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Simulationen der Interaktion von extragalaktischen Jets mit turbulenten Mag-
netfeldern in Galaxienhaufen:

Galaxienhaufen mit kurzen zentralen Kühlzeiten sollten große Massenkühlungs- und Ster-
nentstehungsraten haben, welche man nicht beobachtet. Die im Galaxienhaufenzentrum
gelegenen aktiven Galaxienkerne injizieren viel Energie in Form von heißen Gasblasen,
welche die kühlenden Galaxienhaufen heizen können. Kosmische Strahlung (KS) aus
den Gasblasen induzieren Alfvénwellen, welche ausreichend Wärme liefern könnten. Wir
simulieren die Entstehung und Entwicklung der Gasblasen durch energetische Ausflüsse in
ein realistisches Haufenmedium. Um dieses Ziel zu erreichen, halfen wir bei der Entwick-
lung eines Jetmoduls für den magnetohydrodynamischen Code Arepo mit, und entwickelten
eine Methode, um eine turbulente, magnetische Atmosphäre in Galaxienhaufen zu erstellen.
Unsere Simulationen zeigen, dass magnetisierte Gasblasen und die angesammelten mag-
netischen Hüllen Kelvin-Helmholtz und Rayleigh-Taylor Instabilitäten unterdrücken und die
Blasen stabilisieren. Die Magnetfelder im Sog der Gasblasen werden deutlich verstärkt, was
die KS-Heizrate erhöht. Die resultierende KS-Verteilung von niedrigenergetischen Jets weist
eine hohe Isotropie im Kern des Galaxienhaufens auf. Für höhere Jetenergien sinken die KS-
Heizraten im Zentrum, aufgrund der kleineren Volumenanteile und der höheren Anisotropie
der KS. Diese Ergebnisse stellen einen sehr wichtigen Schritt dar, um zukünftig kosmologis-
che Simulationen von Galaxienhaufen mit selbstregulierendem KS-Feedback durchzuführen.

Simulating the interaction of extragalactic jets with turbulent magnetic fields
in galaxy clusters:

Galaxy clusters with short central cooling times are expected to show abundant star for-
mation and cooling flows. However, those are not observed. Active galactic nuclei in the
center of clusters launch buoyant bubbles with sufficient energy to offset radiative cooling.
Escaping cosmic rays (CRs) from these bubbles provide a viable heating mechanism via
the dissipation of CR-excited Alfvén waves. We simulate the formation and evolution of
bubbles via self-consistently launched jets into a realistic intra-cluster medium. To this
end, we assisted in developing a jet module in the moving-mesh code Arepo and set up
a turbulent, magnetized cluster atmosphere on a nested mesh. We find that magnetized
lobes and draped external magnetic fields suppress Kelvin-Helmholtz and Rayleigh-Taylor
instabilities, thereby confining the bubbles. We see an enhancement of the magnetic field in
the wake of the bubbles, which increases the CR heating rate. The resulting CR distribu-
tion of low-energy jets shows a high degree of isotropy in the cluster core. With increasing
jet energy, the CR depletion time of the bubbles decreases in the center, thus lowering the
CR volume fraction and the degree of isotropy. These findings represent a very important
step towards self-regulated simulations of CR feedback in cosmologically evolving galaxy
clusters.
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1 Introduction

Galaxy clusters are the largest gravitationally bound systems in the universe. In clusters, a
significant fraction of the mass resides in the form of a hot gas, the so-called intra-cluster
medium (ICM), which radiates bremsstrahlung in X-rays (Voit 2005). In some clusters, the
ICM should radiate away its energy time scales considerably shorter than the Hubble time. As
a consequence, copious star formation and mass deposition rates are expected in the center of
these cool-core (CC) clusters, which are not observed (Peterson and Fabian 2006). In addition,
observations show an abundance of X-ray cavities in CC clusters (Bîrzan et al. 2004) that often
coincide with radio-synchrotron emitting lobes. These lobes are injected by jets, which are
driven by an accreting super-massive black hole (SMBH) in the center of the cluster (Worrall
2009).
The enthalpy content of the bubbles and their duty cycle provide a heating rate that is

sufficient to balance radiative cooling of the ICM (McNamara and Nulsen 2012). Multiple
generations of bubbles are observed, which suggests the existence of a self-regulated feedback
loop. However, the main mechanism for linking the bubble energy to the cooling gas remains
unclear. Suggestions include heating through the dissipation of induced weak shocks (Li et al.
2016), sound waves (Fabian et al. 2017) and turbulence (Zhuravleva et al. 2014) and thermal
conduction (Voigt and Fabian 2004; Ruszkowski and Oh 2010).
On the other hand, we observe diffuse, polarized radio emission in the form of radio mini halos

in CCs (Giacintucci et al. 2014b). This synchrotron radiation reveals the presence of magnetic
fields and highly-energetic non-thermal electrons, so-called cosmic ray (CR) electrons. Since
particle acceleration processes can even more efficiently energize ions, an additional model
was proposed that relies on the dissipation of Alfvén waves, which are excited by propagating
CR ions (Loewenstein et al. 1991; Guo and Oh 2008; Pfrommer 2013). The viability of this
model critically depends on the dynamics of the bubble, the geometry of cluster magnetic
fields and the distribution of the escaping CRs. The buoyantly rising bubbles are unstable
to Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Simulations of moving bubbles show
that magnetic fields (Dursi and Pfrommer 2008) and viscosity (Reynolds et al. 2005) provide
sufficient stability to bubbles. In more realistic turbulent environments, magnetic fields have
also shown to suppress instabilities (Ruszkowski et al. 2007).
This work studies self-consistently inflated bubbles in a turbulent, magnetized idealized clus-

ter potential. Since this problem is highly non-linear, three-dimensional simulations are in-
evitable. To this end, we employ the magneto-hydrodynamical code AREPO (Springel 2010).
The utilized jet model by Weinberger et al. 2017 was thoroughly tested as part of this thesis.
In addition, we set up a turbulent, Gaussian-distributed magnetic field to improve our under-
standing of the bubble with the ambient magnetized ICM. In addition, we closely follow the
evolution of the escaping CRs. These findings are an important step towards self-regulated
simulations of CR feedback in cosmologically evolving galaxy clusters and to identify numerical
limitations of the algorithms used.
We introduce the physics of CC clusters, streaming CRs and AREPO in Section 2. The

numerical set up of a jet in a turbulent, magnetized cluster potential is presented in Section 3.
The subsequent analysis discuses the evolution for different MHD and jet parameters, the influ-
ence of the external magnetic field and their consequences on the CR distribution (Section 4).
We summarize our results in Section 5.
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2 Theoretical Background

2.1 Galaxy clusters

2.1.1 Introduction to galaxy clusters
As the pinnacle of structure formation, galaxy clusters are still in the process of forming the
largest gravitationally bound systems in our universe. As apparent in the optical, galaxy
clusters host of order 103 galaxies. They extend out to R200 ∼ 1 − 3 Mpc. R200 corresponds
to the radius where the mean density of the cluster is equal to 200 times the critical density
of the universe ρcrit. Hot gas (1 − 10 keV) in clusters is visible in the X-ray due to thermal
bremsstrahlung and line emission of highly ionized metals. Most of their total mass (∼ 1014 −
1015 M�) is however contained in dark matter (DM). Only around 2% is made up of stars.
Around 13% is due to hot gas. The remaining 85% is contributed by dark matter.
The most popular parametrization of the dark matter halo, obtained from DM halo formation

simulations (Navarro et al. 1996, 1997), is the so called Navarro-Frenk-White (NFW) profile
whose density profile ρ(r) is given by

ρ(r)
ρcrit

= δc
r
rs

(
1 + r

rs

)2 (2.1)

where the critical density of the universe is ρcrit = 3H2/(8πG) (H is the Hubble constant), the
scale radius is rs = r200/c and the characteristic overdensity of the halo is δc. As mentioned
above, by definition r200 marks the radius within which the mean density of the halo is equal
to 200ρcrit. This can be used to create a dependence between the so called concentration c and
δc.
Clusters form where waves of primordial density fluctuations after the Big Bang interfere

constructively. The subsequent non-linear evolution has to be determined through numerical
simulations. It has become evident that dark matter tends to clump in halos, which assembles in
filamentary structures throughout the universe. In the hierarchical structure formation model,
galaxy clusters form at the intersection of these filaments through mergers of smaller groups of
galaxies and inflowing gas. The more massive the system the later it forms. Galaxy clusters
are still in the process of forming. Clusters grow due to the inflow of gas and merger events
with other clusters. If both clusters in a merger are of comparable size the merger is classified
as a major merger. On average the typical time after the last major merger is around 5 Gyr.
Around 20% of clusters just recently underwent a merger (Peterson and Fabian 2006). Due
to the progressing accelerated expansion of the universe cluster will also remain the biggest
objects in the universe.
Inflowing gas into the halo of the cluster is shock-heated at strong accretion shocks. The gas

virializes within the gravitational potential of the cluster. Derived temperatures of the inter
cluster medium (ICM) are consistent with the galaxies and gas being in equilibrium within a
common gravitational potential. The temperature of the gas is equal to the so called virial
temperature of the cluster potential which ranges from 107 to 108 K. For a relaxed cluster also
the galaxy dispersion along the ling of sight σ can be related to the temperature of the cluster
as T ∝ σ2.
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If the gas mass exceeds a certain density threshold, the gas is able to cool efficiently. Thereby
stars are able to form or the gas is accreted by a super-massive black hole (SMBH) found in
the center of most galaxy clusters. SMBHs are usually found in the central brightest cluster
galaxy (BCG). Star formation and the formation of SMBHs result in feedback processes through
supernovae (SNe) and active galactic nuclei (AGNs), respectively. By these processes part of
the mass, energy and metals are injected into the ICM.
X-ray observations of clusters reveal discontinuities in surface brightness maps, so called cold

fronts. These features are not shocks as initially thought but rather contact discontinuities.
They likely result from in-streaming gas from the cool core of a merged sub cluster (Govoni and
Feretti 2004). In this scenario the inflowing gas from the merging subcluster is able to displace
the central ICM. This forces the ICM to slosh around in the potential of the cluster. Eventually
the now cold part of the ICM falls back into its dark matter halo creating a contact discontinuity
between the hot gas in the core of the cluster and the returned cold gas (Markevitch and
Vikhlinin 2007). These fronts appear rather long-lived such that thermal conduction as well
as mixing instabilities like Kelvin-Helmholtz instabilities have to be strongly suppressed in
these environments. Both observational facts suggest that the infalling gas is able to form a
magnetized layer that is able to stabilize the interface (Markevitch and Vikhlinin 2007; Chen
et al. 2017). This hypothesis is also supported by simulations (ZuHone et al. 2013, 2015).
A variety of other non-thermal phenomena have been observed in galaxy clusters. Radio

synchrotron emission has been detected in distinguishable morphological types. So called radio
halos/mini radio halos show large scale/small scale cluster-wide emission whereas radio relics
appear more elongated and appear in cluster outskirts. The radio emission is produced by GeV
relativistic electrons and µG fields (Section 2.2.1). From Faraday rotation measurements of
background sources the magnetic field in clusters has also been detected and its value can be
constrained (Section 2.1.5).

