 Theoretical background

This chapter covers some basic aspects of the interstellar medium (ISM), in par-
ticular those which are relevant for the work presented here. We summarize the
composition and phases of the ISM, the physical processes which are at play, tur-
bulence and shocks. We also briefly describe molecular clouds and star formation,
as well as the process which generates stellar winds.

2.1 The ISM

To better understand the ISM it is instructive to first go through its most basic
components and outline the physical processes which determine the partition of
the gas into its various phases.

2.1.1 The components of the ISM

The ISM is made up of gas (in neutral atomic, ionized and molecular form), dust,
magnetic fields, cosmic rays, and radiation.

Gas Neutral hydrogen (HI) is the most abundant element in the ISM. While in
this state, it is fairly easy to detect. Hydrogen atoms have a hyperfine transition
from the interaction between the electron spin and the nuclear spin. The spin
parallel state is characterized by a slightly higher energy than the spin antiparal-
lel state. The neutral atoms are excited through collisions and the difference in
energy between these energy levels have been very precisely measured in the labo-
ratory to be 1420.4058 MHz (Hellwig et al., 1970), corresponding to a wavelength
of 21.106 cm. The energy/temperature of this transition is very small (≪ 1 K),
so it can be excited even in the coldest regions of the ISM. This so-called 21cm
line is one of main tools for investigating the neutral gas in the galaxy, as well as
at higher redshifts.

The ISM contains a significant amount of helium, ∼ 10% by particle number
(Williams, 2005). In addition to these elements, which are the products of Big
Bang nucleosynthesis and are the most abundant in the ISM (as well as the
Universe), other elements are created by stellar activity and released either via
winds or supernova explosions: oxygen, carbon, nitrogen. There are also trace
amounts of all the other elements, as well as a variety of molecules, which are
found in cold, dense molecular clouds.

The temperature of the neutral gas in the ISM is ∼ 10K and the density is
∼ 1 particle per cubic centimeter, however these properties can vary widely as a
result of various physical processes acting on the gas, thus not all gas is neutral
or in atomic form. The question of which are the stable states of the ISM gas



8 2.1 The ISM

is a classic problem in astrophysics, one which has lead to the development of a
theory of the ISM phases (see Section 2.1.2).

Dust About 1% of the mass of the ISM is in dust. It is formed in the atmo-
spheres the outflows of stars and in supernovae, and is mainly made up of silicates
and carbon (including polycyclic aromatic hydrocarbons, PAHs) (Draine, 2003).

The existence of dust can be inferred in a number of ways. First, since it
emits at ∼ 20K, its features can be detected in the infrared. Second, since it
preferentially absorbs blue light, dust causes the reddening of background sources.
The amount of reddening can be inferred by comparing stars of the same spectral
type. Finally, dust causes extinction, i.e. a decrease in the observed brightness
of an object due to the absorbtion and scattering of light along the way to the
observer1. There are particular features of the extinction curve, most notably
a ”bump” at 217.5 nm associated graphite, which also point to the existence
(Klessen & Glover, 2014).

Magnetic fields Magnetic fields have been detected in the ISM using various
methods (Widrow, 2002): synchrotron emission (the emission of radiation in the
radio part of the spectrum by a charged particle spiraling along magnetic fields),
Faraday rotation (change in polarization of linearly polarized light as it passes
through a medium in the presence of a magnetic field), Zeeman splitting (the
splitting of a spectral line into several components in the presence of a magnetic
field), and polarization of optical starlight (dust grains in the foreground absorb
and re-emit polarized light). The average strength of the magnetic field is on the
order of ∼ 1µG, but can increase by an order of magnitude in HII regions and
two orders of magnitude in molecular clouds and supernova remnants.

The origin of magnetic fields in the galaxy is unknown. However weak seed
fields generated in the early Universe at cosmological phase transitions or through
a Biermann battery process could then be amplified through a dynamo mecha-
nism, such as differential rotation or small-scale velocity fluctuations (Widrow,
2002).

Magnetic fields are important for many processes in the ISM. They are essen-
tial in the mechanism of the magnetorotational instability (MRI) (Balbus & Haw-
ley, 1991), which removes angular momentum in protostellar clouds thus playing

1Robert Trumpler is credited with the discovery of interstellar dust in 1930. He measured
both angular diameter and photometric distances to 100 open star clusters, and found that
there were differences between them. Angular diameter distances were found to be consistently
smaller than expected when compared to the photometric distances, with the discrepancy in-
creasing the farther away the clusters were. This suggested there was something along the line
of sight, absorbing the light and making the objects appear dimmer, which Trumpler attributed
to some ”finely divided matter” (Trumpler, 1930).
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a role in star and planet formation. Magnetohydrodynamic (MHD) turbulence
is involved in cosmic ray acceleration (see Section 2.4), which then propagate
propagate throughout the galaxy along magnetic field lines.

Since resistivity is negligible in the ISM, the ideal MHD approximation is valid
in this case. This implies that magnetic fields are frozen into the plasma, i.e. the
magnetic field moves with the gas.

Cosmic rays Cosmic rays (CRs) are highly energetic, relativistic charged par-
ticles (protons, electrons, and ions). In the Milky Way, they are approximately
in equipartition with thermal and magnetic energy.

Cosmic rays do not interact with matter via scattering on individual particles,
rather by scattering off electromagnetic waves or Alfvén waves. A remarkable
characteristic of cosmic rays is that they follow a power-law distribution 33 orders
of magnitude in flux and 12 orders of magnitude in energy (see Figure 1). This
power law has two distinct features: a ”knee” at 3 × 1015 eV, where the slope
changes from −2.7 to −3.1, and an ”ankle” at ∼ 1018 eV, where the slope hardens
once again (Blasi, 2013).

The source of cosmic rays is still a topic of research. A potential clue can be
found the Hillas criterion (Hillas, 1984), which provides an energy limit for CRs
depending on the size of the source

Emax = ZeβBR (1)

which relates the maximum energy of a particle to the ion charge Ze, the
magnetic field B, the characteristic velocity of scattering centers β = u/c, and
the characteristic scale of the shock R. According to this, the Larmor radius of
the particle being accelerated cannot exceed the size of the source, suggesting
that the highest energy cosmic rays, in particular those beyond the knee, most
likely come from outside the galaxy. Galactic sources include pulsars, type II
supernovae, and shocks from supernova remnants and stellar winds, while extra-
galactic sources include gamma ray bursts and active galactic nuclei (AGN). Since
cosmic rays move along magnetic fields lines in the galaxy, it is impossible to trace
a particle to its exact source. Instead cosmic ray sources can be determined via
the detection of gamma rays, which are by-products of cosmic ray interactions.

The process which accelerates cosmic rays is a classic problem in astrophysics.
Enrico Fermi proposed a mechanism in which charged particles interact with the
moving irregularities in the magnetic fields which are found throughout inter-
stellar space (Fermi, 1949). Particles gain energy with each reflection off these
”magnetic mirrors” and if they remain in this region for some characteristic time
τ a power-law distribution of particle energies is obtained, matching the observa-
tion. In the following decades the basic Fermi acceleration mechanism has been
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Figure 1: Cosmic ray flux as a function of cosmic ray energy. On a logarithmic
scale the relation is linear with a slope of −2.7. The plot has two main features:
a ”knee” at 3×1015 eV, where the slope becomes −3.1, and an ”ankle” at ∼ 1018

eV, where the slope reverts to its original value. CRs beyond the knee are thought
to be energetic enough that they must originate from outside the galaxy. Image
source: Wikimedia Commons.
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refined and put on solid theoretical grounds and is currently the most successful
theory of cosmic ray acceleration (see Section 2.4 for details).

Radiation The properties of the ISM are determined in large part by the inter-
action of the gas and dust with the interstellar radiation field (ISRF). The energy
density of the ISRF consists of the following components:

• galactic synchrotron (radio) emission from relativistic electrons

• the CMB

• infrared and far-infrared emission from dust grains heated by starlight

• bound-bound, bound-free, and free-free emission from 104 K ionized plasma

• X-rays from 105 − 108 K plasma

In the ISM, most of the energy density is in the infrared (thermal dust emission
and CMB) and in the optical and UV (starlight) (Klessen & Glover, 2014).

2.1.2 Phases of the ISM

With regards to its thermal and chemical properties, the ISM can be divided
into a series of phases. According to an influential early model presented by
Field, Goldsmith and Habing in 1969 (Field et al., 1969), atomic gas in thermal
equilibrium in the ISM can exist in two states: cold, dense gas with T ∼ 100
K (according to modern nomenclature, this is the cold neutral medium, CNM)
and warm, diffuse gas with T ∼ 104 K (the warm neutral medium, WNM). Gas
at intermediate temperatures is thermally unstable, so it would either cool and
increase in density, or heat up and decrease in density. This model was extended
by McKee & Ostriker (1977), who posited that gas in the ISM would be heated
by supernovae, creating large ionized bubbles filled with hot gas with T ∼ 106 K
(hot ionized medium, HIM). While this gas is expected to cool, the cooling time
at T ∼ 106 K is significantly larger than the cooling time in the range 104 to 106

K, so most of the gas will be found at about 106 K (Klessen & Glover, 2014).
Even before these models were being put forth, there was observational evi-

dence of an extensive layer of warm (104 K), low density (10−1 cm−1) gas sur-
rounding the plane of our galaxy, which has been ionized by young, massive type
O stars (Hoyle & Ellis, 1963). Further observations confirmed the existence of
what is now known as the warm ionized medium (WIM) (Haffner et al., 2009),
which contains about 90% of the ionized gas in the ISM. The current picture of
the ISM is that it contains clumps of CNM gas, surrounded by the increasingly
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MM CNM WNM WIM HIM
n [cm−3] 102 - 105 4...80 0.1...0.6 0.2 10−3 .. 10−2

T [K] 10-50 50-200 5500 - 8500 8000 105 - 107

fvol < 0.01 0.02− 0.04 0.3 0.2 0.5
fmass 0.2 0.4 0.3 0.1 0.01

Table 1: A summary of the properties of the different phases of the ISM.

hot and tenuous WNM and WIM, and finally the HIM, which fills most of the
volume.