2.1.2 Cool core clusters
Clusters can be subdivided into cool core clusters (CCs) and non-cool core clusters (NCCs).
CCs are characterized by low cooling times . 1 Gyr in their inner ∼ 100 kpc. They lack the
expected large-scale mass deposition rates (cooling flow) and significant star formation.
The cluster gas shows small entropies and rather low central temperatures, which cause the

central cooling time to be on the order of or below one giga year. Consequently, copious star
formation and large-scale cooling flows are expected, which are however not observed (Peterson
and Fabian 2006). The star formation rate is observed to be suppressed in the central giant
elliptical galaxy (cD galaxy) (Hoffer et al. 2012). Chandra and XMM-Newton revealed that
even though the temperature drops in the center of CCs, the temperature never falls below
a certain threshold. The threshold is usually at one half to one third of the average cluster
temperature at around 1 keV (Blanton et al. 2010). Some small-scale colder filaments have
however been observed (Werner et al. 2013, 2014).
Low levels of observed line emission at least exclude a one-phase cooling flow (e.g. Peterson

et al. 2001; Böhringer et al. 2001). All of the above points to a local heating process that
prevents the gas temperature to decrease below a certain threshold while at the same time it
does not dominate the cooling process.
X-ray cavities detected by Chandra in the center of clusters have inspired many theories

of AGN related feedback (see Section 2.1.4). The massive central BCG hosts a SMBH that
accretes surrounding gas. The SMBHs powers a jet that shocks the ICM thereby inflating
lobes. These hot lobes are then observed as cavities in the probed X-ray band. They leave the
central region and rise buoyantly through the ICM. These, so-called bubbles, produce shocks
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and sound waves (e.g. Blanton et al. 2010). The observed quasi-balance between heating and
cooling points towards a self-regulated system. If the gas cools, more mass is accreted and jet
activity is triggered that heats the cluster (McNamara and Nulsen 2012).
However the exact coupling mechanism responsible for supplying and distributing heat in a

volume filling fashion throughout the core of the cluster has not been identified yet. Different
theories exists such as weak shocks (David et al. 2001; Li et al. 2016; Guo et al. 2017), dissipation
of sound waves (Mathews et al. 2006; Fabian et al. 2017), mixing of AGN bubble content (Gilkis
and Soker 2012; Hillel and Soker 2016), turbulent dissipation (Sanders et al. 2011; Zhuravleva
et al. 2014), thermal conduction (Voigt and Fabian 2004; Ruszkowski and Oh 2011) and cosmic
rays (e.g. Guo and Oh 2008; Jacob and Pfrommer 2017b).
Thermal conduction has been identified as an efficient way in heating the outer parts of

the cluster. However, it is mostly excluded in the central regions of the cluster because it is
locally unstable. High resolution X-ray spectroscopic measurements by Hitomi inferred low
velocity dispersions in the Perseus cluster excluding models with strong shocks or high levels of
turbulence (Hitomi Collaboration et al. 2016). The remaining heating processes are probably
all relevant. Clearly identifying the dominating one(s) remains a challenging problem.
The relation between heating in CCs and AGNs will be discussed in more detail in the next

section. We subsequently present different heating mechanisms.

2.1.3 Active galactic nuclei
Active galactic nuclei (AGN) are compact regions at the center of galaxies that emit non-
thermal radiation. In extragalactic radio sources bipolar outflows of magnetic fields and rela-
tivistic particles are observed from AGNs (Harris and Krawczynski 2006; Worrall 2009). Two
collimated jets originating from the AGN in opposite directions are usually detected. The jets
terminate in large-scale underdense cavities in X-rays which rise as bubbles in the atmosphere
of the cluster. They also emit synchrotron radiation, which is visible in the radio. The radiation
originates from cosmic ray (CR) electrons gyrating around magnetic field lines.

Theory

The jets originate from a supermassive black hole (SMBH) at the center of the AGN. The jet is
powered by the black hole. It travels from the radius of the SMBH at 10−4 pc forMBH = 109 M�
to lobes and hotspots on scales up to Mpc. As evident, this immense range of scales of 10 orders
of magnitude poses a big challenge to numerical simulations which have to focus on a subrange
of these scales. The exact composition of the jet is not well constrained including the specific
source of the relativistic CRs (Harris and Krawczynski 2006). A variety of formation processes
for extragalactic jets have been proposed. Some principle processes are summarized in the
following (Hawley et al. 2015).
There are two popular mechanisms possibly responsible for powering the jet. First, there

is the Blandford-Znajek (BZ) process (Blandford and Znajek 1977). Here, the jet is powered
by the rotational energy of the SMBH in combination with a large-scale magnetic field of the
accretion disk. Secondly there is the Blandford-Payne (BP) process (Blandford and Payne
1982). Here, the jet power is directly provided by the accretion disk. The magnetic field
is supplied by the black hole-disk system either through a dynamo effect in the disk or the
inwards advection of magnetic fields. The accreting plasma is then funneled into a plasma
wind from the disk surface that is still coupled to the magnetic field and accelerated through
magneto-centrifugal forces.
As the plasma is linked through magnetic field lines, the differential rotation of the plasma

combined with its inertia results in the conversion of part of the poloidal magnetic field into
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a toroidal field component. The toroidal field component is enhanced to immense values such
that the field lines expand under their own pressure. Thereby, the plasma is accelerated while
also confined in form of a jet. The velocity of the plasma exceeds the speed of magneto-sonic
waves in the medium and thereby causally decouples from the surrounding medium. As it
collides with the ambient medium, a shock develops that thermalizes part of the jet energy.
The observable part of the jet is confined to the scales after the jet has interacted with the

ambient medium. Figure 2.1 shows the jet and part of the lobe of Cen A in the radio and
X-rays. The large-scale jet gives rise to synchrotron emission. Inverse-Compton emission can
be observed when relativistic leptons interact with a photon field. In addition the large-scale
X-ray cavities created at the termination of the jet within the cluster have been detected. These
bubbles eventually decouple spatially from the jet region and buoyantly rise in the atmosphere
of the cluster. They are the reservoir of energy which is likely responsible for heating CCs. The
reasons for this will be explained in the next sections.

Figure 2.1: Image of the jet and counter-jet regions of Cen A using all ACIS observations.
The Chandra data has been exposure-corrected at an appropriate energy and then
combined, and weighted according to the value of the exposure map. The images
are binned in standard Chandra pixels (0.492′′ on a side) and smoothed with a
FWHM = 1.0′′ Gaussian. Red shows exposure-corrected counts in the energy range
0.4–0.85 keV, green shows 0.85–1.3 keV, and blue 1.3–2.5 keV. Contours [7×(1, 4,
16, . . . ) mJy beam ] are from the 5 GHz VLA map of Hardcastle et al. (2006) with
6.0′′ resolution. Surely the radio emission and probably also the X-ray emission in
the jet originate from synchrotron radiation (Hardcastle et al. 2007b).

Two classes of jets

In the radio, two classes of radio galaxies (FR I/II) have been introduced by Fanaroff and Riley
(1974) purely on morphological grounds. They determined the ratio of the distance between
their brightest data point on both sides of the jet to the distance that separates the lowest
contour line on both sides. FRII now refers to radio galaxies with a ratio above 0.5, thus
referred to as edge-brightened sources. And sources with ratio below 0.5 are termed FRI or
edge-darkened. FRI jets are generally attributed to rich clusters including CCs. Thus, we
focus on this type. In agreement with the radio morphology criterion is the criterion based on
radio power with objects below ∼ 1025 h2

70 W Hz−1str−1 at 178 MHz mostly being FRI sources.
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Ledlow and Owen (1996) found a crucial divide between FRI and FRII sources when comparing
the radio power LR of the jet with the optical luminosity Lopt of the galaxy. Sources above the
dividing line that scale as LR ∝ L1.7

opt are predominantly identified as FRII sources. This strong
correlation points towards the two types being the result of environmental factors.
FRI sources tend to show more broadened jets terminating in more diffuse lobes that experi-

ence significant deflections. These are probably the result of ram-pressure interactions between
the moving source with the ambient medium (Worrall 2009). FRI jets usually show their max-
imum brightness not far away from the AGN. Further out the radio power smoothly declines.
In this region bright knots in the X-ray and radio are observed. The jets are assumed to be
slowed down by the surrounding medium to sub-relativistic speeds (Laing and Bridle 2014).
Strong velocity shear between the moving jet and the quasi-stationary external medium should
drive instabilities at the interface and make the flow turbulent (Worrall 2009).
On the other hand FRII jets keep their relativistic speeds out to large distances where they

terminate in bright hotspots. They show mostly one-sided jets and are predominantly found in
poorer environments. Using the assumption of equipartition (see Section 2.1.5) the magnetic
field in radio radio lobes and hotspots has been estimated at 2−200 µG (Kataoka 2005) reaching
field strengths of up to 3 mG (Godfrey et al. 2009). They stay collimated for longer and are
thus able to transport energy further out into the halo. They are assumed to have sufficient
energy and momentum to drive a bow shock in the ambient medium and reach length scales
of hundreds of kpc. Thus, they dump the majority of their energy at their termination point
in contrast to FRI sources which gradually dissipate their energy while entraining significant
fractions of the ambient medium.

Observational bubble physics

The dimension of jet-inflated bubbles and X-ray cavities cover a large range in scales from
a few kpc (e.g., in Abell 262 Blanton et al. 2004) to hundreds of kpc (in MS0735.6+7321,
McNamara et al. 2005). As discussed in more detail in Section 2.1.3, one can infer the pressure of
bubbles assuming equipartition between the relativistic electron and magnetic field component
to explain the synchrotron emission. The inferred pressure is only ∼ 10% of the pressure of
the ICM. For reasons of stability non-thermal components like low energy, relativistic electrons,
protons, higher magnetic field strengths or very hot, diffuse, thermal gas should be present.
The later has not been observed but a few upper limits exist; kT > 15 keV in Hydra A (Nulsen
et al. 2002), kT > 11 keV in Perseus (Schmidt et al. 2002) and kt > 20 keV Abell 2052 (Blanton
et al. 2003). Bubbles further out of the cluster show fainter or no radio emission at 1.4 GHz
with steeper spectra (Blanton et al. 2010). However at lower frequencies, e.g. at 330 MHz radio
emission extends all the way out to the cavities (Wise et al. 2007).
The cavities are observed to form thin dense shells at the leading edge. The gas has been

shown to be cooler than the ambient gas at the specific height in the cluster atmosphere (i.e.
Hydra A, Nulsen et al. 2002; Perseus A, Schmidt et al. 2002). The cooling time within the
shells seems longer than the radio source age. This indicates an origin of the gas closer to the
center from where it was lifted by the rising lobes. For example; in Abell 2052 the cooling time
in the shell is ∼ 3×108 years whereas the source age is estimated at ∼ 107 years (Blanton et al.
2010). In some cases, optical-line emission like Hα is observed to be coincident with the X-ray
shells, which requires gas temperatures on the order of 104 K (Fabian et al. 2003b; Blanton
et al. 2004)). Consequently, cooler localized gas exists in CCs and some star formation has
been observed (McNamara 1997).
Further out, bubbles also seem to entrain gas out of the center into the ICM. In M87, there

is a clear correspondance between cool rims and lobes (Belsole et al. 2001; Young et al. 2002;
Forman et al. 2005, 2007). In the Perseus cluster, colder gas at ∼ 104 K (Hα) from the center
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of the cluster seems to be entrained by one of the outer cavities (Fabian et al. 2003b). In
Figure 2.2 an image of the X-ray emission in the Perseus cluster is shown with superimposed
Hα emission. One X-ray cavity is clearly visible in the north-east of the cluster with a laminar
wake traced by Hα emission.

Figure 2.2: On the left a X-ray surface brightness residual map by Chandra is shown of the
Perseus cluster. Contours correspond to low frequency 140 Mhz radio data from
LOFAR (Kokotanekov et al. 2017). The discernible bubbles are also traced by the
radio emission. On the right a Chandra X-ray image of the core region (96 kpc
a side) is shown. Hα emission recorded by the Wisconsin Indiana Yale NOAO
telescope (Reynolds et al. 2005) is shown in white. Arcs are clearly visible in the
trail of the rising bubbles.

In Hydra A AGN activity has been observed to be responsible for lifting metals out of the
center of the cluster (Kirkpatrick et al. 2009; Kirkpatrick and McNamara 2015) and excess
metallicity along the jet axis has been detected in 17 clusters with cavities (McNamara and
Nulsen 2012). All these observations are in good agreement with the more general observation
that the ICM is enriched by metals on levels of one third solar metallicity. However close to
the BCG the iron abundance can even exceed the solar metallicity (De Grandi et al. (2004),
Allen and Fabian (1998)). The profile decreases with distance from the BCG. The slope of
the profile is shallower than expected if it was solely due to stellar feedback (Rebusco et al.
2005). Mechanical jet power Pjet even seems to correlate with the radius out to which significant
enhancement in iron RFe has been detected as RFe = 60P 0.43

jet where RFe is given in kpc and the
jet power Pjet is expressed in units of 1044 erg s−1 (Kirkpatrick et al. 2011).
The exact path a rising bubble travels can be determined by atmospheric pressure gradients

(Morsony et al. 2010). However the jet launching direction has been observed to vary (Dunn
et al. 2006). This may be due to deflected jets (Pollack et al. 2005), randomly-oriented accretion
disks (King and Pringle 2007) or jet precission (Gaspari et al. 2012). In some cluster (i.e., 2A
0335+096 Sanders et al. 2009) older bubbles have also been observed with a considerable offset
from the current jet axis.
A rising bubble displaces gas, which generates kinetic energy in its wake from instreaming

gas to fill the resulting low-density wake. This energy heats the surroundings. The bubble loses
the same amount of enthalpy (McNamara and Nulsen 2007). The buoyantly rising bubbles
are assumed to be disrupted through Kelvin-Helmholtz or Rayleigh-Taylor instabilities. In the
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case of Abell 2052, Rayleigh-Taylor instabilities (Soker et al. 2002) might have been observed
(Blanton et al. 2001, 2003). Magnetic draping should suppress these instabilities (Lyutikov
2006; Ruszkowski et al. 2007) and/or at least initially provide a pressure related to the inflation
of the bubble (Pizzolato and Soker 2006).

Composition of the jet plasma

As already shown by Einstein and ROSAT X-ray telescopes the minimum pressure in FRI jets
is normally below the pressure of the hot surrounding gas of the cluster (Morganti et al. 1988;
Feretti et al. 1995; Worrall and Birkinshaw 2000). At the present time the external pressure
on the jets can be constrained on scales from a few to several hundred kpc using Chandra and
XMM-Newton observations (e.g., Hardcastle et al. 2002; Croston et al. 2008) yielding results in
agreement with the previous findings. Either very hot gas > 20 keV is able to avoid detection
(Gitti et al. 2007) or more likely, a non-thermal component has to be present to stabilize the
bubble (McNamara and Nulsen 2012).
Observed polarized synchrotron radiation points towards the existence of relativistic particles

and magnetic fields. Because of confinement the plasma should be neutral. This is possible
through a variety of combinations of electrons, positrons and protons. Further constrains
come from the power of the observed synchrotron emission. Here, electrons and positrons are
favored as synchrotron energy losses are proportional to the inverse of the square mass of the
particle. In addition, the jet power can be estimated in some cases from the detection of older
cavities in the ICM. They can be used to calculate the enthalpy necessary to displace the gas
(Bîrzan et al. 2004; Dunn et al. 2005; Allen et al. 2006). Averaging over the lifetime of the
source yields constraints for the total energy of all particles in the jet including magnetic fields
and the bulk Lorentz factor (Schwartz et al. 2006). Assuming equipartition (Section 2.1.5),
the pressure provided by the radiating relativistic electrons (positrons) and the magnetic field
remains insufficient (e.g., Croston et al. 2003; Croston 2008; Bîrzan et al. 2008).
Equipartition between the internal pressure, which is composed of electrons/positrons and

magnetic field, and the external pressure has been observed in FRII sources with a dominance
in leptons (e.g. Isobe et al. (2002)). Too large relativistic electron fractions can be excluded
in most FRI sources on the basis of non-detection of inverse-Compton emission in the X-ray
(Croston et al. 2003). Assuming the thermal contribution to be small (Worrall 2009) the lobes
can be dominated by either relativistic or cold protons/irons, low-energy electrons or magnetic
fields. The possibility of deviating from equipartition is to some extent constrained by the
absence of detectable X-ray inverse-Compton emission (Croston et al. 2003). Magnetically
dominated jets (Li et al. 2006) have been discussed but are disfavored observationally due to
expected polarization properties and geometry (Croston and Hardcastle 2014). Initially proton-
dominated jets have difficulties in transporting the protons to the lobs (De Young 2006).
Another option is for the jet to gain significant amount of material via entrainment as the jet

expands. This model would result in a proton dominated jet on scales ∼ 10− 100 kpc. First,
entrainment provides the mechanism for FRI to deaccelerate to sub-relativistic speeds on kpc
scales (Bicknell 1994). Observed knots in jets can be interpreted as entrained gas clouds (e.g.,
Hardcastle et al. 2003, 2007a) and entrainment seems highly relevant for accurate kinematic
modeling (Laing and Bridle 2014). Additionally, the entrainment model provides a natural
explanation for FRII being seemingly in pressure equilibrium with their surrounding material
just based on their radiating leptons whereas FRI sources are not. FRII are not observed
to significantly interact with the ambient medium before terminating at hotspots such that
entrainment seems unlikely. Consequently, both types of jets could initially be comprised of
the same magnetized and leptonic material (Croston and Hardcastle 2014). Finally, the last
point is in agreement with different morphological types of FRI sources showing a correlation

12



between degrees of entrainment and emission power. Strong entrainment is correlated with a
larger fraction of non-radiating material (Croston et al. 2008).

Origin of radiation

In general, jets and lobes are able to create synchrotron radiation (Section 2.1.5) as well as
radiation due to inverse Compton scattering through leptons. As discussed above, it is not clear
if only electrons or a combination of electrons and positrons are responsible for the emission.
But in the following they are referred to as electrons. In addition protons are likely to be
present. The exact composition of the particle component which probably varies spatially and
over time is unclear (Harris and Krawczynski 2006).
The emission of FRI sources is normally explained to originate from a single electron popu-

lation which emits synchrotron emission ranging from radio, optical to X-ray emission in some
cases. This idea is supported by significantly steeper spectral indices in the X-ray than in the
radio and relative morphologies in radio, optical and radio emission (Harris and Krawczynski
2006). The lifetime of synchrotron emitting electrons in magnetic field with energy density uB
is given by

τ = 3mec

4σTuBγ
, (2.2)

where σT describes the Thomson cross section. Thus for synchrotron emission in the X-ray at
1keV the electrons need to have γ ∼ 107 and assuming a magnetic field of order 200 µG the
lifetime of the electron amounts to 30 years. This time is insufficient for the electrons to move
from the nuclei to the observed X-ray emitting regions. Consequently, X-ray-emitting electrons
are assumed to be accelerated in situ. Possible mechanisms for this include interaction with a
disturbed population of plasma waves or magnetohydrodynamical turbulence (Liu et al. 2017)
and/or shock acceleration (e.g., Marcowith et al. 2016). High energy protons (> 1018 eV) which
have significantly longer lifetimes are theoretically also possible but need high magnetic fields
of order & 100 µG (e.g., Bhattacharyya and Gupta 2016).
In addition, the observed emission could be upscattered CMB photons by highly relativistic

electrons (γ ∼ 100), so called inverse-Compton (IC) emission (Tavecchio et al. 2000; Celotti
et al. 2001). Here, no re-acceleration is necessary as the lifetime of the necessary relativistic
electrons suffices. Highly relativistic (beamed) jets are required while maintaining speeds out to
these distances that in some cases correspond to rather large jet lengths on the order of & Mpc.
The absence of theoretically observable gamma-ray emission in some sources challenges the
model (Meyer et al. 2017, but Lucchini et al. 2017).

Magnetic fields in jets

Studying the magnetic fields of jet-inflated bubbles reduces the possibility of removing the
degeneracy of electron distribution and magnetic field configuration that are responsible for
the synchrotron radiation. In the case of Centaurus A γ-ray emission has been observed by
Fermi. These observations clearly point to an IC origin of the radiation which helps to break the
degeneracy of magnetic field strength and electron number density. In this picture, the ultra-
relativistic electrons scatter CMB photons. Thus, Abdo et al. (2010) were able to estimate the
magnetic field strength of the bubbles to be around 1 µG. For FRII jets a typical of 10 µG has
been estimated using IC Compton data in the X-ray. The derived value corresponds to a value
below equipartition (Hawley et al. 2015).
Assumptions are still required for the exact high-energy particle composition (Blundell et al.

2006; Godfrey et al. 2009) and the filling factor (of particles and the magnetic field). Simulations
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have demonstrated the existence of substructure in the particle distribution (Tregillis et al. 2004)
and complexity on larger scales has also been observed (Isobe et al. 2002; Migliori et al. 2007).
IC scattering on CMB photons only depends on the distribution of the electron distribu-

tion. This is in contrast to synchrotron radiation which is also sensitive to the structure of
the magnetic field. It has been observed that IC maps are much smoother than synchrotron
observations. Hence, magnetic fields are assumed to be dynamically sub-dominant as well as
turbulent within the bubbles (Hardcastle and Croston 2005). Simulations support this picture
(Tregillis et al. 2004; Hardcastle and Krause 2014).
The degree of polarization of synchrotron radiation in radio lobes makes it possible to derive

the alignment of magnetic fields in the lobes. FRII jets were found to have magnetic fields
aligning with the jet axis. Whereas in FRI jets the magnetic field components tend to be
predominantly perpendicular to the jet axis or perpendicular to the jet at the jet center and
parallel near the edges. The perpendicular component in the mixed case can be attributed to
shocks and the parallel component to shear or oblique shocks (Bridle 1984). Far out from the
jet, magnetic fields tend to be always perpendicular to the jet in the lobes (Hawley et al. 2015).
This can be explained by an initially disordered field that expands into a lobe. Alternatively,
compression of a disordered field yields similar results (Laing 1980).