In addition to the atomic gas in its various phases, the ISM also contains cold,
dense molecular clouds. Molecular gas plays an important role in star formation.

For many practical purposes, the gas in the ISM can be treated as two phases
in equilibrium: the CNM and the WNM (Field et al., 1969; Wolfire et al., 2003).
This can be explained by considering the heating and cooling processes in the
ISM (Bialy & Sternberg, 2019) (for more details see Section 2.1.3).

2.1.3 Physical processes in the ISM

As previously mentioned, heating and cooling processes are crucial for explaining
the structure and properties of the ISM. The division into the CNM and WIM
can be explained theoretically just by considering these processes (Field et al.,
1969).

Heating mechanisms

• photoelectric heating

• X-ray and cosmic ray heating

• H2 heating

• cosmic rays

• PdV work and shock heating from stellar winds, supernovae

Photoelectric heating occurs when far UV (FUV) photons collide with dust
and PAHs in the ISM releasing energetic electrons which then thermalize with
the gas. The energy of this electron is equal to the difference between the energy
of the photon and the energy barrier that needs to be overcome in order to detach
the electron from the grain, which can be on the order of an eV (Klessen & Glover,
2014). A similar process can also happen with more energetic X-ray photons or
cosmic rays, which ionize atoms or molecules, with the resulting electrons adding
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Figure 2: Comparison between normalized cooling rates for a plasma in collisional
ionization equilibrium (CIE) from studies using different versions of the CLOUDY

and MAPPINGS codes. While there are slight differences in the cooling functions,
all find the highest cooling rates at about 105 K (see Wiersma et al., 2009, for
details)

their energy to the gas. Cosmic rays are particularly important in gas that is
shielded from the interstellar radiation field (ISRF).

Another important heating mechanism is via kinematic effects: PdV work and
shock heating from supernovae. As supernovae explode, they inject a significant
amount of energy into the ISM, roughly 1051 ergs per event. Massive stars release
comparable amounts of energy throughout their lifetimes as stellar winds. In fact
the existence of the hot phase of the ISM was first proposed to be a result of
supernova explosions (McKee & Ostriker, 1977).

Cooling mechanisms

• Lyα cooling

• fine structure cooling (CII, OI atoms)
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• H2 cooling

In this case, the fundamental process is a collisional excitation followed by
radiative decay. Lyα cooling occurs as a result of electron impact, while fine
structure line emissions are excited primarily collisions with the neutral hydrogen
atoms (Wolfire et al., 2003; Bialy & Sternberg, 2019).

Lyα cooling takes place at large temperatures(∼ 104 K). Below this temper-
ature, cooling via fine structure transitions (of mainly CII and OI atoms) plays
an important role. Finally, there is H2 cooling via rotational and vibrational
transitions, which is significant at higher temperatures (above ∼ 500K, the first
accessible rotational transition of the H2 molecule), however it is very inefficient
at lower temperatures (Klessen & Glover, 2014). In the warm, diffuse ISM, H2

cooling can be dominant at low metallicities and high ISFR strength (Glover &
Clark, 2014).

Cooling processes in the ISM are usually described by a cooling function
Λ(T ), which is given in units of energy emitted/volume/time. An example of this
is shown in Figure 2, which illustrates the cooling rate of a plasma at different
temperatures. Note that cooling is also a function of metallicity, so different
cooling functions must be computed for different environments and must take
into account chemical enrichment if that is a factor.

It is also relevant to note that, since at low densities cooling is a collisional
process involving two particles (Wiersma et al., 2009), cooling functions are often
given in terms of n2 (where n is the particle density) when describing a fully
ionized plasma, or as a product between the particle densities of different species
if they are not assumed equal (e.g. hydrogen atoms and electrons). The heating
rate however, a process which usually involves a particle and photons or cosmic
rays, scales with n.

2.2 The SILCC simulation

The ISM is a multiphase system, consisting of cold, warm, and hot gas, in atomic,
ionized or molecular form, influenced by a complex set of physical processes (heat-
ing, cooling, chemical enrichment). These processes act on a wide range of scales,
from the typical size of a molecular cloud (∼ 50 pc), to the size of protostellar
disks (∼ 100 AU), while outflows launched by supernovae can escape beyond the
galactic disk at scales of ∼ kpc. Cold, molecular gas may collapse to form mas-
sive stars, which in turn have a significant effect on the ISM through feedback
processes: radiation, stellar winds, supernova explosions. The SILCC project2

(SImulating the Life-Cycle of molecular Clouds, Walch et al., 2015; Girichidis
et al., 2016) is a series of state-of-the-art numerical simulations of the gas in the

2http://silcc.mpa-garching.mpg.de/



2.2 The SILCC simulation 15

ISM with the aim of understanding the life cycle of molecular self-consistently,
taking into account all the processes and the scales involved.

In order the model the ISM, the simulation was performed using the fully 3D
FLASH 4.1 MHD code with AMR (adaptive mesh-refinement), which allows to
resolve in high-resolution, high-density regions, meaning a wide range of density
scales can be accurately characterized. The setup is a (500 pc)2 ± 5 kpc ”tall
box” corresponding to a segment of a typical galactic disk at low redshift with
solar neighborhood properties. In order to obtain an accurate picture of the ISM,
the simulation includes:

• an external galactic potential

• self-gravity

• radiative heating and cooling

• chemical evolution (which follows the formation of H2 and CO molecules)

• feedback from supernova explosions

Several simulation runs are available with resolutions ranging from 4 pc to 0.5
pc, significantly higher than what can be achieved with cosmological simulations3.
Recent projects such as EAGLE (Schaye et al., 2015) and IllustrisTNG (Pillepich
et al., 2018) thus need to employ sub-grid models for physical processes which
occur on smaller scales. Due to its high resolution, the SILCC simulation is
particularly suited for the purposes of this analysis (see Chapter 3), as it includes
a self-consistent treatment of many physical processes that are relevant for the
ISM.

2.2.1 Stellar feedback

Simulations of the ISM have shown that stellar feedback also plays an important
role in the gas phase distribution. In particular, as we have seen, the WNM/WIM
are heated by supernova explosions, so the position of supernovae within the
medium is one of the factors which affects the ISM phase distribution. To il-
lustrate this point, we briefly go through some results of the SILCC simulation
(Walch et al., 2015), since it was also used for the analysis presented in this work.

One approach is to have supernovae explode in the densest regions. Star
clusters form where there is an abundance of gas and it is reasonable to assume
that there will be more supernova explosions where there are more stars (this

3For a comparison of modern cosmological hydrodynamic simulations see Table 1 from Trem-
mel et al. (2019).



16 2.2 The SILCC simulation

Figure 3: Mass-weighted phase space probability distribution for a simulation run
with random supernova driving. The blue dotted line represents the equilibrium
curve. The cutoff between the CNM and the WIM is roughly around a density of
10−23 g/cm3. By mass, a significant amount of the stable gas is part of the CNM,
however a large fraction of the gas overall is in the unstable phase (i.e., it has not
settled naturally into one of the states described in Section 2.1.2) . Figure from
Walch et al. (2015).

is referred to as peak driving in SILCC, since supernovae go off at the peaks
of the density distribution). Another possibility is to place the supernovae in
low density environments. Earlier feedback from stellar winds and radiation can
create cavities around massive stars, so in this case supernova explosions occur in
regions of lower density (this is referred to as random driving, because if supernova
events go off in random locations in the simulation, they are more likely to occur
in the hot, less dense medium occupying most of the volume). Finally there is
the mixed approach, in which half of the supernovae occur at the peaks of the
density distribution and half occur at random locations (mixed driving).

An important result is related to the filling fraction of different gas phases.
The simulations show that, by mass, most of the stable gas is in the WIM phase,
however a significant fraction of the gas overall is in an intermediate, unstable
phase (Figure 3), which is also consistent with observations (Heiles & Troland,



2.3 Turbulence in the ISM 17

2003). Similarly, by volume filling fraction, about half of the gas can be found in
the hot phase, with a significant portion being in the unstable phase and trace
amounts in the cold phase (Walch et al., 2015).

2.3 Turbulence in the ISM

Turbulence is a term used to describe chaotic motions in a fluid which dissipate
energy from large to small scales. It is ubiquitous in the ISM and plays a major
role in several processes such as the formation of dense structures and stars,
the stability of molecular clouds, the amplification of magnetic fields, and the
re-acceleration and diffusion of cosmic rays (Falceta-Gonçalves et al., 2014).

An important question is what drives the turbulence. The two main candi-
dates are stellar feedback and gravitational instability.

2.3.1 Sources of turbulence: Stellar feedback

There are various astrophysical processes related to stellar activity that could be
sources of turbulence for the ISM gas. Throughout their lifetime, massive stars
release energy and momentum into their surroundings via radiation and stellar
winds. Massive stars (> 8 M⊙) end up as core collapse supernovae, while white
dwarfs (stellar remnants of lower mass stars) in binary systems can accrete gas
from their companion and explode as type Ia supernovae. The energy output of
massive stars can be equal or even greater than that resulting from a supernova
explosion (see Section 3.7).