2.1.4 Proposed heating mechanisms

Connection to AGNs

We observe a clear association of radio galaxies in the center of CCs in contrast to non-CCs.
Burns (1990) found that around 70% of CCs host a radio galaxy but only about 20% of non-
CCs. More recently Mittal et al. (2009) even found a fraction of 100% for CCs and of 45% for
non-CCs. This result is in line with the idea that cooling gas is accreted by the central SMBH
leading to the creation of jets, which are mostly observed in the radio. Those jets are then
able to inflate large-scale cavities in the center of the cluster. This has been observationally
confirmed by the coincidence of X-ray bubbles and radio emission, e.g. in Hydra A (McNamara
et al. 2000), Perseus (Fabian et al. 2000), Abell 2052 (Blanton et al. 2001). The bubbles then
buoyantly rise in the ICM that is composed of magnetic fields and thermal pressure of the
ambient medium. Chandra has discovered an array of X-ray cavities outside the cluster center,
i.e. Perseus (Fabian et al. 2000), Abell 2597 (McNamara et al. 2001; Clarke et al. 2005), Abell
262 (Clarke et al. 2009), Abell 2052 (Blanton et al. 2009) and Hydra A (Wise et al. 2007).
The significant amount of enthalpy needed to inflate the observed large-scale bubbles must

be coupled to the cluster gas to quench star formation and to prevent cooling flows. The
correlation between AGN power (related to lobe energy see below) and level of cooling (X-ray
radiation) strongly supports this hypothesis (Rafferty et al. 2006) as well as the correlation
between central entropy and cavity power (Pfrommer et al. 2012). In addition, AGN timescales
(cavity buoyancy timescale) are in general lower or similar to central cooling times in clusters
(Rafferty et al. 2008). Including other heating mechanisms like shock, sound waves, thermal
conduction and CRs (see Section 2.1.4) the available amount of energy increases even more.
The observed low levels of cool gas in the core of CCs (2.1.2) theoretically challenges any

of the models described above since moderate levels of accreeting cold gas by the SMBH are
inevitably expected. The contraction can be reconciled with the observations when assuming
that the cold gas mixes with hotter gas or high hydrogen column densities absorb the particular
X-emission (Werner et al. 2013, 2014).
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Energy estimates

Observed bubbles can be used to estimate the energy provided by the radio jet source. To this
end, we calculate the work needed to inflate a bubble of volume V and pressure P while fixing
the enthalpy H. The enthalpy corresponds to the PV work needed to inflate the bubbles and
the internal pressure stabilizing the bubbles, thus

H = 1
γ − 1PV + PV = γ

γ − 1PV (2.3)

The adiabatic index γ then depends on the composition of the bubble. A purely relativistic
bubble with γ = 4/3 would give an energy of 4PV whereas a non-relativistic bubble yields
2.5PV . To estimate the energy input per unit time, we need an injection timescale. Normally,
the projected distance between observed outer and inner cavities is used combined with the
estimated buoyancy velocity. If outer cavities are not detected in a cluster, approximate values
from other clusters are used. Time estimates between single injections of bubbles are at the
order of ∼ 107 years (e.g., Perseus McNamara et al. 2000; Abell 262 Clarke et al. 2009; Abell
2052 Blanton et al. 2009).
The cooling luminosity of the gas can be estimated by

Lcool = 5
2
Ṁ

µmp

kT, (2.4)

where Ṁ is the mass deposition rate in the center of the cluster, T is the upper temperature of
the gas and µ is the mean molecular weight of the gas such that µmp gives the average weight of
gas particles. Comparing the injected energy rate of the bubbles to the cooling rate estimates,
in most cases it has been shown that bubbles supply enough power to offset the cooling in CCs,
i.e., in Abell 2052 (Blanton et al. 2001, 2009) with a rate ∼ 3 × 1043 erg s−1 and in Hydra A
(McNamara et al. 2000; Nulsen et al. 2002) with a rate ∼ 3× 1044 erg s−1. In larger studies it
has been shown that the energy provided is in principle able to substantially suppress cooling
in CCs (Bîrzan et al. 2004; Dunn and Fabian 2006; Bîrzan et al. 2008; Diehl et al. 2008).
The exact mechanism(s) coupling this large reservoir of energy in the lobes to the cluster gas

in a volume filling way has not been identified yet. The most discussed mechanisms including
possible shortcomings will be discussed in the next few sections.

Weak shocks

Shocks have been observed in CCs. The majority of those show Mach numbersM of order unity,
exceptions include Centaurus A withM = 8 (Kraft et al. 2003) and a shock in NGC 3801 with
M = 4 (Croston et al. 2007). Simulations (Li et al. 2016) of a self-regulated idealized cluster
have also identified energy dissipation by many small shocks as the main heating mechanism
of CCs. Fabian et al. (2003a) and Fabian et al. (2006) find that energy dissipation of viscously
damped sound waves with amplitudes consistent with the observed ripples and shock waves in
Perseus provide enough energy to offset cooling.
Mathews et al. (2006) found that dissipating shock waves will be able to heat the inner 30−50

kpc of the cluster. However, if the shocks are not sufficiently weak or rare, the center will be
overheated which is not observed. Consequently, the heating contribution from weak shocks can
only be secondary. A weak shock will increase the entropy of the medium while passing through
the medium, which causes a slight displacement of the gas to higher radii. Thus, most of the
residual energy gain from shocks ends in gravitational potential energy (Guo et al. 2017). This
happens on relatively short time scales compared to the cooling time such that the long-term

15



impact is negligible (McNamara and Nulsen 2012). For the case of Hydra A, it has been shown
that weak shock heating is not sufficient to halt cooling (David et al. 2001; Nulsen et al. 2007).
On the other hand, repeated shock waves at least close to the center of the cluster can have a
main contribution. In M87 (Forman et al. 2007) and NGC 5813 (Randall et al. 2011) multiple
shocks have been observed with rather high frequencies in between individual outbursts.

Turbulence

Large scale flows created by inflated lobes can become turbulent through the interaction with
older remaining cavities in the ICM (Heinz and Churazov 2005) or by interactions with dense
clouds (Salomé et al. 2011). Rising cavities lift up low entropy gas from cluster center which
should eventually return, creating turbulence in the process (Gitti et al. 2011). Flows around
buoyant bubbles can also generate turbulence (Sanders et al. 2011). The dissipation of turbu-
lence would provide another source of heating.
By analyzing deep Chandra observation of Perseus and Virgo, Zhuravleva et al. (2014) find the

dissipation of turbulence to be sufficient to be the main heating source in CCs. Contrary to this,
simulations by Reynolds et al. (2015) clearly show that AGNs drive turbulence on insufficient
levels for turbulence to be the main heating mechanism, (see also Yang and Reynolds 2016a).
High resolution X-ray measurements of Perseus by Hitomi also show low level of turbulence
(Hitomi Collaboration et al. 2016) in the cluster. If the turbulence is generated in the vicinity of
the bubbles the low value of measured gas velocities does not allow the energy to be dissipated
in a volume filling fashion throughout the cluster (Fabian et al. 2017).

Sound waves

In addition to shocks, sound or pressure waves have been discovered in CCs. Especially in
Perseus (Fabian et al. 2003a, 2006) ripples with pressure fluctuations of order 5 − 10 % have
been observed without accompanying increases in temperature. Similar observations also exist
for Centaurus (Sanders and Fabian 2008) and M87 (Forman et al. 2007). The advantage of
sound waves is that they would travel isotropically through the cluster. On the other hand,
wave dissipation depends on transport coefficients in contrast to shock dissipation. Thus, the
process would be less effective in cooler regions of the cluster. To compensate, more frequent
outbursts would be necessary (McNamara and Nulsen 2007). In the light of the slow velocities
detected in Perseus by Hitomi results, Fabian et al. (2017) find heating due to the dissipation of
sound waves still in agreement with the observations and propose it as a major heating source
in CCs.

Bubbel mixing

Hillel and Soker (2016) find the mixing of the hot bubble gas with the surrounding ICM to be
the main mechanism in offsetting cooling in CCs in their simulations. Related to this, Yang
and Reynolds (2016a) see the combination of bubble mixing and weak shocks as the crucial
ingredient to generate entropy. This is distributed in the long term through gentle circulation.
Energy exchange could be much slower if the lobes were mostly filled with CRs and magnetic
fields (McNamara and Nulsen 2012).

Thermal conduction

Purely thermal conduction from outer hotter regions to the center of the cluster has been
proposed as the main heating mechanism (Narayan and Medvedev 2001; Zakamska and Narayan
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2003; Voit et al. 2015). The exact value of the transport coefficient, the so called Spitzer value,
is however still unknown due to possible suppression effects due to plasma physics processes
(Komarov et al. 2016).
Simulations (Ruszkowski and Oh 2011; Yang and Reynolds 2016b) have excluded thermal

conduction as the main heating mechanism, even when assuming a maximum Spitzer conduc-
tivity. Thermal conduction has recently mainly been used to explain heating at larger radii (Li
et al. 2015; Kannan et al. 2016; Jacob and Pfrommer 2017a).

Cosmic ray heating

The presence of a significant non-thermal component in the jet-inflated lobes seems most likely.
The observed cavities in the X-ray would be prone to instabilities on short time scales without a
stabilizing non-thermal part (Section 2.1.3). In addition estimates of the mass profile in galaxy
clusters has pointed to the presence of a non-thermal component in some of them (Voigt and
Fabian 2006) and the lack of energy in some bubbles could be alleviated by them partly being
filled with a non-thermal relativistic component decreasing their size (Bîrzan et al. 2008).
CRs in the lobes should then be transported out of the lobes into the ICM (Sijacki et al.

2008). Subsequently, CRs can heat the cooling ICM via collisional heating or, for streaming
CRs, via the more efficient excitation and dissipation of plasma waves (Enßlin et al. 2011).
Guo and Oh (2008) and Jacob and Pfrommer (2017a) show that heating by streaming CRs
with the addition of thermal conduction in the outer parts in the cluster is sufficient to offset
cooling. The required amount of CRs is in agreement with observations (Jacob and Pfrommer
2017b) such as gamma-ray emission due to neutral pion decay from proton-proton interactions
as well as synchrotron radiation from secondary electrons. The exception to this finding are
CCs with a radio mini halo (Section 2.2.1). This subset however also shows increased cooling.
Thus, these clusters seem to harbor the older population of CRs that partially streamed out of
the cluster and could power the radio mini halos. Later cooling will again be hindered by the
injection of new CRs through the self-regulated loop connected to the central SMBH.
Limitations of the described models include their reduction of the problem to finding a

one-dimensional steady-state solution with a constant injection rate of CRs. Simulations by
Ruszkowski et al. (2017) that include MHD and CR streaming (Sharma et al. 2010) obtain a
self-regulated feedback cycle with the dominating contribution to heating from CRs. Expanding
more on the exact details of the dynamics by CR-filled bubbles in such a context is the topic
of this thesis.

2.1.5 Magnetic fields in clusters

The ICM is threaded by magnetic fields. They can been measured via Faraday rotation mea-
surements of background radio galaxies and radio galaxies within clusters (Carilli and Taylor
2002; Kronberg 2003; Govoni and Feretti 2004; Vallée 2004). In the Coma cluster, magnetic
field strengths B ∼ µG have been infered (Kronberg 2003). In cool core cluster values of mag-
netic field are at the order of tens of microgauss (Clarke et al. 2001; Bonafede et al. 2010). The
origin of magnetic fields in clusters is unclear as they may have been created by radio galaxies
or quasars, or primordial magnetic fields may have been amplified to the current values by
magnetic dynamo processes that are driven by gas turbulence and/or compression (Carilli and
Taylor 2002).
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Origin

A good approximation of the magnetic diffusion timescale in galaxy clusters is given by τ ∼
1036

(
L

10kpc

)2
years where L is scale of magnetic fluctuations (Carilli and Taylor 2002). Thus,

if magnetic fields are created or amplified only anomalous resistive processes like reconnection
via plasma wave generation in shocks can annihilate them. Many possible mechanisms for the
creation and or amplification of magnetic fields have been proposed but no definitive answer
has yet been found.
Astrophysical magnetic fields may have been created by the so called Biermann battery

(Biermann and Schlüter 1950). The mechanism is based on the separation of electrons and
protons and requires a baroclinic term, i.e., ∇ne × ∇Pe 6= 0 . This creates a current and an
electric field to restore equilibrium. Magnetic fields emerge due to the symbiotic nature of
electromagnetic fields. This separation in charge can be obtained due to the large differences in
mass. One phenomenon with a mass dependence would be photon drag which affects electrons
more heavily than protons.
Alternatively, primordial weak seed fields may have been created during phase-transitions

in the early universe. Local charge separation might have happened during the quark-hadron
or the electroweak transition (Baym et al. 1996). During the period of inflation, quantum
magnetic field fluctuations might have been amplified via super-adiabatic amplification (Turner
and Widrow 1988). These fields would have field strengths of order ∼ 10−21 G. The survivability
of magnetic field on comoving scales≤ a few Mpc is however unclear due to magnetic and photon
diffusion during the radiation era (Battaner and Lesch 2000). Observations of the anisotropy
in the CMB and inhomogeneities in the matter distribution measured by faraday rotation of
distant quasars have been able to put upper limits on the magnetic field at < 5× 10−9 G and
< 10−9 − 10−8 G, respectively (Govoni and Feretti 2004).
Possibly, magnetic fields were generated at later times. The Biermann battery effect might

have been rather strong during the epoch of re-ionization (Gnedin et al. 2000) or the fields
might have been created during the epoch of structure formation (Kulsrud et al. 1997).
Lastly, magnetic fields could originate from member galaxies of the cluster during its forma-

tion. Galactic winds launched from galaxies, active galaxies or starburst galaxies would all be
able to eject magnetic fields into the ICM. In galaxies magnetic fields could be created by the
Biermann battery in early stars, which inject them into the ISM by stellar outflows. Otherwise
primordial galactic magnetic fields may have been enhanced through adiabatic compression
during the collapse of the protogalactic cloud up to 10−19 G (Govoni and Feretti 2004). The
metallicity of the ICM is around 30% which directly supports the injection of material from
galaxies (Carilli and Taylor 2002). However observed magnetic field values in galaxy clusters
can be of the order or even higher than the field strengths in galaxies (Grasso and Rubinstein
2000).
Independent of the exact seeding or injection mechanism, the strength of these magnetic

fields would still be lower than observed values in the ICM, thus some form of dynamo is re-
quired that enhances the magnetic field strength. A dynamo is based on electrically conducting
material moving in a magnetic field in order to induce currents maintaining and amplifying the
original magnetic field (Govoni and Feretti 2004). To this end turbulence is needed which on
galactic scales could be provided by supernovae, stellar winds or hydromagnetic instabilities.
On cluster scales during the period of structure formation mergers generate shocks, bulk flows
and turbulence. The former two are able to enhance the magnetic field through compression
whereas turbulence might be responsible for significant nonlinear amplification. The last point
could be shown in cosmological simulations where fields with insignificant field strengths were
enhanced from ∼ 10−9 G to ∼ 10−6 G (Govoni and Feretti 2004).
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Faraday rotation

Polarized radio radiation changes its angle of polarization in magnetized plasmas due to the
so-called Faraday rotation (Carilli and Taylor 2002; Vallée 2004). The plasma forces the elec-
trons to gyrate in preferred directions, thereby changing the index of refraction for left- vs
right-circularly polarized radiation. This leads to a phase shift of the left- and right-polarized
components as ∆χ = RMλ2, where ∆χ defines the change in the polarization angle, λ is the
wavelength of the radiation and RM is the rotation measure. The rotation measure is sensitive
to the electron density and magnetic field strength along the line of sight via

RM = 812
∫ L

0
ne(x)BµG(x)dx, (2.5)

where BµG corresponds to the magnetic field strength in µG, ne describes the electron density
in the plasma per cm3, RM is given in units of rad m−2. The integral is taken from the source
to the observer along the line of sight. The effect can be used to constrain field strengths of
galaxies and galaxy clusters. This is done using radio telescopes (χ ∝ λ2) measurements at
different wavelengths. However, assumptions on the spatial distribution of the electron density
and the magnetic field within the cluster but also in the foreground (between galaxy clusters,
in our Galaxy) have to be made. Assuming a constant magnetic field in the cluster, minimum
magnetic field strengths of the order of 5 to 10 µG have been determined in cool core clusters.
Those values are reduced by a factor of two in non-cool core clusters (Carilli and Taylor 2002).

Synchrotron radiation

An electron in a magnetized medium with energy ε = γmec
2, where γ is the relativistic Lorentz

factor, will be forced to gyrate around a magnetic field line due to the Lorentz force. It will
emit synchrotron radiation in the direction of travel in a cone with half-angle ' γ−1. The
spectrum of the radiation will peak at the so called critical frequency νc given by (Rybicki and
Lightman 1979)

νc = 3qe
4πmec

Bγ2 sin θ ' 4.2× 106 Bγ2 sin θ, (2.6)

where θ is the angle between magnetic field and electron velocity.
The emitted synchrotron power by an electron is given by (Rybicki and Lightman 1979)

−dε
dt

= 4σTc
3 β2γ2UB ' 1.06× 10−15B2γ2 sin2 θ, (2.7)

where σT is the Thomson cross section, UB is the magnetic energy density and the last step
holds for relativistic electrons with β ' 1.
The particle density N(ε) of an electron population following a power law in energy is

N(ε)dε = N0ε
−δdε (2.8)

The principle of detailed balance states that to every emission process there is a corresponding
absorption process. In the case of synchrotron radiation this process is called synchrotron
self-absorption. The process becomes relevant when the brightness temperature of the source
becomes of the same order as the kinetic energy of the electrons which is not important in
galaxy clusters. This effect can in some environments become relevant at low frequencies where
the optically thick medium now emits at the intensity

S(ν) ∝ ν+5/2 (2.9)
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Thus, its slope is independent of the initial electron distribution. In the optically thin regime
the intensity varies as

S(ν) ∝ ν−α, (2.10)
where α = (δ − 1)/2 is the spectral index.
Synchrotron emission is by nature polarized. In the optically thin regime the degree of

intrinsic linear polarization for a homogeneous and isotropic relativistic electron distribution
as above is given by

Pint = 3δ + 3
3δ + 7 (2.11)

polarized in the direction perpendicular to the projection of the magnetic field on the plane
of the sky. Typical values for δ yield a high degree of polarization at ∼ 75 − 80% (Govoni
and Feretti 2004). In the optically thick case, the polarization in the direction parallel to the
projected magnetic field gives

Pint = 3
6δ + 13 (2.12)

However in reality far smaller degrees of polarization are measured. This is partially due to
the more random magnetic field structure that varies significantly along the line of sight. In
addition, superpositions of Faraday rotation at different positions along the line of sight and at
any foreground screens contaminate the degree of polarization (Fletcher 2010).

Equipartition

Observed synchrotron emission in radio halos (Section 2.2.1) can be used to estimate the mag-
netic field strength in the ICM. As discussed, when using measured synchrotron emission, the
magnetic field strength cannot unambiguously be separated from the energy of the radiating
electrons. Thus, the minimum energy assumption is made, which means that the total energy
content is minimized to match observed synchrotron fluxes. The relevant energies here are
given by the energy in protons Up, energy in electrons Ue and the magnetic field energy UB.
The total energy can then be expressed as

Utot = Ue + Up + UB (2.13)
Assuming the energy in protons is just a constant fraction k of the electron energy, one obtains

Up = kUe (2.14)
The magnetic field energy can be described up to a volume filling fraction ΦV as

UB = B2

8πΦV (2.15)

Assuming a power law distribution in electrons one can use the synchrotron luminosity of the
electrons to express Utot in terms of the magnetic field strength as (Carilli and Taylor 2002)

Utot = A(α, ν1, ν2, k)B−3/2 + B2

8πΦV, (2.16)

where the coefficient A depends on α, k and the spectral bin from frequency ν1 to ν2 of the
observational data. Minimizing Utot(B) with regard to B gives a similar result as assuming
equipartition between the energy in particles and the energy in the magnetic field.
The exact value of k is rather uncertain as it strongly depends on the exact mechanism to

produce relativistic electrons. In addition, the volume filling fraction is poorly constrained as
well as the extent of the source itself along the line of sight.
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Observed strengths and spectral shape

For Hydra A (CC cluster), Kuchar and Enßlin (2011) find the magnetic field strength and
magnetic power spectrum ω(k) ∝ kγ (with spectral index γ) through fitting their model to
Faraday rotation measurements. They assume a double beta profile for the electron number
density

ne(x) =
n2

e1

(
1 +

(
r

rc1

)2
)−3β

+ n2
e2

(
1 +

(
r

rc2

)2
)−3β

1/2

(2.17)

as is common for CC clusters (Vogt and Enßlin 2005). In addition, they assume a dependence
on ne(x) for the magnetic field of the form

〈B2(x)〉 = B2
0(ne(x)/n0)2α (2.18)

and statistical isotropy.
Their resulting power law ranges for α = 1 from scales of 0.3 kpc to about 8 kpc. They

do not detect a significant cut-off scale at large scales. Smaller scales are not accessible due
to the FWHM of the beam. Their spectral index γ = 1.73 is consistent with a Kolmogorov
spectrum (γ = 1.67). A Kolmogorov spectrum in general suggests that large scale turbulence
drives the magnetic dynamo in the cluster. Extrapolating their model, they measure a central
magnetic field strength of B0 = 20 − 80 µG. They are able to directly measure the magnetic
field strength at a distance of 50 kpc from the cluster center as B50 = 10− 30 µG.
The Perseus CC cluster seems to host a turbulent magnetic field. Observations (Schuecker

et al. 2004) as well as simulations find the magnetic field power spectrum of the Coma cluster
to to be consistent with a Kolmogorov power spectrum. Bonafede et al. (2010) use Faraday
rotation measurements to constrain the magnetic field strength and optimize parameters for
the power spectrum of the magnetic field. They use data from seven distinct radio sources
and are thereby able to probe the magnetic field on larger scales. Assuming a Kolmogorov
power spectrum, they find that the data is best reproduced with a model where the maximum
fluctuations are on a scale of 34 kpc and the minimum fluctuations on a scale of 2 kpc. They
also assume a magnetic field dependence as given in Equation 2.18. For the magnetic field
normalization they find B0 = 3.9− 5.4 and index α = 0.4− 0.7. The definition of the plasma
beta factor is

βB = Pu
PB

= nkT

B2/(8π) (2.19)

Hence, the inferred magnetic profile by Bonafede et al. (2010) is consistent with a constant
(isothermal) plasma beta factor.
A more vivid example for the index α is given in the following. Assuming a cylinder with

magnetic field B, cross-sectional area A and particle density n, one sees that the particle flux
nA and magnetic flux BA are conserved (ideal MHD). We have

B

n
= constant, (2.20)

which is independent of A. Consequently, perpendicular contraction or expansion does not
alter the relation. Assuming a parallel contraction or expansion, A stays constant, thus B =
constant in this case. For isotropic contraction or expansion the particle number is conserved
nr3 = constant as well as magnetic flux Br2. We obtain

B

n2/3 = constant (2.21)
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In summary:

B

ρi
= constant; i =


1 perpendicular contraction/expansion
0 parallel contraction/expansion
2
3 isotropical contraction/expansion

(2.22)

The case of i = 0.5 can thus be seen as an intermediate case of parallel and perpendicular
contraction which is a reasonable assumption for the ICM.