In principle, the supernova rate in a galaxy like the Milky Way is sufficient to
maintain ISM turbulence (Klessen & Glover, 2014). In addition to this, surveys
have shown that there is a correlation between the velocity dispersion in the
ISM and galaxy’s star formation rate (SFR). However, simulations which only
take into account supernova feedback do not find the required velocity dispersion
(Krumholz & Burkhart, 2016).

2.3.2 Sources of turbulence: Gravity

There is another category of potential sources of turbulence that are related to
gravity, in particular accretion.

Given the currently observed rate of star formation of ∼ 1.5 M⊙yr
−1 (Ro-

bitaille & Whitney, 2010; Licquia & Newman, 2015), the Milky Way would de-
plete its gas reservoir on a time scale of ∼ 2 Gyr (Bigiel et al., 2008). Similar
gas depletion times have been observed for other spiral galaxies (Bigiel et al.,
2011). In all cases this time scale is much shorter than the ages of these galaxies.
This would imply that there is an extragalactic source of gas which replenishes
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the star formation process. Whether this mechanism provides sufficient energy is
still a controversial topic. According to Klessen & Hennebelle (2010), accretion is
sufficient to account for turbulence in galaxies, while Elmegreen & Burkert (2010)
argue that accretion can only account for turbulence in the early stages of galaxy
formation, which is then driven by gravitational instabilities and star formation.

Another approach, which looks at the velocity dispersion observed in the ISM,
suggests that gravitational instabilities are the ultimate source of ISM turbulence
(Krumholz & Burkhart, 2016).

2.4 Shocks

A shock is a transition layer which propagates through a plasma and changes it
thermodynamic properties: temperature, pressure, density, entropy. The thick-
ness of the transition layer is determined by the physical process responsible for
this energy conversion. In an ordinary gas shock the energy is transferred by
two-body collisions and in this case the thickness is of the order of a few colli-
sional mean free paths. However, in the ISM the conditions are very different
from laboratory plasmas. In this very tenuous medium collisions are rare and
the energy is transferred through collective electromagnetic effects. These shocks
are called collisionless and their thickness is of the order of the gyroradius of a
thermal ion (or the Debye length if electrostatic effects become significant). An
energetic charged particle is one which has sufficient momentum not to resonate
with this electromagnetic turbulence in the shock front and thus see the shock
essentially as a discontinuity (whereas the ‘thermal’ particles interact strongly
and are ‘heated’) (Drury, 1983).

A more descriptive way to define a shock would be as a signal which propagates
through a medium with a velocity higher than the speed of sound in that medium.
The ratio between the speed of this signal and the speed of sound is called the
Mach number, M. As it moves through the gas, the shock compresses and
transfers some of its energy to the plasma, essentially converting supersonic gas
into denser, slower moving, higher pressure, subsonic gas.

For high Mach numbers (strong shocks), the ratio between upstream (before
the shock, vu) and downstream (after the shock, vd) velocities is

vu
vd

= 4 (2)

2.4.1 Cosmic ray acceleration at shocks

Shocks play an important role in the process of accelerating cosmic rays. Even
before a specific mechanism had been proposed, Fred Hoyle suggested supernova
explosions could be a source on energetic grounds (Hoyle, 1946). In the following



2.5 Density PDF in the ISM 19

decades, expanding on the Fermi mechanism (see Section 2.1.1), a series of studies
developed a rigorous framework for the acceleration process at supernova shocks
(Krymskii, 1977; Axford et al., 1977; Blandford & Ostriker, 1978; Bell, 1978a,b).

Any proposed acceleration mechanism should provide an explanation not only
for the high energies charged particles achieve, but also account for the power-law
distribution.

Consider a population of high energy particles in the upstream of a strong
shock whose velocity distribution is isotropic in the frame moving with the gas.
These collisionless particles do not feel the shock and cross into the downstream,
where they encounter gas traveling at 3/4vs (where vs is the shock velocity).
These particles are then scattered by resonant MHD modes downstream and
receive an energy increase. Their velocity distribution also becomes isotropic in
the downstream gas frame. When these particles move back into the upstream
region, they once again encounter gas traveling at 3/4vs and receive the same
amount of energy. With every shock recrossing, after collisions with downstream
and upstream magnetic mirrors, the particles receive a small amount of energy
(Urošević et al., 2019). This process is called diffusive shock acceleration. During
a large number of crossings, a charged particle can be accelerated to extremely
high energies, up to a limit given by the Hillas criterion (see Section 2.1.1).

2.5 Density PDF in the ISM

The shape of the ISM density PDF is an important tool in the analysis of in-
terstellar gas, which has been used to explain the initial mass function (IMF),
star formation rate (SFR), and Kennicutt-Schmidt law. The most common view
is that the density PDF of the isothermal, turbulent ISM has the shape of a
log-normal (Vazquez-Semadeni, 1994; Federrath et al., 2010)

f(ρ)dρ =
1√
2πσρ

exp

[
− (lnρ− µρ)

2

2σ2
ρ

]
dρ

ρ
(3)

where µρ = lnρ0, ρ0 is the median of the density distribution and σ0 is the
width of that distribution. This property of the ISM can be explained by a process
involving turbulence. It is assumed that the density distribution is generated by
shocks colliding in isothermal supersonic turbulence, in a random, multiplicative
process. A multiplicative process in ρ turns into an additive process in log ρ,
which by the central limit theorem returns a Gaussian distribution (Federrath &
Klessen, 2012).

At higher densities, where self-gravity becomes important and star formation
begins, the PDF develops a power-law tail (Ballesteros-Paredes et al., 2011).

It is relevant at this point to define the clumping factor Cρ, which is a measure
of how the density varies in a medium (Owocki & Cohen, 2006)
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Cρ =
⟨ρ2⟩V
⟨ρ⟩2V

(4)

where ⟨ρ⟩V is the volume-weighted density of the gas.

For a log-normal density distribution, the clumping factor Cρ can be written
as (Gnedin et al., 2009)

Cρ = eσ
2
ρ (5)

where σ2
ρ is defined as

σ2
ρ = ln

(
⟨ρ⟩M
⟨ρ⟩V

)
(6)

and ⟨ρ2⟩M is the mass-weighted density of the gas (see Buck et al., submitted
to MNRAS, under review, for the full derivation). It is well-established from
numerical simulations that, in the turbulent ISM, the width and peak of the log-
normal density distribution (and thus also the clumping factor) depend on the
Mach number M (see e.g. McKee & Ostriker, 2007). Other studies (Federrath
et al., 2008) have shown that the clumping factor can further depend on the
turbulence driving parameter b

Cρ = 1 + b2M2 (7)

which which takes the values b ∼ 1 for compressive driving and b ∼ 1/3 for
solenoidal driving.

2.6 Molecular clouds and star formation

It is a basic astrophysical fact that stars form from gas in the ISM. Studies have
shown that there is a correlation between the total gas surface density and the
SFR surface density. This correlation has the form of the power-law with an index
N ∼ 1.5 and known as the Kennicutt-Schmidt law (Schmidt, 1959; Kennicutt,
1998). More recent work has shown that, in fact, the strongest correlation is
between the star formation rate and the surface density of molecular gas and
that there is virtually no correlation between atomic hydrogen and star formation
(Bigiel et al., 2008; Leroy et al., 2008). This is why it is important to first
summarize the properties of molecular clouds and then go into how star formation
happens, in particular massive stars.
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2.6.1 Molecular cloud properties

Molecular clouds are the coldest, densest regions of the ISM (n ∼ 101−105 cm−3,
T∼ 10 K). They are observed to have a wide range of masses, from a few M⊙ to
∼ 107 M⊙ (Miville-Deschênes et al., 2017). The cloud mass spectrum is well-fit
by a power-law with index γ ∼ 1.6− 2

dN

dM
∼ M−γ (8)

Although different studies have shown slight differences in the value of γ for
molecular clouds in the Milky Way (Solomon et al., 1987; Williams & McKee,
1997; Roman-Duval et al., 2010), since it is consistently < 2 this implies that
most of the mass can be found in the highest mass clouds. The surface density
of molecular clouds is ∼ 100 M⊙· pc−2, an order of magnitude larger than the
highest surface densities observed for HI gas.

Similarly to the rest of the gas in the ISM (and for similar considerations, see
Section 2.3) surface densities in molecular clouds have been shown to follow a log-
normal PDF with a power-law at higher densities. It is important to note however
that power-law tails are observed particularly in star forming gas clouds, where
self-gravity becomes important, while in clouds without active star formation the
log-normal shape of the surface density PDF is preserved (Kainulainen et al.,
2009).

Star formation efficiency is a parameter which denotes the fraction of the
gas (within the galaxy or a cloud) which is turned into stars as an effect of
gravitational collapse

ϵff = SFR/(Mgas/tff) (9)

where Mgas is the total gas mass and tff is the free fall time for the system

tff ∼ 1√
Gρ0

(10)

For ϵff ∼ 0.01, it would take a cloud 100 free fall times to convert all its gas
into stars (Krumholz & Tan, 2007; Kennicutt & Evans, 2012). However since
molecular clouds have lifespans that are shorter than this time, this suggests
most of the gas is dispersed before being converted into stars, potentially by
stellar feedback or as a result of interstellar gas flows (Larson, 2003).