Draping

The process of draping describes the amplification of magnetic fields and their corresponding
tension on the bounding layer perpendicular to the direction of motion of an object while
the object moves at super-Alfvénic speeds through a magnetized medium with magnetic field
strength B0. Bubbles inflated by AGN jets might be affected by this process (Ruszkowski
et al. 2007; Dursi and Pfrommer 2008). The process results in a slow down of the object and
makes it more resilient against Kelvin-Helmholtz and Rayleigh-Taylor instabilities. Thus, it
should have a significant impact on the timescale and life time of bubbles inflated by AGN
jets discussed in this thesis. This effect in the environment of galaxy clusters has been studied
previously in the context of cold fronts. These sharp transitions in the ICM are relatively long
lived. However, enhanced magnetic fields along their edges might support the medium against
thermal conduction and hydrodynamical motions (Asai et al. 2007; Lyutikov 2006; Vikhlinin
et al. 2001). In addition, the transport of CRs should also be inhibited across draped magnetic
field layers.
Dursi and Pfrommer (2008) set up an (over-dense) spherical bullet with radius R and subsonic

speed u in a box with a homogeneous magnetic field perpendicular to the direction of motion
of the projectile and a constant density and pressure. They find the critical value for draping
to saturate to be α ≈ 2 where α describes the ratio between the maximum magnetic pressure
and incoming ram pressure at the stagnation line as

α = B2/(8π)
ρu2/2 (2.23)

Here, B describes the magnetic field strength at the boundary layer, ρ the density of the ambient
medium and there is a slight modification represented by α whose origin has not been fully
understood yet (Pfrommer and Dursi 2010).
For α� 1 the ram pressure dominates and the bullet passes uninhibited through the medium

as perpendicular field lines are just swept over the object. If the magnetic field dominates
(α > 1) magnetic tension becomes too strong and the object is slowed down. In two dimensions
the ever-increasing tension from the swept up material is at some point able to even reverse
the direction of travel of the object (Figure 3/4 Asai et al. 2005; Figure 6 Dursi and Pfrommer
2008) as the field lines have no possibility of sliding over the object in the third dimension.
Using Equation 2.23 the thickness of the resulting draping layer can be derived. The magnetic

field at the boundary layer of a sphere at the stagnation line can shown to be

B ' B0

[
1−

(
R

R + s

)3]− 1
2

' B0

√
R

3s, (2.24)

where s describes the distance from the leading edge along the stagnation line (Pfrommer and
Dursi 2010; Lyutikov 2006). The last result holds for s/R � 1. It is straightforward to show
that the thickness of the draping layer at the stagnation line for a spherical object is given by

s ' 1
3αM2

A

R ' 2
3αβγM2R, (2.25)
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where MA = u/uA = M
√
βγ/2 is the Alfén Mach number, M = u/cs = u/

√
γP/ρ is the

hydrodynamic Mach number and β = P/PB = P/(B2/(8π)) describes the plasma beta factor
of the surrounding medium. To first order the draping layer should be established when the
object has been able to sweep up enough field lines to cover half its surface area with magnetic
field lines. Magnetic draping describes the sweeping up of magnetic fields at its surface. The
magnetic field lines are slightly compressed and stretch accordingly. Consequently, it requires
the field lines not to be considerably smaller than the object as they otherwise would not stay
attached to the object. The sweeping procedure should have completed at half the crossing
time of the object tc/2 with tc = 2R/u. Thus, the timescale of establishing the draping layer is
given by:

t = R

u
(2.26)

Pfrommer and Dursi (2010) find empirically that around five galactic crossing times are neces-
sary in more realistic scenarios.
As discussed above draping is only possible for magnetic field lines with a large enough

coherence length to wrap around the object. To estimate the minimum magnetic field coherence
length one can look at a simplified model of the problem assuming a perfect potential flow.
This is basically valid in the upper half of the object in the direction of motion but due to the
significant generation of vorticity not in the lower hemisphere. From the analytical solution of
the model a critical impact parameter can be derived of the streamline to the stagnation line
that is tangent to the outermost boundary layer. The critical impact parameter pcr can shown
to be

pcr = R√
αβγM

, (2.27)

which, even though strictly only valid for a perfect potential flow of a sphere, is in good
agreement with simulations (Pfrommer and Dursi 2010). Magnetic fields with coherence length
smaller than 2pcr cannot completely encase the objects working surface in the flow. They are
not be able to attach to its surface and, thus, do not contribute to the draping layer. This
constrains the ratio of the magnetic coherence length λB with the radius of the object to

λB
2R = 1√

αβγM2 (2.28)

In a more general model R can also describe the radius of curvature of the object.

2.2 Cosmic rays
We are interested in CRs in clusters, first we review important aspects of CR physics that
were obtained in studies of Galactic CRs. The majority of particles in the universe are thermal
particles. There is also a non-thermal particle component, so called cosmic rays (CR) which
can span kinetic energies from 100 − 1021 eV. Only 1− 2% of CRs are electrons. The thermal
electrons that dominate by orders of magnitude can easily cancel CR proton currents.
To constrain the confinement and propagation time of CRs in the Galaxy one can study the

measured composition of CRs. The abundance of r-process elements (supernovae (SNe) ejecta)
in CRs is close to the interstellar value. On the other hand there is a strong overabundance (by
5-7 orders of magnitude at ∼ 1 GeV) of light elements (Fermi 1949) like He, Li, Be and B. These
abundances can be explained if CRs passed through 3− 6 gcm−2 of ISM to produce spallation
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products (Zweibel 2013). Using transport equations that model the spallation processes and
account for life times of resulting isotopes (Strong et al. 2007), one can show that CRs stay in
the galactic disk for 1− 2× 107 years at 1 GeV and less with increasing energy.
This hints at an efficient confinement mechanism as the CR lifetime in the disk is 3-4 orders of

magnitude larger than the light travel time through the Galaxy. However the obvious contender,
magnetic fields, cannot be the only reason for confinement as they would yield an energy
dependence on the confinement time. Also the acceleration process itself seems to happen on
much smaller timescales than the CR lifetime. Otherwise one would expect the longest-lived
CRs to have the highest energy whereas the opposite is actually observed.
Observations on the isotropy of CRs at ∼ 1 GeV are hindered due to strong pollution from

the solar wind (Webber 1998). However data from CRs with higher energies indicate that CRs
are isotropic to a few parts in 104 with the anisotropy slowly increasing for higher energies.
Some local sources might be present that slightly modify the picture, however the main idea
remains valid. CRs are accelerated on short timescales and propagate diffusively through the
interstellar medium. Using basic random walk approximations on can show that the ratio of
the mean free path λ of the CR to the size of the system is on the same order as the ratio of
free streaming time to confinement time. The mean free path for CRs at ∼ 1 GeV is a few
pc such that the diffusion coefficient is of order 1028−29 cm2s−1. More insights into this, from
which also the treatment of CRs as a fluid will follow, will be given in Section 2.2.2 after the
discussion of some CR sources in galaxy clusters.

2.2.1 Observations in galaxy clusters
Observing galaxy clusters in the radio spectrum revealed the existence of peculiar objects within
galaxy clusters. Large-scale diffuse radio emission has been observed in a variety of clusters, so
called radio halos and smaller so called radio mini halos. In addition more irregular elongated
objects, radio relics, have been identified at the cluster periphery. They generally all show very
steep spectra. Radio relics however show much higher degrees of polarization compared to halos
(Feretti et al. 2012). Due to their polarization their common origin seems to be synchrotron
radiation, which proves the prevalence of magnetic fields and at least CR electrons in galaxy
clusters. In the Galaxy, the CR proton energy density even outnumbers the CR electron density
by two orders of magnitude suggesting the existence of CR protons in galaxy clusters (Enßlin
et al. 2005). A brief overview of these radio phenomena will be given in the following.

Radio Halos

A subset of galaxy clusters host diffuse synchrotron radio-emitting structures. The large Mpc-
size subclass is comprised of giant radio halos whereas the smaller-scale feature is referred to as
minihalo (Feretti et al. 2012). Radio mini halos are predominantly found in cool core clusters
whereas giant radio halos are hosted by unrelaxed clusters (Yuan et al. 2015) that very rarely
(Sommer et al. 2017) posses a cool core (Rossetti et al. 2013). Radio halos show steep spectral
indices (α > 1, equation 2.10) and low surface brightnesses. Their centroids seem to align with
the cluster center as seen in the X-ray (Carilli and Taylor 2002).
The two main models for explaining the radio emission are based on fossil or secondary

electrons that are re-accelerated in the volume of the cluster (Brunetti and Lazarian 2011;
Pinzke et al. 2015) or secondary electrons produced throughout the cluster by (hadronic) proton-
proton collisions (Enßlin et al. 2011).
As giant radio halos are preferentially observed in clusters that show merging signatures, it is

reasonable to assume that mergers supply the re-acceleration energy for the electrons (Feretti
et al. 2012). This model is strengthened by the correlation between the spectral index and
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cluster temperature. Hotter halos (more recent mergers) seem to host radio halos with flatter
spectrum indicating more recent acceleration processes (e.g., Feretti et al. 2004; Cassano et al.
2008).
The clusters X-ray luminosity (0.1− 2.4 keV) and its giant halo radio power at 1.4 GHz are

only correlated in merging galaxy clusters (Feretti et al. 2012). In addition, spatial correlations
between X-ray and radio emission have been found for a number of regular giant radio halos
(e.g., Feretti et al. 2001; Giacintucci et al. 2005). These findings strongly support the merger-
driven origin of radio halos. More irregular radio systems show significant offsets between X-ray
and radio emission (Feretti et al. 2010) possibly due to distinct fluctuations in the magnetic
field structure of the cluster (Vacca et al. 2010).
Giant halos in seemingly X-ray deficient clusters in relation to their radio luminosity (Gio-

vannini et al. 2009, 2011) and clearly dynamically disturbed system without significant radio
detection (Cassano et al. 2010; Russell et al. 2011) challenge the outlined picture above. To
resolve these findings a new type of mergers has been suggested (Feretti et al. 2010).