2.6.2 Larson’s laws

A systematic and highly influential survey by Larson (1981) has established a
series of scaling relations between various properties of molecular clouds nowadays
known as Larson’s laws.
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Linewidth size relation According to the linewidth-size relation, the veloc-
ity dispersion (i.e., the three-dimensional rms velocity of all internal motions in
molecular clouds) is proportional to the size of the clouds. Larson (1981) found
this relation to be σ = 1.10L0.38

pc , where σ is the velocity dispersion and Lpc is
the size of the cloud in units of parsecs, and notes that it is valid for clouds be-
tween 0.1 to 100 parsecs. Subsequent studies have obtained similar results, e.g.
Solomon et al. (1987) finding σ = 1.0± 0.1L0.5±0.05

pc , while Heyer & Brunt (2004)
found σ = 0.9± 0.19L0.56±0.02

pc .

Note that the exponents are very close to the scaling σ(ℓ) ∼ ℓ0.5 which is
expected from supersonic turbulence (McKee & Ostriker, 2007).

Velocity dispersion is proportional to cloud mass The virial parameter
is defined as

α = a
2T

|W|
=

5σR

GM

where T is the kinetic energy of the internal motions in an astrophysical
object, W is the gravitational potential energy, σ is the velocity dispersion, R
is the characteristic size of the object, M is the mass, G is the gravitational
constant, and a is a factor of order unity4 which accounts for the internal structure
and shape of the cloud (see e.g. Miville-Deschênes et al., 2017, Appendix D).
Larson found that molecular clouds are approximately in virial equilibrium, i.e.
α ∼ 1, which implies there is roughly a balance between gravitational energy and
turbulence.

Cloud size is inversely proportional to density The linewidth-size relation
implies that, in order to be gravitationally bound, smaller clouds must have higher
densities (Larson, 1981). Taking the first two laws together, it follows that cloud
size is inversely proportional to density, i.e. that there is a characteristic column
density for all clouds. This value was first computed by Solomon et al. (1987),
who found it to be 170 M⊙· pc−2. Recomputing the data from the Solomon et al.
(1987) sample assuming a galactocentric radius for the Sun of 8.5 kpc instead
of 10 kpc, Heyer et al. (2009) found the median surface density to be 206 M⊙
pc−2 and then presented their own estimate, computed using a different method,
for the surface density to be 42 M⊙ pc−2. Note that Roman-Duval et al. (2010)
found a median surface density of 144 M⊙ pc−2. The universality of this relation
has been challenged however. Recent observations have found surface densities

4Observed values of the virial parameter are found in the range 1-100, which suggests that
not all clouds are actually in virial equilibrium (Miville-Deschênes et al., 2017)
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in the range 2-300 M⊙ pc−2, with a mean value of ∼ 30 M⊙ pc−2, which increases
towards the inner galaxy (Miville-Deschênes et al., 2017).

2.6.3 Giant molecular cloud formation

With regards to the formation of giant molecular clouds (GMCs), there are two
main aspects to consider: chemical and dynamical (i.e., how the H2 molecules
form and how the clouds themselves are assembled within the ISM).

H2 molecules form from the combination between two hydrogen atoms. How-
ever the simple reaction between hydrogen atoms or ions which lead to the for-
mation of H2, such as H+H −→ H2+γ (where γ represents a photon) are highly
inefficient in the ISM, in particular at the low temperatures of the CNM. Instead,
H2 forms on the surface of dust grains (Gould & Salpeter, 1963; van Dishoeck
& Black, 1986). The formation rate depends on the density of gas particles and
hydrogen atom particles (which can be taken to be identical by neglecting helium
and heavier elements), with a timescale of (Girichidis et al., 2020)

tform =
nH

RH2

109n−1yrs (11)

where nH is the hydrogen number density, n is the gas number density, and RH2

is the H2 formation rate according to Jura (1975). While at low densities this time
scale is longer than the dynamical timescale of the system (the gravitational free-
fall time or the turbulent crossing time), compression from supersonic turbulence
can shorten H2 formation time sufficiently so that it occurs within the expected
time frame.

The second issue with regards to GMC formation is how clouds form as distinct
structures within the ISM. It is important to note that molecular clouds are
different from other astrophysical objects such as stars and galaxies in the sense
that they are not quasi-equilibrium structures. Rather they are transient features

2.7 Massive star formation

Stars are the fundamental building blocks in many areas of astrophysics. A
significant part of the (baryonic) mass in typical galaxies is in the form of stars and
most of the radiation is emitted by them. For this reason, it is very important to
understand the processes which lead to star formation. Massive stars in particular
play a very important role in the processes which determine the properties of the
ISM, e.g. heating, metal enrichment, CR acceleration, and are responsible for
feedback processes that influence further star formation (Tan et al., 2014).

In addition to turbulence, gravity and pressure are the main factors which
determine the dynamic state of an astrophysical gas. In fact, the end state in
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the star formation process is achieved when pressure balances gravity. Until that
point is reached however, it is important to explain why a self-gravitating gas
starts to collapse in the first place. This is a classical problem in astrophysics,
which was rigorously treated by James Jeans at the beginning of the 20th century
(Jeans, 1902). Jeans found a hydrodynamical instability in the self-gravitating
gas characterized by a length scale called the Jeans length

λJ =

√
πc2S
Gρ0

(12)

where G is the gravitational constant, ρ0 is the characteristic density of the
gas and cS is the sound speed in the gas. One can also derive a characteristic
Jeans mass, i.e. the mass contained in a volume with a radius of the Jeans length
(Krumholz, 2015; Girichidis et al., 2020)

MJ =
4π

3
ρ0

(
λJ

2

)2

=
π5/2

6

c3S
(G3ρ0)1/2

(13)

The physical interpretation of the the Jeans length is that clouds larger than
this scale cannot be supported by pressure and will start to collapse under the
effect of gravity on a dynamical (free-fall) timescale (Equation 10).

This simple argument can explain why gravitational collapse occurs, however
star formation is a complex process which usually happens within clusters and is
therefore influenced by feedback, rather than being an isolated event. In the case
of massive stars, there the two main models which explain their formation: the
core accretion model and the competitive accretion model (Krumholz & Bonnell,
2007; Tan et al., 2014).

Core accretion model According to the core accretion model, stars form from
a core with a mass that is related to the final mass of the star, i.e. it is a scaled
up version of how a low-mass star would form (Krumholz & Bonnell, 2007). The
process starts with self-gravitating, centrally concentrated cores of gas, which
undergo gravitational collapse to form either a single star or a multiple system
(Tan et al., 2014).

Competitive accretion model In a competitive accretion model, gas is ini-
tially funnelled into the central gravitational potential, where fragmentation leads
to the formation of low-mass stars. High-mass stars subsequently form as they
accrete the gas which continues to stream towards the center of the potential,
where the most massive proto-stars are located (Bonnell et al., 2001).
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2.8 Stellar winds

In addition to radiation, stars interact with their surroundings mainly via stellar
winds, providing mechanical (momentum) and chemical feedback on the ISM
throughout the lifetime of the star. Mass loss via stellar winds is particularly
important in massive stars, i.e. with M > 8M⊙. In this case, mass loss can be
significant enough to have an effect on the evolution of the star (as in the case
of Wolf-Rayet stars, see e.g. review by Crowther, 2007), on the surrounding gas
(creating a cavity in the ISM called a ”wind-blown bubble”, see e.g., Weaver
et al., 1977), and on the mass of the stellar remnant (see e.g. Belczynski et al.,
2020, who show how the mass of a black hole can vary dramatically depending
on the mass loss rate of the progenitor star).

2.8.1 Stellar wind formation in massive stars

Early theories on the origin of stellar winds were put forward by Parker (1958,
1960), who explained that the outer layers of a star like the Sun expand under the
effect of thermal pressure. The outer layers of the star (the corona) are heated
to temperatures on the order of 106 K making them expand and generating a
pressure-driven wind.

In hot, massive stars however, radiation pressure alone is not sufficient to
account for the observed high mass loss rates, which can be on the order of
10−5M⊙yr

−1. Instead these stellar winds are radiation driven, usually referred to
as line-driven winds (Castor et al., 1975).

The mechanism can be summarized as follows. A photon is absorbed in an
atomic transition if its energy corresponds to the difference in energy levels of
the atom it interacts with. The atom briefly goes into an excited state and then
returns to its original energy level, re-emitting a photon of equal energy with the
one it absorbed. During this process, energy and momentum are transferred back
and forth from the radiation field to the (ionized) gas in the stellar atmosphere.
The key to driving stellar winds in this scenario is that the gas is accelerating.
While in a plasma moving with constant velocity the number of photons with
energy corresponding to a transition in the particle is limited, in an accelerating
plasma the photons are Doppler shifted with respect to the ions, which means
that they are constantly able to absorb a steady flux of photons which have
been absorbed and re-emitted in the layers below, leading to further acceleration.
This is what is known as line force and is responsible for driving the strong winds
observed to come from massive stars. It is also important to note that, although
hydrogen and helium are the most abundant elements in the stellar atmosphere,
metals (in particular iron) have a significantly larger number of atomic transitions
and therefore are much more important for this process (Puls et al., 2008; Muijres,
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2010).
The classical theory of how stellar winds influence the ISM comes from the

work of Weaver et al. (1977). In this picture, isotropic stellar winds from a
massive star create a cavity around it filled with hot gas (T ≥ 106 K, sufficient
for X-ray emission) which expands adiabatically. The interstellar gas is swept
up and compressed into a thin shell which is expanding with a velocity greater
than the local sound speed, creating a shock (see Section 2.4). The radius of this
bubble scales as Rb ∝ t3/5.