Mini Halos

Some cool core clusters show diffuse radio emission on scales of ∼ 100 kpc up to ∼ 500 kpc
from the central radio galaxy, which is clearly not related to any X-ray cavity. These features
are called radio minihalos. The flux density of minihalos Sν ∝ ν−αradio at frequency ν with
radio spectral index αradio drops rather steeply with αradio > 1. The source of this diffuse
emission with a steep spectrum seems to require magnetic fields and ultra relativistic electrons
distributed throughout a large fraction of the cooling cluster core (Brunetti and Jones 2014).
In contrast to giant radio halos, minihalos have been almost exclusively found at the center

of CCs (Kale et al. 2015; Yuan et al. 2015; Giacintucci et al. 2017). The emission is centered
around the central active radio galaxy that usually exists in CCs (Mittal et al. 2009) and extends
out to high distances ∼ 50− 300 pc, thereby usually filling the cooling region. The minihalos
do not show any clear structure like extended radio galaxies with lobes and jets. Thus, they
also differ from old remnants of radio galaxies at the center of some clusters. These remnants
show even steeper radio spectra (αradio & 2) and a modified version of the lobe structure can
still be visible (Saikia and Jamrozy 2009; Murgia et al. 2011, 2012).
Cold X-ray fronts that surround the radio minihalos are observed (Mazzotta and Giacintucci

2008; Giacintucci et al. 2014a,b). They seem to be the result of sloshing processes of the cool
gas in the central core region (Ascasibar and Markevitch 2006). One interpretation of these
observations is that minihalos are formed by relativistic electrons that are reaccelerated at tur-
bulent magnetic fields, which are created by the sloshing effect of a minor merger within the
cluster (Mazzotta and Giacintucci 2008; ZuHone et al. 2013; Giacintucci et al. 2014a). Numer-
ical simulations confirm that sloshing motions are able to amplify magnetic fields and create
turbulence in a region bordered by cold fronts where diffuse radio emission can be generated
(ZuHone et al. 2013, 2016). The X-ray observations by the Hitomi satellite (Hitomi Collabora-
tion et al. 2016) show levels of turbulence sufficient for the described model (Giacintucci et al.
2017).
On the other hand, there is also a hadronic model trying to explain the origin of the minihalos

(Pfrommer and Enßlin 2004; Enßlin et al. 2011; Jacob and Pfrommer 2017b). Here, CR protons
inelastically interact with thermal protons forming pions which eventually decay into electrons
and positrons. Both turbulence and CR protons (Section 2.1.4) could play a vital role in
heating CCs, such that a direct connection seems evident (Fujita and Ohira 2013; Bravi et al.
2016; Jacob and Pfrommer 2017b). Further support for this hypothesis is given by Giacintucci
et al. (2017). They are able to detect 12 minihalos within their sample of 15 massive clusters
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(M500 > 6× 1014M�) where they find an increased probability of detecting minihalos in hotter
CCs in agreement with Giacintucci et al. (2014b).

In contrast to radio halos, radio mini halos show a wide range in radio emissivity in some
cases like Perseus their emissivity is even two orders of the magnitude higher than that of radio
halos (Enßlin et al. 2011). In addition, a small correlation between the mini halo and the cD
radio power has been found (Govoni et al. 2009). Both of which hints towards a connection of
radio mini halos partly to the local intergalactic medium and partly to the AGN activity.

Radio relics

First, radio relics discussed here should not be confused with old bubbles (AGN relics) in the
ICM previously inflated by an AGN. Radio relics discussed here are similarly to radio halos
large (& 1 Mpc), steep spectrum (α & 1) diffuse low surface brightness radio sources. Relics
are seen in the outskirts of clusters of merging and relaxed galaxy clusters. They are strongly
polarized (∼ 20− 30%) (Feretti et al. 2012). They are a good indicator for µG magnetic fields
at the outskirts of clusters and hint towards shock accelerated relativstic electrons at large
distances from the cluster center (Brüggen et al. 2011; Pinzke et al. 2013).

Relics show an elongation roughly perpendicular to the direction to the cluster center. Relics
have been detected in merging as well as CCs clusters. This points towards their formation being
related to major mergers and minor or off-axis mergers. Those findings and X-ray observations
of radio relics (e.g., Finoguenov et al. 2010) suggest a profound connection between merger
shocks and radio relics (Brüggen et al. 2012). Hydrodynamical cosmological simulations are
also able to reproduce the main observed features of radio relics (e.g., Nuza et al. 2017).

However, not all relics can be explained with this model. Two distinct populations of radio
relics differ in morphology. There are roundish as well as elongated relics. Elongated relics
seem to be related to the ICM and the result of merger shocks then (usually) referred to as
gischt (Kempner et al. 2004). They show strong ordered polarizations and are clearly related
to large-scale shocks (M = 1− 3). Consequently, their polarisation, morphology, location and
spectral index are in good agreement with shock accelerated particles and compressed magnetic
fields which causes the observed synchrotron radiation (van Weeren et al. 2011). In addition,
expected double radio relics on both sides of the merged cluster with extensions perpendicular
to the merger axis have been detected in many systems (i.e., Abell 3667, see Rottgering et al.
1997, Johnston-Hollitt 2003; in Abell 3376, see Bagchi et al. 2006).

There is another class of roundish shaped relics which are termed phoenix (Kempner et al.
2004). They are also detected off center close (∼ 0.4 Mpc) to the largest central galaxy but
show a more regular roundish shape. Interpreting them as elongated relics, seen from the sides,
is statistically unlikely (Feretti et al. 2012). Their sizes are in the range . 100 − 350 kpc
and show filamentary structure (Govoni et al. 2001). Their close proximity to an AGN source
leads to them being interpreted as re-energized (from shock waves) radio lobes (Enßlin and
Gopal-Krishna 2001; Enßlin and Brüggen 2001). Alternativley, they could be powered by an
radio-emitting lobe created by CRs lacked from a X-ray cavity inflated by the central AGN
(Mathews and Brighenti 2008). Some exceptionally distant roundish relics have been found in
Abell 1664 (Govoni et al. 2001) and Abell 548b (with two relics on the same side of the AGN)
(Feretti et al. 2006; Solovyeva et al. 2008), which does not agree well with the model.
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2.2.2 Fluid description
Vlasov Equation

In general CRs can be described by a distribution function f(x,p, t), the probability for a
CR to be at position x with momentum p at time t. The distribution function follows the
Boltzmann equation

∂f

∂t
+ v ·∇f + dp

dt
·∇pf = ∂f

∂t

∣∣∣∣∣
c

+ S(x,p, t), (2.29)

where v is the velocity of the CRs and ∂f/∂t|c describes collisional processes like spallation
and pion production. CR propagation codes like GALPROP (Strong and Moskalenko 1998) use
this term to compare propagation models with observations or determine the radiative emission
from CRs. The term S(x,p, t) characterizes the sources of CRs. Even if we had knowledge of
the exact magnetic field structure of the Galaxy, it would still be unfeasible to solve Equation
2.29 by direct integration, as gyro radii of GeV protons are 9-10 orders of magnitude smaller
than the size of the system. Consequently, approximations are necessary.
For the relevant radiation processes in galaxy clusters the full treatment of the spallation

processes is not relevant. When excluding sources for the CRs one can rewrite Equation 2.29
in the following form (assuming isotropy in momentum space)

∂f

∂t
+ v ·∇f + dp

dt
·∇pf = 0 (2.30)

This is the so called Vlasov equation which is valid for all collisionless systems and describes
the conservation of phase space density (df/dt = 0). For the Boltzmann/Vlasov equation to be
applicable, interactions on the microscopic scale of the particles λ have to be on scales much
smaller than the scale l we are interested in. In turn l has to be smaller than the size of the
system L. The last point is quite clearly fulfilled. The condition λ� l might seem problematic
as Coulomb interactions in the relatively dense ISM between CRs and thermal particles have
a mean free path of ∼ 1010 pc. However, CRs constantly pitch angle scatter on magnetic
fluctuations so called Alfvénic waves, which causes them to interact without collisions on much
smaller scales. The crucial last point will be explained in more detail in the next section.

Pitch angle scattering

As discussed in the introduction of this subsection, the CR confinement time and CR isotropy
point towards a confinement mechanism of CRs which is not primarily related to gyration
around magnetic fields nor to the timescale of acceleration mechanisms but due to the influence
of plasma effects on CRs. It becomes necessary to study how CRs interact with small scale
magnetic fluctuations δB on a uniform background magnetic field B0. The transverse magnetic
field component of the fluctuation δB⊥ exerts a Lorentz force on the CR. Assuming the Lorentz
force decreases the parallel velocity component v‖ (with respect to the the magnetic field) of
the CR, the perpendicular component v⊥ will increase as (time-independent) magnetic fields
leave the energy of the particle invariant.
Consequently, the pitch angle of the particle cos θ = v‖/v changes. One refers to this form of

interaction as pitch angle scattering. For pitch angle scattering to be most effective, the scale
of the magnetic fluctuations rδB should be on the order of the gyration radius of the CR rG.
If rG � rδB the CR just gyrates around the slowly evolving magnetic field flucuation. On the
other hand, if rG � rδB the lorentz force varies on such small scales that it averages out and
the CR effectively does not get scattered.
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In a more quantitative sense the two relevant resonances are the Landau resonance

ω − k‖v‖ = 0 (2.31)

which is related to magnetosonic waves, and the gyroresonances

ω − k‖v‖ = ±nΩ n ∈ N, (2.32)

where subscript "‖" refers to parallel direction with respect to the magnetic field, ω and k‖
describe the frequency and parallel wavenumber of the fluctuation, v‖ and Ω are the parallel
CR velocity and relativistic gyro-frequency (Ω = Ω0/γ = eB0/(γmpc)). The ± sign corresponds
to left and right polarization, respectively. One can see that the Landau resonance describes
the special case for the gyro-resonance when n = 0.
For MHD fluctuations one expects ω ∼ kvA while v ∼ c. Thus, we get for the Landau

condition either

k‖
k
∼ vA
v‖
∼ vA

c
� 1 (2.33)

for v‖ ∼ c or alternatively µ ≡ v‖/v � 1. Similarly one gets k‖v‖ ∼ nΩ, i.e. CR gyro-radius
and gyro-resonant fluctuations are in resonance.
Before looking at the exact source of the magnetic fluctuations, let us discuss how the pitch

angle scattering influences CR transport properties described in the Vlasov equation. Energy
is conserved in the frame of the wave. However, in the frame of the plasma energy is transfered
to the waves, i.e., a diffusion in momentum space is observed (Kennel and Engelmann 1966).
Quantitatively this can be seen when investigating the influence of the electromagnetic fields
of Alfvén waves on a CR distribution using the Vlasov equation. The resulting expression can
be simplified by acknowledging that scattering in µ dominates over scattering in p at the order
of (c/vA)2. Ensemble averaging of all sets of waves, we obtain (Kulsrud and Pearce 1969)

∂f

∂t
+ vz

∂f

∂z
= ∂

∂µ

(
ν(µ, p)(1− µ2)

2
∂f

∂µ

)
(2.34)

for a background field B0 = Bz ẑ. The scattering frequency ν(µ, p) is given by

ν(µ, p) = π

4 Ω kE(k)
B2

0/8π
(2.35)

where k = Ω/(µν) is the gyroresonance condition and kE(k) is the wave energy at wavenmumber
k. The general form of a diffusion term can clearly be recognized from the right-hand side of
Equation 2.34. The scattering frequency can be interpreted as ν(µ, p) ∝ Ω(δB/B0)2, (as
kE(k) ∼ (δB)2, i.e., the Alfvén wave’s energy scales with its magnetic field energy). If one
interprets the angle enclosed by δB and B0 as the rms of the scattering angle δθ and assumes
that the CR is scattered by random angle configurations then the angular diffusion coefficient
is given by 〈(δθ)2〉/δt ∼ Ω(δB/B0)2 yielding an intuitive explanation of Equation 2.35.