2.8.2 CR acceleration at stellar wind shocks

The main source of CRs in the galaxy is though to be massive stars, in particular
the supernova shocks created at the end at their lifetime. However it is well-
established that CRs can also be accelerated at stellar wind termination shocks
(Webb et al., 1985). The question of the relative importance of these sources
has been recently studied by Seo et al. (2018). Using stellar wind models from
Georgy et al. (2012), the authors estimate that the stellar wind luminosity is
about a factor of 3 smaller than the supernova luminosity in the galaxy. However,
while supernovae accelerate CRs with an efficiency of ∼ 10% (i.e., about 10% of
the supernova energy is transferred to CRs), stellar wind shocks are assumed to
have an efficiency ∼ 1 − 10%. While supernova shocks still appear to be the
main source of galactic CRs, stellar wind shocks may still play an important role
in the acceleration process, in particular in young clusters where no supernova
explosions have occurred.
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3 Methods

In this section we analyze the ISM in terms of the average density and column
density evolution as gas structures form. For this we use data from the SILCC
simulation (for details about the simulation see Section 2.2)

Simulation resolutions are: 0.5 pc, 1 pc, 2 pc, and 4 pc. Throughout this
report we will first describe the analysis of the 1 pc simulations, and compare it
to the data obtained from the 2 pc simulations. Snapshots are available spanning
a physical time of 60 Myrs (snapshot at t = 0 is missing for the 1 pc simulation),
at intervals of 10 Myrs. For the highest resolution simulation only three snapshots
are available at physical times between 20 and 21 Myrs, 0.2 Myrs apart.

3.1 Characterizing the ISM

The data analysis is performed using the healpy5 and yt6 packages, as well as
the standard Python packages numpy and matplotlib.

Since our aim is to characterize the ISM in spherical regions, it is convenient
to use the HEALPix (Gorski et al., 2005) tessellation of the sphere. HEALPix
divides the surface of the sphere into quadrilateral, curvilinear pixels of varying
shapes and equal areas. The resolution depends on the Nside parameter, i.e.
Npix = 12×N2

side. The Nside parameter must be a power of two. In our analysis
we used HEALPix resolutions 4, 8, and 16, corresponding to 192, 768, and 3072
pixels on the sphere surface.

For our analysis we investigate the properties of density structures in the ISM,
focusing on different quantities which we will describe in this section. The sphere
density ρS is the volume average density of an individual sphere,

ρS =
MR

VR

(14)

where MR is the total mass enclosed in the sphere and VR is the volume of
that sphere, for a particular radius R.

The number of data points depends on the sphere radius used. The average
density ρ is the average of all the sphere densities,

ρ =

N∑
i

ρSi

N
(15)

5https://healpy.readthedocs.io/
6https://yt-project.org/
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where N is the total number of spheres sampled. This parameter is represen-
tative of the entire snapshot. Column density Σ is defined as the mass per area
for a single column within a sphere,

Σ =

K∑
j

mj

A
(16)

where K is the number of mass cells along a line of sight and A is the surface
area of that pixel. Note that a potential issue that could arise is that a coarser
division of the surface of the sphere could mean that more cells overlap with each
HEALPix pixel, which would lead to the average column density being higher
with lower values of the Nside parameter. We sought to mitigate this effect by
dividing the total mass along a line of sight equally to the number of pixels which
overlap with it.

The median sphere column density ΣS is the median column density for an
entire sphere

ΣS = Σ50 (17)

and Σa is the average column density per snapshot

Σa =

∑
ΣS

N
(18)

We define a width parameter to describe the distribution of column densities
on the sphere,

ω84
16 = Σ84 − Σ16 (19)

where Σ16 and Σ84 represent the column density values for the 16th and the
84th percentile columns, respectively. This is a measure of how uniform the gas
distribution is within the volume of a sphere.

We introduce a covering fraction parameter, κ. It is defined as the number
of lines of sight within a sphere where the column density is above a certain
threshold value, divided by the total number of lines of sight within that sphere
(in our case this corresponds to HEALPix pixels).7

In order to sample spheres for each snapshot, we first divide the domain into
a grid of equally spaced points at a fixed distance from one another. We divide
the domain into spheres centered on these points. For this part of our analysis,
we used spheres of radius R = 25 pc as a reasonable average scale corresponding

7Note that we define the covering fraction in terms of the particles cm−2 instead of g cm−2.
Since the goal of our analysis is the prediction of the optical thickness of the ISM as a function
of density, we chose to follow the usual convention when describing this property.
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to the typical size of a GMC, which allows us to have a large enough sample of
spheres in a 500 pc box, while also covering a significant enough volume within
the domain. In order to avoid an issue at the boundaries where cells beyond the
limits of the box are counted as empty (i.e., periodic boundary conditions are not
recognized by the analysis script), we introduced a padding at the edges of the
domain equal to the radius of the spheres.

The analysis procedure can be summarized as follows:

• Choose a random point from the grid covering the domain as the center of
one of the spheres.

• Using the HEALPix tessellation divide the surface of the sphere into cells
of equal area. Divide the sphere into columns (lines of sight) starting from
the point in the center and ending on the surface cell.

• Perform this task for a statistically significant number of points within the
domain. The same number of spheres (500) are sampled for for each radius,
meaning that for larger spheres there will be significant overlap.

• The data is saved as a separate file for each snapshot, sphere radius, and
sphere tessellation. The file contains the following data: the density of each
sphere; an array of column densities for each sphere; the average and the
median column density for each sphere; the position (i.e., the coordinates
of the center) of each sphere.

We perform this analysis for each available simulation snapshot. For the
lowest simulation resolution, i.e. 4 pc, we did not run the analysis with 10 pc
spheres, since in this case the number of cells per radius is too small.

3.2 Analysis

In this section we report our most significant findings. In particular, we describe
the relation ρS and ΣS, the time evolution of these parameters, and the effect of
changing the simulation and HEALPix resolution. We also describe the results
for the covering fraction, κ, and check whether there is a relation between this
parameter and ρS, and propose a simple function to fit this relation.

3.2.1 Density-column density relation

One application of this analysis is to determine the evolution of the average
density and column density in the simulations and characterize structures forming
from the hydrogen gas at different resolutions. For the 1 pc resolution simulation,



30 3.2 Analysis

0.5 1.0 1.5 2.0 2.5
log C

4 3 2 1 0 1 2 3
log S [cm3]

16

17

18

19

20

lo
g 

S [
cm

2 ]

Time = 10 Myrs

log S [cm3]

Time = 20 Myrs

4 3 2 1 0 1 2 3
log S [cm3]

16

17

18

19

20

lo
g 

S [
cm

2 ]

Time = 30 Myrs

log S [cm3]

Time = 40 Myrs

4 3 2 1 0 1 2 3
log S [cm3]

16

17

18

19

20

lo
g 

S [
cm

2 ]

Time = 50 Myrs

4 3 2 1 0 1 2 3
log S [cm3]

Time = 60 Myrs

Figure 4: Evolution of the relation between ΣS and ρS for the 1 pc simulation,
with R = 20 pc spheres and Nside = 4. Time is shown in each subplot. Color
coding denotes the clumping factor for each sphere.

which we are using as our standard run, we sample 500 spheres with radius of 25
pc at random points in the domain.

We check for a correlation between ρS and ΣS. Figure 4 shows the relation
between the average density and the median column density in each sphere. There
is a clear pattern showing ΣS increasing with ρS. The relation is linear in log-log
space, however there are outliers, particularly as ρS increases.

This suggests that there is a maximum ΣS for every ρS and that, at lower
densities, the medium is more uniform, while at higher densities there is more
variation. The color coding of spheres in Figure 4 according to Cρ supports this
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conclusion: the spheres characterized by a smaller clumping factor are located
along the linear relation, while the spheres characterized by a larger clumping
factor are the outliers.

We also check the evolution of the column density width parameter ω84
16 as

a function of ρS. Figure 5 shows how, at early times, there is a high degree
of non-uniformity in both density and column density space, with no pattern
clearly visible. At later times the width decreases, and we find an increasing
number of points towards the lower width, lower density end of the plots. This
suggests that, with time, an increasing volume of space in the ISM consists of
uniform, low density regions. We find that for every average density there is a
minimum width which increases with ρS, implying that higher density regions are
less uniform. There is also an apparent ”gap” in the data for the lowest values
of ω84

16 at intermediate densities of ∼ 10−26 − 10−25 g cm−3. This implies that,
after a point in the evolution of the ISM gas, regions characterized by this range
of densities are significantly less uniform than both regions which are more dense
and those which are less dense8.

3.2.2 Evolution of average density and column density

We now look at how ρ and Σ change with time. Figure 6 shows how ρ decreases
with time. This effect occurs for every sphere radius and HEALPix resolution,
and also for other simulation resolutions. While we would not expect, in general,
the average density in the entire domain to decrease (since there are no particle
sinks or any other kind of mass loss mechanisms), this result can be explained
by the method with which we chose to measure this quantity, i.e. by sampling
spheres from random locations within the domain. With time, as structures form,
more of the volume is comprised of underdense voids (see also Figure 7). This
means that more spheres will be sampled from the underdense regions at later
times in the simulations. In the future it may be illustrative to further quantify
this finding by determining the power spectrum or structure function of density
fluctuations.

In addition to the trend in ρ, the analysis shows a clear difference between the
values of this parameter determined using different sized spheres. Larger spheres
tend to be denser than smaller ones. This is also consistent with our explanation:
sampling more distinct, smaller spheres (compared to the larger spheres, which
overlap to a significant degree) within the domain tends to find a lot more spheres
which are located in voids, which skews the value of ρ we determine in this manner
towards the lower values.

8We have observed similar gaps in data with R=10 pc radius spheres, Nside = 8 in the 2 pc
simulation. Further work is required in order to determine whether this is a robust phenomenon
or a systematic effect of the analysis.
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Figure 5: Evolution of ω84
16 as a function of ρS for the 1 pc simulation, with R = 20

pc spheres and HEALPix resolution Nside = 4. Time is shown in each subplot.
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We would not expect that HEALPix resolution influences these results, since
density is computed directly for every sphere. For smaller spheres any small
discrepancies are likely the result of sampling. For larger spheres (R = 50pc),
the differences appear more significant, however there is no clear trend showing
average density being larger or smaller for a particular Nside parameter. This is
likely also an artefact of the sampling, since a smaller number of spheres are used,
the effect appears more pronounced.

Earlier in this section we explained that the decrease in ρ and Σa can be ex-
plained by structure formation and the growth of voids in the simulation domain.
This is clearly illustrated in Figure 7, which shows the projected density along
the z axis for all 1 pc resolution simulation snapshots at different points in time.
Effectively, this is the column density as observed from above the x-y plane of
the simulation. The top left subplot shows a mostly uniform domain. As the
simulation evolves three voids become clearly visible and end up covering most
of the volume. Overdense regions also appear, however they cover a significantly
smaller volume.

The difference in column density between the overdense gas clumps and the
voids is ∼ 6 orders of magnitude. This is consistent with our results using sphere
column density, as shown in Figure 4.

3.2.3 Covering fraction

The covering fraction κ is a measure of how many lines of sight within a sphere
are characterized by a particle number density above a chosen threshold. Thus a
sphere with covering fraction equal to 0 has no lines of sight with particle density
above the threshold value (is optically thin), while in a sphere with covering frac-
tion equal to 1 all lines of sight have particle number density above the threshold
value (is optically thick).

First we plot the covering fraction as a function of different column density
thresholds. Figure 8 shows this evolution for a single snapshot. As the average
density of the spheres increases, the average column density also increases. This
means that there are more lines of sight with column density above the threshold,
so the value of κ is larger. This is consistent with the expectation that denser
regions are more optically thick. The selection of the threshold value is also
important. In our analysis, there were no spheres with a covering fraction above
0 for a threshold value of 1022 particles per cm2. While this will depend on the
size of the sphere we choose, the 1022 particles per cm2 appears to be an upper
limit in all the cases we have analyzed (i.e., spheres with radius of 10, 25, and 50
pc).

As for the density to median column density relation described before, we find
that for each value of the covering fraction there is a minimum density associated
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Figure 6: Average gas density in the 1 pc simulation. Colors represent different
sphere radii. Different Nside parameter values are denoted by different markers:
circles and squares correspond to HEALPix resolutions of 4 and 8, respectively.
With the exception of some outliers, there is a clear decreasing trend in the
average density. There is also a difference in average density between the 10 pc
and 50 pc of 0.5-0.6 dex, corresponding to a factor of 3-4, the larger spheres
showing a larger average. This is a result of the sampling of spheres (see text for
explanation).

with it. However the range of densities for a given covering fraction can span
∼ 2 − 3 orders of magnitude. This is consistent with the conclusion that higher
density regions are are more structured than lower density regions.

3.2.4 Comparing results with different HEALPix resolutions

We check whether the density or the column density are different or evolve dif-
ferently depending on the HEALPix resolution. For this we compare the results
obtained using different values of the Nside parameter.

We begin by checking the time evolution of the column density Σa. Figure 9
illustrates the time evolution of Σa using R= 25pc spheres, for the 1 pc and 2
pc simulations. In both cases, there is a linear decrease with time, corresponding
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Figure 7: Projected density along the z axis for the 1 pc simulation snapshots
at different simulation times (denoted in the plot title). Initially the medium
is uniform, with a few underdensities. These underdensities grow in size and
dominate the medium by the end of the simulation time.
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Figure 8: Evolution of κ as a function of density ρS with different threshold
values. As the threshold parameter δ increases, there are fewer lines of sight for
every sphere with column density higher than the chosen value. The figures in
the lower panel represent threshold values which are higher than those typically
found in the ISM.

to an order of magnitude, of this parameter. This decrease is apparent for all
HEALPix resolutions, as well as for the 1 pc and 2 pc simulation resolutions. For
the 0.5pc simulation resolution, the time interval between snapshots is 0.2 Myrs,
not enough to observe any evolution. Differences between points representing
HEALPix resolutions are small and there does not appear to be any systematic
pattern in the variation.

When comparing the results obtained using different Nside parameters, we
noticed only small variations in the value of Σa. Table 2 shows the ration between
Σa when dividing sphere surfaces using different HEALPix resolutions, for both
the 1 pc and 2 pc simulations. Ideally we would expect the average column density
to be independent of HEALPix resolution. This appears to be the case for the 2
pc simulation, where the Σa ratios are close to unity, while the average ratio across
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Figure 10: Average density evolution for two simulation resolutions: 1 pc (left)
and 2 pc (right). Circles, squares and diamonds represent HEALPix resolutions
of 4, 8 and 16, respectively. The sphere radius is R= 25 pc in all cases.

all snapshots is 1.00. For the 1 pc simulation, the Σa ratio is consistently higher
than unity, suggesting a higher HEALPix resolution results in higher average
column densities.

We have also found that ρ tends to decrease with time. As in the case of
Σa, Figure 10 illustrates this evolution for all HEALPix resolutions. For both Σa

and ρ, the small variations observed when varying the Nside parameter are likely
due to differences in sampling, since for every analysis run the sphere centers are
different random points on an equally spaced grid.
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Snapshot
Ratio of Σa values
between Nside = 16

and Nside = 4
Average ratio for simulation resolution

0000 0.96
1000 0.88
2000 1.13
3000 1.11 1.00
4000 0.89
5000 1.17
6000 0.89

Snapshot
Ratio of Σa values
between Nside = 16

and Nside = 4
Average ratio for simulation resolution

1000 1.03
2000 1.31
3000 1.22
4000 1.07 1.13
5000 1.14
6000 1.02

Table 2: Ratio of Σa for data obtained with spheres using parameters Nside = 16
and Nside = 4. Different HEALPix resolutions result in cells of different surface
areas. However the data in this table shows that, when converting from HEALPix
cell area to cm2, there is almost no variation in Σa between different simulation
snapshots. Top: Ratios and average ratio for the 2 pc simulation. This is very
close to the expected value. Bottom: Ratios and average ratio for the 1 pc
simulation.

3.3 The clumping factor

We introduced the clumping factor parameter in Section 2.5 (see Equation 4). In
addition to the standard, volume clumping factor, it is possible to also compute
a projected clumping factor, which is essentially a clumping factor of column
densities. The relation between the volume clumping factor and the projected
clumping factor can be written as (the complete derivation can be found in Buck
et al., submitted to MNRAS, under review)

CΣ = C2/3
ρ (20)

It is useful to derive a relation between the characteristic (median) column
density Σ0 and other relevant parameters
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Σ0 =
R

3

⟨ρ⟩V
C

1/2
Σ

(21)

where R is the radius of each sphere, ⟨ρ⟩V is the volume weighted average
density, and CΣ is the column density clumping factor.

3.4 Density to column column density relations

As we have already seen, there seems to be a rough linear relation between column
density and volume density with a lot of scatter. However this variation lies below
a diagonal. This linear relation represents the spheres that are the most uniform.
One way to explain this is with the following argument: uniform spheres contain
matter that is distributed evenly, so an increase in volume density is followed by a
corresponding increase in surface density. Spheres that lie along this diagonal are
thus expected to be characterized by the lowest clumping factor. On the other
hand, the spheres found below this line are expected to be more structured. An
increase in density means that the extra matter will not be distributed evenly
to all lines of sight within the sphere. This pattern is highlighted in Figure 11,
which shows the same relation between ρS and ΣS, with color coding for the
clumping factor for each sphere. Superimposed onto each plot are a series of lines
representing the relation from Equation 21.

To further illustrate this idea, we also look at a projection of the gas from
the SILCC simulation. Figure 12 shows gas density projections along each of
the three axes, where the locations of four spheres with R = 20 pc have been
highlighted. The bottom left panel shows a plot similar to those in Figure 11,
with the same four spheres also highlighted. As expected, the spheres along the
linear relation represent the more uniform regions, while the spheres which that
are found below this line are increasingly more structured.

This can also be observed from the histograms of the highlighted spheres
from Figure 12 as shown in Figure 13. The first two panels (upper row) represent
the higher density spheres (red and magenta on the density projection plots).
They are characterized by higher average densities, as well as higher distribution
widths. The other panels (bottom row) represent lower density spheres (cyan
and orange on the density projection plots). They are not only lower density (as
shown by the lower values for the mean and median densities), but are also more
uniform (lower width of the column density distributions).

3.5 From the column density PDF to covering fraction

We have already seen that the ISM PDF is characterized by a log-normal shape
(see Section 2.5, in particular Equation 22). Under the assumption that the
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Figure 11: Relation between density and column density for different radii ranging
from 10 to 50 pc, with color coding representing the clumping factor for each
spheres. The diagonal lines denote the theoretical relation from Equation 21.
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Figure 12: Each point in the bottom-left panel represents a sphere with a radius
of 20 pc. The plot shows the relationship between the average density and the
median column density for each sphere, with color coding showing the clumping
factor. Several points are marked on the plot: those along the linear relation are
more uniform regions, while the others represent higher density, clumpy regions.
To illustrate this, the locations of the spheres are marked on the other three
panels, which show density projections of the snapshot along the three axes.
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Figure 13: Histograms showing the column density distributions of the spheres
highlighted in Figure 12.

density distribution in the ISM is isotropic when averaged over a sufficiently large
region, we can consider the density distribution along the three spatial dimensions
are independent, as well as normally distributed. Following this argument, we
can take the column density Σ distribution, obtained by projecting the three
dimensional density distribution fV along the radial axis, to also be log-normally
distributed (this was also verified by analysing the simulation data). The area-
weighted LN-PDF of Σ is thus:

fA(Σ)dΣ =
1√
2πσΣ

exp

[
− (lnΣ− µΣ)

2

2σ2
Σ

]
dΣ

Σ
(22)

where µΣ = lnΣ0 is the characteristic column density and σΣ is the width of
that distribution.

This can be connected to the covering fraction parameter κ we have introduced
in Section 3.2.3 via the cumulative function of the log-normal distribution, which
is given by an error function (Elmegreen, 2002; Wada & Norman, 2007). The
fraction of lines of sight with column density larger than a threshold lnδ is thus
given by
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P (Σ ≥ δ) =
1

2

(
1− erf

[
ln(δ/Σ0)√

2σΣ

])
(23)

where Σ0 is the characteristic column density and σΣ is the characteristic
width of the column density distribution. We introduce a scaled surface density,
Σ̂, a scaled peak position, µ̂, and a scaled width, σ̂ given by

Σ̂ ≡ 3δ

R⟨ρ⟩V
, µ̂ ≡ −1

3
lnCρ, σ̂ ≡

√
2

3
lnCρ (24)

Using the assumption that P (Σ ≥ δ) ≡ κ, this becomes

κ = f(⟨ρ⟩V |R,Cρ, δ) (25)

=
1

2

(
1− erf

[
ln
(

3δ
R⟨ρ⟩V

Cρ1/3

)
√
2lnCΣ

])
(26)

=
1

2

(
1− erf

[
lnΣ̂− µ̂√

2σ̂

])
(27)

3.6 Theoretical covering fraction

As a first test for our model, we plot the relation between the average sphere
density and covering fraction as described by Equation 23 in Figure 14, for spheres
with R = 20 pc and a threshold value of δ = 1017cm−2.

In a perfectly uniform medium, a plot of the covering fraction as a function of
density would resemble a step function: some spheres, with mass distributed in
such a way that each channel has a column density below the threshold, have a
covering fraction equal to 0, while the other, higher mass spheres will have a cov-
ering fraction equal to 1. This case is shown in Figure 14 by the theoretical line
corresponding to a clumping factor of 1.01. As the clumping factor in the medium
is modified, we find significant and consistent deviations from this basic scenario.
By increasing the clumping factor, our model predicts that lower density spheres
show higher covering fractions, while higher density spheres show lower covering
fractions compared to the most uniform case. This is unsurprising: in a low den-
sity sphere (which would not have any line of sight with a column density higher
than the threshold if the gas contained within it were distributed evenly) the gas
can clump up in some regions, creating a number of lines of sight with column
density above the threshold. The same process will have the opposite happens in
high density regions. While evenly distributing the gas in such a sphere would
mean every line of sight has a column density above the threshold, clumping can
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Figure 14: Theoretical relation between density and covering fraction for spheres
with R = 20 pc and a column density threshold of δ = 1017cm−2. Color coding
illustrates this relation, as described by Equation 27, for different values of the
clumping factor.

take gas away from some channels, leaving them underdense compared to that
reference value.

In order to verify the validity of this model, we compare its predictions to
some of the results obtained from the SILCC simulation, in particular looking at
the relation between sphere density and covering fraction. We start by checking
what is the effect of modifying the threshold value used to compute the covering
fraction. It is reasonable to expect that, with a lower threshold, more spheres
will be characterized by a higher covering fraction parameter (the opposite being
true for a higher threshold). This is illustrated by Figure 15.

Another scenario we examine is one in which the sphere radii are increased
from 10 pc to 50 pc (representing a reasonable set of scales for gas structures in
the ISM), as seen in Figure 16. In this case, we note a pattern where an ”upturn”
in the density to covering fraction relation appears to shift as the sphere radius
increases. This upturn roughly corresponds to the density at which spheres are
found to have values of the covering fraction that are close to 1. For larger spheres,
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Figure 15: Relation between density and covering fraction for different values of
the column density threshold, with color coding denoting the clumping factor in
each sphere. The theoretical relation between these parameters, as described by
Equation 27, is overplotted for a series of values of the clumping factor.

this happens at lower average densities than in the case of smaller spheres. This
is expected due to the fact that their radii are larger and thus we are integrating
over a larger number of gas particles.

Our analysis shows that larger spheres tend to be characterized by higher
clumping factors. This is due to fact that, within a larger volume, it is possible to
find more regions with large differences in density between them. Quantitatively,
this is illustrated in Table 3, which shows the clumping factor distribution as a
function of density and sphere radius.
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Figure 16: Relation between density and covering fraction using spheres of differ-
ent radii. Once again we overplot the theoretical relation between these param-
eters, as described by Equation 27, for different values of the clumping factor.
The increase in radius shifts the distribution towards lower average densities, i.e.
the observed increase in covering fraction occurs for spheres with a lower average
density.
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Table 3: Clumping factor distributions as a function of density and sphere radius
as derived from the SILCC simulations. For each radius we state the median,
32nd and the 68th percentile of the clumping factor for a range of 1 dex wide ISM
density bins.

R [pc] log10
(

ρ
cm−3

)
(−4,−3) (−3,−2) (−2,−1) (−1, 0) (0, 1)

10 0.020.050.01 0.050.120.02 0.541.080.2 0.190.970.09 1.792.221.39

20 0.080.130.03 0.140.270.06 1.392.090.87 1.172.120.52 3.764.662.66

30 0.140.20.08 0.260.480.16 1.582.141.04 1.893.421.14 3.074.152.79

40 0.150.260.11 0.420.750.26 2.082.751.71 2.343.591.98 5.325.495.2

50 0.170.290.13 0.550.820.33 2.362.761.86 3.034.022.2 5.876.155.43

3.7 Stellar wind modelling

Stars form from the fragmentation and collapse of giant cold gas clouds in the
galaxy. From the beginning of their lifetime to the end, stars in turn influence
the ISM through a series of feedback processes: protostellar outflows, radiation,
stellar winds, and supernovae (Girichidis et al., 2020). The latter two are the
most important and become significant particularly for high mass stars.

For the second part of our analysis we model the mass loss and kinetic energy
output of massive stars with a wide range of stellar masses. The goal is to
develop a model which can be implemented in hydrodynamical simulations and
investigate the effects of feedback from stellar winds throughout the lifetime of
a massive star in comparison to that of supernova explosions. One potential
application for this work is to obtain cosmic ray (CR) maps for CRs accelerated
at stellar wind terminal shocks.

3.7.1 Methods

We use the stellar evolution tracks computed by Ekström et al. (2012) and Georgy
et al. (2012). Data is available for stars with masses ranging from 0.8 to 120 M⊙,
at solar metallicity Z = 0.014, with and without rotation. For our analysis we
use the models with rotation for the most massive stars, i.e. for 7, 9, 12, 15, 20,
25, 32, 40, 60, 85, and 120 M⊙, since only starting with these masses does the
mass loss via stellar winds become important for the ISM.

The parameters used to define stellar winds are the mass loss rate, Ṁ , and
the terminal wind velocity, vwind. The former can be obtained directly from the
stellar evolution tracks, while for the latter we must perform some intermediate
steps. We first split the model tracks into their evolutionary phases, following
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Stellar mass (M⊙) A n b
7 0.68090928 3.08182208 43.63162516
9 1.1465175 3.96926923 44.77376765
12 1.44313612 4.29800498 45.71879725
15 1.72165227 4.81014221 46.15744546
20 2.73580642 6.90966359 45.62681469
25 2.70257286 6.60933616 46.18721233
32 2.3860646 5.61960684 47.0047701
40 2.30189756 5.1658291 47.48097047
60 3. 6.06627166 47.37047923
85 3. 6.39558796 47.78034142
120 3. 6.40195934 48.112979

Table 4: Wind luminosity fit parameters for massive stars.

a procedure outlined in Gatto et al. (2016). According to effective temperature
and H mass fraction we classified stars as WR stars, WC stars, or O-type stars.
We then compute terminal wind velocities for the different evolutionary phases
via linear interpolation and plot this data in Figure 17.

3.7.2 Results

In order to obtain a model that is more useful for our purpose, we use the cumu-
lative mass loss and wind luminosity, which can be fit using simple continuous or
piecewise continuous functions. The resulting profiles are shown in Figure 18.

We found that the best fit in both cases is a ”stretched” square root function
of the form

A · x1/n + b (28)

After performing a least-squares fit for the different profiles, a different set
of A, n, and b parameters were obtained for each of the eleven model tracks
available.

For the wind luminosity, the parameters are collected in Table 4. Energy
loss can be modelled using a continuous function, so a single set of values was
determined for every stellar mass. The cumulative mass loss parameters are
collected in Table 5. For most massive stars, towards the end of their lifetime,
there is a significant increase in mass loss after the point when helium burning
begins in the core (Ekström et al., 2012). This means that two sets of parameters
are needed to fully model mass loss, one for the stellar evolution stage before
helium ignition and the other for the stage after helium burning begins.
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Figure 17: Terminal wind velocities (above) and mass loss (below) for a sample
of stellar masses for which stellar evolution tracks are available.
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Figure 18: Cumulative wind luminosity (above) and cumulative mass loss (below).
The upturn in mass loss occurs after helium burning begins in the stellar core.
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Stellar mass (M⊙) A n b
7 0.18959081 1.57738276 -5.25303223
9 0.41127795 2.0037655 -4.23440433
12 0.75445111 2.53992044 -3.42615701
15 0.93307792 2.75208386 -2.94271089
20 1.46560372 3.59955226 -3.0448446
25 1.5172324 3.47789122 -2.60948064
32 1.46410675 3.15198665 -2.09379407
40 1.49249924 3.01621589 -1.76034773
60 3.38726058 5.79783191 -3.06870642
85 6.76436573 11.88215787 -6.01680174
120 6.52683199 10.28156331 -5.35482247

Stellar mass (M⊙) A n b
7 0.42879364 2.50367269 -1.86195141
9 0.34960683 1.47185531 -1.25156138
12 0.91043414 2.11146345 -1.0585865
15 1.00751871 1.81845407 -0.60985222
20 1.62268526 2.92180534 -0.31750544
25 0.90949382 6.56591282 0.34365337
32 0.56140679 4.02673117 0.88819976
40 0.36691989 1.3528952 1.28029779
60 0.34061041 1.93021728 1.45082884
85 0.33583966 1.48857532 1.61358175
120 0.11649451 1.23411731 2.00537784

Table 5: Cumulative mass loss fit parameters for massive stars. Mass loss is
modelled using two different sets of parameters for the two different stages of
stellar evolution relevant for this analysis: before (top) and after (bottom) helium
burning starts in the core.
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Figure 19: Cumulative wind luminosities for different stellar masses (full lines,
color coding denotes mass) compared to profiles obtained from Equation 28 af-
ter recovering the fit parameters from a secondary fitting process (dashed lines).
While errors are to be expected from such a process, the results are not entirely
unreasonable, especially given the inherent uncertainties in stellar wind mod-
elling.

In order to obtain tracks for the intermediate stellar mass values, we also at-
tempt to fit this newly obtained set of parameters with piecewise linear functions
(in log space). While this approach works in principle, the double fitting process
will unavoidably propagate errors. This becomes clear when attempting to re-
cover the initial stellar evolution tracks by first computing the values of the A, n,
and b parameters from the secondary fit (instead of using the tabulated values)
and recreating the track by plotting Equation 28 with them.

In addition to these fitting function parameters, another function is needed
to determine the maximum age for every stellar mass. Finally, the point during
the lifetime of a star when helium burning begins also needs to be obtained, also
by fitting the stellar tracks.

To illustrate this, the results for the cumulative wind luminosity are shown
in Figure 19. While the recovered functions do not coincide with the initial
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tracks, they are not entirely unreasonable. Stellar mass loss is still not a fully
understood process (Renzo et al., 2017), so any model will have an inherent degree
of uncertainty.

Developing a simple, empirical model for stellar winds would be very useful
for implementing stellar winds with numerical codes. Obtaining the mass loss
within a given timestep can be easily done by computing the difference in cu-
mulative mass loss between two points separated by that time interval. While
the method presented in this work certainly needs to be improved, such an ap-
proach is preferable to obtaining the results by running a stellar evolution code
(e.g. MESA, Paxton et al., 2011), which can be cumbersome, in particular if the
project is on the scale of a galaxy simulation.
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4 Discussion and Summary

Here we provide a summary of the ISM density structure model and briefly men-
tion some potential applications, caveats, and avenues for future research, follow-
ing Buck et al., submitted to MNRAS, under review.

4.1 Applications and outlook

The analysis presented in this work evolved from an initial goal of modelling a
star injecting energy and momentum into the surrounding gas. The stellar wind
model could be implemented with numerical codes in order to simulate the effects
young massive stars have on their environment. As we mentioned in Section 2.8.2,
CRs can be accelerated at stellar wind shocks. Therefore, by approximating the
number of massive stars (using an appropriate integrated galactic initial mass
function, see Kroupa & Weidner, 2003) and modelling their output, it would be
possible to estimate the contribution massive stars have on galactic CR acceler-
ation.

Another potential application of this model is estimating the amount of radia-
tion which can escape from a molecular cloud where a star has formed. Since it is
to be expected that photons escape more easily through low density regions, the
covering fraction can essentially be used as a proxy for optical thickness. Not only
radiation, but also momentum injection from stellar winds and supernova explo-
sions are affected by the gas structure. The evolution of a supernova remnant is
dependent on the efficiency with which energy from the supernova explosion is
transferred to the surrounding gas. This efficiency depends on the density and
the density distribution of the medium, as well as the turbulent Mach number
M (see, e.g., Haid et al., 2016). A better model of the gas structure at a given
density could potentially improve momentum injection schemes.

4.2 Caveats

One potential limitation of this model comes from the assumption that the ISM
gas density follows a log-normal distribution. This assumption is no longer valid
at the point where self-gravity becomes important, i.e. at the higher end of the
density distribution (see Section 2.5). However it is possible to use a similar
method to re-derive the equations for a different density PDF without changing
the model.

In addition to this, we computed the clumping factor based only on the den-
sity properties of the simulation cells. Different methods of determining this
parameter can be used, which explicitly take into account additional physics (e.g.
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Equation 7, where the clumping factor is a function of the turbulence driving
parameter and the Mach number).

4.3 Summary of the ISM gas density model

The ISM gas structure statistical model presented in this work can be summarized
thus:

• Assuming that the ISM density distribution has the shape of a log-normal,
we define a gas (volume) density clumping factor, Cρ. The relation between
Cρ and the projected clumping factor is given by Equation 20.

• We defined the covering fraction as the number of sight lines with column
density above a preset threshold column density to the total number of
sight lines. In this analysis the total number of sight lines corresponds
to the number of HEALPix pixels which fully cover the surface of imag-
inary spheres randomly sampled from the simulation box. We find that
the relation between the volume density of these spheres and the covering
fraction can be described by an error function (which is the cumulative
of a log-normal PDF). The peak and width of the density distribution for
each sphere can be determined from the column density threshold, the ra-
dius of the spheres, and the clumping factor, the latter being the only free
parameter in this model.

• There is a relation between average density and clumping factor in the ISM.
For every density and sphere radius there is a range of reasonable values
of the clumping factor which can be sampled (see Table 3). We computed
these values using data from the SILCC simulation.

• The clumping factor can be used to determine the covering fraction at the
relevant density. We have found that, at a given density, the covering frac-
tion in regions of different sizes can vary significantly. Setting a reasonable
value for the clumping factor, the covering fraction ca be obtained using
Equation 27. With the appropriate model (e.g., what is the column density
threshold at which a cloud becomes optically thick) it is straightforward to
estimate the density structure of the ISM on scales of ∼ 10 pc. This can
subsequently be used to infer photon escape fractions or model energy and
momentum injection into the ISM gas.
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5 Conclusion

We set out to provide a description of the density structure of the ISM. We start
with an accounting of the average density and average column density and the
relation between them. The columns in our case are lines of sight having one end
in the center of the sphere and the other corresponding to a HEALPix pixel on
its surface.

Both ρ and Σa decrease with simulation time, even without sinks or mass
loss processes. This can be explained by structure formation: as the simulation
evolves, gas clumps up and becomes less uniform. After such structures form, it
is more likely that we sample spheres from voids than from overdense regions,
leading to this observed trend.

Such an evolution in density is also apparent in the relationship between
average density and column density width ω84

16. At later times in the simulation
we find more low density, low column density width spheres, suggesting that more
of the space is filled with less dense, more uniform regions. Higher density spheres
are also characterized by a higher ω84

16 parameter, as well as a higher clumping
factor, which suggests regions containing denser gas are also more structured.
This is a reasonable expectation and is consistent with our picture of structure
formation: a fraction of the gas tends to clump up into dense, non-uniform sub-
clouds, while the leftover gas, which fills most of the rest of space, remains as a
more tenuous and more uniform medium.

We have defined the covering fraction as the fraction of lines of sight within
a sphere which have a column density that is higher than a chosen threshold
value. We found that within a particular range of threshold values, between 1017

and 1019 cm−2, we obtain results that are useful for developing density structure
model. Outside of this range, virtually all spheres are either completely optically
thin, or completely optically thick. Within this range of threshold values, we
found that the relation between average sphere density and covering fraction can
be represented by an error function, which is the cumulative of a log-normal PDF,
as expected for the log-normal gas density distribution of the ISM.

Finally, we have defined a clumping factor and found that there is a range
of reasonable values that this parameter can have at a given density and spatial
scale of the ISM region. The clumping factor can be used to model the scatter in
the covering fraction to density relation.



57

I hereby confirm that solely I am the author of this thesis and have not used
other sources and resources than the ones cited. The thesis on hand is free of
plagiarisms. All information that has been extracted directly or indirectly from
other works is marked as such and listed in the table of references. This work
has not been handed in as an assessed assignment with another examiner and has
not been published before.

I have been informed that a plagiarism detection software will be used in order
to check my thesis for its legitimacy. I am aware that my anonymized thesis will
be analyzed in a secure domain of a server outside of the European Union and is
temporarily saved there. For this, no personal data will be transmitted. I hereby
consent to the checking of my thesis through a plagiarism detection software
under the before mentioned conditions.

December 14, 2021 Bogdan-Vasile Corobean



58 REFERENCES

References

Axford W. I., Leer E., Skadron G., 1977, in International Cosmic Ray Conference.
p. 132

Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214

Ballesteros-Paredes J., Vázquez-Semadeni E., Gazol A., Hartmann L. W., Heitsch
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