Self-confinement of CRs

Alfvénic fluctuations δB are naturally present in the interstellar medium as a result of cascad-
ing large scale MHD turbulence. However, the Alfén wave cascade does not provide efficient
scattering partners for the CRs. The problem is the highly anisotropic nature of the turbulence
(Zweibel 2013). The ratio k⊥/k‖ is expected to increase for smaller and smaller scales below the
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driving scale. Gyro-resonant fluctuations with k⊥/k‖ � 1 are very inefficient for scattering as
the strong variability of the magnetic field fluctuations smooths out the effect. Other possible
scattering sources include magnetic mirroring or scattering by magneto-sonic waves generated
by compressibility effects in the cascade. For the later, the relevant damping mechanisms are
difficult to determine (Zweibel 2013). In addition, fast magneto-sonic waves seem to be the
relevant waves in the cascade for CR scattering. However, they only carry a small fraction of
the energy in the cascade (Zweibel 2017).
The most discussed mechanism is based on waves generated by the CRs themselves. An

instability can be derived that leads to the the excitation of Alfvén waves with wavelengths
equal to the projected gyro-radius of the CRs. To derive the growth rate of the waves Γrc,
we start with the Vlasov equation and use linear perturbation theory to derive the dispersion
relation of an excited wave. This results from perturbing the external magnetic and electric
field in the presence of a CR population with distribution function f(x,p, t). We assume a
low CR density such that CRs only influence the system by exciting growing waves that are
damped by collisionless processes. In the opposite extreme, large CR densities may lead to
strongly enhanced magnetic fields near strong shocks (Caprioli and Spitkovsky 2014). The
imaginary part of the resulting frequency gives the growth rate of the instability corresponding
to the growth rate of the Alfvén waves as (Skilling 1971)

Γcr = π2

2
q2vA
ck

∫ v(1− µ2)
cp

×
[
δ

(
µ+ mΩ0

kp

)
+ δ

(
µ− mΩ0

kp

)]
∂f

∂µ
d3p (2.36)

in the frame of the wave. The delta distributions show the resonance for left- and right-
handed circularly polarized waves, which is equivalent to the gyro-resonance with negligible ω.
For positive anisotropies of the CRs in their frame ∂f/∂µ > 0 the waves grow, for negative
anisotropies they are damped and for isotropic CRs they stay neutral. Thus, if the CRs and
waves move in the same direction the waves are unstable, if the CRs stream faster than the waves
(positive anisotropy). We see that only CRs above the minimum momentum pmin = mΩ0/k
are able to resonate with waves of wavenumber k. Assuming a power-law distribution of CRs,
f ∝ p−α, and comparing the result of the integral with the expression of the number density of
CRs ncr above momentum pmin one obtains (Kulsrud and Cesarsky 1971)

Γcr = π

4
α− 1
α

Ω0
ncr(> pmin)

ni

(
vD
vA
− 1

)
, (2.37)

where ni is the ion number density of the ambient medium and vD describes the streaming
velocity of the CRs along the background magnetic field. For typical values in the ISM, CRs
of energy of a few GeV and vD/vA ∼ 1, one obtains a growth time of 1010 s ∼ 300 yr. This
implies that in galactic environments CRs adopt quickly to their environment (Zweibel 2013).
The steep spectral index α ∼ 4.6 of the momentum p for GeV CRs means that wave growth

becomes less relevant for higher-energy CRs. Thus, at around ∼ 100 GeV, CRs will not anymore
be able to confine themselves. The reason for this is that some form of wave damping is
always present and the growth time is too large in comparison to the damping time. Another
consequence of the steep CR spectrum is the fact that waves that grow at the scale k are largely
produced by CRs at pmin(k) (Zweibel 2013).
Qualitatively, one can interpret Equation 2.37 as the momentum loss of a single CR, ṗ ∝ pΩ =

(γmc)(Ω0/γ) ∝ Ω0, which is proportional to the non-relativistic gyro-frequency. The growth
rate scales with the number of available CRs that are able to generate waves, ncr(> pmin), and
is inversely proportional to thermal ions, which provide inertia slowing down wave growth. As
already seen above, isotropic CR populations cannot drive waves. This becomes evident from
the factor vD/vA− 1 which is 0 if all particles move (vD) with the same speed as the wave (vA)
and negative, i.e. wave damping, for vD < vA (Wiener et al. 2013).
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Wave damping

So far there is no criterion hindering the CRs from transferring their energy into the creation
of more and more waves. However in nature, there are damping processes that impede wave
growth. The two most relevant ones in the environment of clusters are non-linear Landau
damping and turbulent damping.
The basic idea behind non-linear Landau (NL) damping is the superposition of two waves

A and B of slightly different frequency forming a beat wave. This beat wave is then able to
interact with thermal particles with parallel velocities, which are identical to the phase speed
of the wave v‖ = (wA − wB)/(kA − kB). Particles moving faster than the wave add energy to
the wave and particles that are slightly slower than the wave extract energy from the wave,
i.e. damp the wave. For Maxwellian plasmas, usually ∂f/∂v < 0 in the range v‖ = vA and
consequently, damping dominates. The NL damping rate (Lee and Völk 1973) in the case of a
high plasma beta (Wiener et al. 2013) is given by

ΓNL ≈
1
2

√
π

2

(
vi
vA

)(
δB

B

)2

w ≈ 0.3Ω
µ

vi
c

(
δB

B

)2

(2.38)

The wave frequency w = k‖vA sets the fundamental frequency of interaction while interactions
with the beat wave arise to second order in magnetic field fluctuations. As particles moving at
speed v‖ = vA are in resonance and v‖ = µvi, it is reasonable to assume that the damping rate
depends on the ratio µ = vi/vA.
But where exactly does the generation of Alfvén waves settle into a steady state with the NL

damping process? This balance ultimately determines the value of the bulk velocity of the CRs,
often termed drift velocity vD or streaming velocity. Using Equation 2.34 in the limit of strong
scattering such that the CR distribution function can be expanded as f = f0 + f1 + f2 + ..., the
equation can be simplified such that

∂F
∂µ

= − c

νLZ
, (2.39)

where L(p, z) = f0/(∂f/∂z) is the scale height and F = f1/f0 is the relative perturbed CR
distribution function. We assume (Wiener et al. 2013)

F = 1 + 3(vD − vA)
c

µ (2.40)

with the accessible characteristic that the leading anisotropy in the distribution function is
given by the net drift relative to the wave frame, i.e. 〈µcF(µ)〉 = vD − vA. One can consider
CRs at ∼ 1 GeV (γ ∼ 1) with a power law distribution including cutoff at momentum q

f0(p) ∝ p−αΘ(p− q). (2.41)

In steady state the NL damping rate of waves ΓNL (Equation 2.37) is equal to the growth rate
of waves due to CRs, Γcr (Equation 2.38). Combining the resulting equation with Equation
2.39 the drift velocity vD,NL is given by (Jacob 2015)

vD,NL = vA

1 + 0.002
n

3/4
i,−2 T

1/4
2keV γ(α−1)/2

B15µG L
1/2
z,20kpc n

1/2
cr,fid

 (2.42)

scaled to realistic values for CCs (ni,−2 = ni/(10−2cm−3), B15µG = B/(15µG), Lz,20kpc =
L/(20kpc), T2keV = T/(2keV), nCR,fid = ncr/(5 × 10−9cm−3)) with α = 2.2 and q = 0.5 mpc.
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One can clearly see that considering only NL damping the velocity of CRs is strongly constrained
by the generation of the Alfvén waves and their drift velocity is basically given by the Alfvén
velocity.
The other relevant damping process in the studied environments for our analysis is turbulent

damping. As discussed above, the highly anisotropic nature of MHD turbulence (Yan and
Lazarian 2002; Farmer and Goldreich 2004) makes it unlikely for the CRs to be confined.
Exactly the opposite is true in CCs, magnetic turbulence damps waves (Wiener et al. 2013).
In clusters, turbulence is subsonic except for the outskirts. Combining this with the fact that
strong turbulence is prevalent in clusters (MA & 1; MA = v/vA), the MHD turbulence theory
by Goldreich and Sridhar (1995) is applicable (Wiener et al. 2013). One major complication
of MHD turbulence compared to HD turbulence is the fact that MHD turbulence is highly
anisotropic as the magnetic field reacts much stronger to motion perpendicular to the field
lines (magnetic tension, pressure) than motions parallel to the fields. As we need to consider
anisotropic interactions now, we have to introduce two different timescales τ⊥ = vλ⊥k⊥ and
τ‖ = vAk‖ with the length-scale transverse to the local mean magnetic field λ⊥ and the root mean
squared velocity component across this scale vλ⊥ . Assuming so called local balance between the
different time scales, we equate them and arrive at (Nazarenko and Schekochihin 2011):

vλ⊥k⊥ = vAk‖ (2.43)

We assume λ‖(λ⊥) is the length-scale parallel to the local mean magnetic field across which
the velocity fluctuation is vλ⊥ , LMHD is the driving scale of the turbulence with speedsMA = 1
and ε ∼ v3

λ⊥
/λ⊥ ∼ v3

A/LMHD is the constant (as incompressible) energy input per unit time.
Then within the framework of strong incompressible MHD turbulence we have

vλ⊥ ∼ vA

(
λ⊥
LMHD

)1/3

∼ (ελ⊥)1/3 (2.44)

λ‖(λ⊥)
λ⊥

∼
(
LMHD

λ⊥

)1/3
(2.45)

Equation 2.44 shows the typical relation for Kolmogorov turbulence here in the perpendicular
direction. Equation 2.45 on the other shows that an eddy becomes increasingly elongated along
a magnetic field line (λ⊥/Λ‖ � 1) over time, as LMHD/λ⊥ increases following the energy cascade
down to the dissipative scale. This means that the cascade proceeds mostly in the perpendicular
direction. And as in general ε = v3τ and from Equation 2.44 vλ⊥/vA ∼ (λ⊥/LMHD)1/3, we see
that throughout the cascade more turbulent energy will be stored in the perpendicular direction.
Intuitively, this can be seen from the idea that in MHD turbulence, non-linear interactions

arise from two colliding wave particles traveling along magnetic field lines. Wave packets are
distorted if the colliding partner causes the wave packet to distort the field line on scales
of λ⊥ and to cascade to smaller scales. The velocity and magnetic fluctuations associated
with Alfvén waves happen in the perpendicular direction to the magnetic field line and thus
most energy will be stored here. The confining waves of the CRs are hereby perturbed and
cascade down before CRs scatter on them. In addition small-scale perpendicular fluctuations
introduced by MHD turbulence will hinder the effective forcing of pitch angle scattering that
is necessary for confinement. The damping rate thus corresponds to the eddy turnover scale in
the perpendicular direction

Γturb ∼
vλ⊥
λ⊥
∼ ε1/3

λ
2/3
⊥

(2.46)

31



using Equation 2.44. The minimum turbulent damping rate can then be determined as follows.
First, one derives an expression for the largest k‖ of the Alfvén waves (created by the CRs)
as (k⊥/k‖)min ∼ δB(λ⊥)/B ∼ vλ⊥/vA ∼ (λ⊥/LMHD)1/3 using Equation 2.44 in the last step.
Using this result and again Equation 2.44 with the resonance condition k‖ ∼ r−1

L one obtains
k⊥,min ∼ ε1/4(rLvA)−3/4, which in turn can be combined with Equation 2.46 to obtain the
minimum turbulent damping rate in resonance (Wiener et al. 2013)

Γturb,min ∼
(

ε

rLvA

)1/2
. (2.47)

Again, if one uses the same type of CR population as for the NL case above, one obtains the
following steady state drift velocity of the CRs (Jacob 2015)

vD,turb = vA

1 + 0.004
B

1/2
15µG n

1/2
i,−2

L
1/2
MHD,20 ncr,fid

 , (2.48)

where LMHD,20 = LMHD/(20kpc) is the scale height. We can clearly see that the most relevant
damping processes are not able to significantly damp the wave in order to approximately alle-
viate the self-confinement of the CRs. Their drift velocity has been shown to be equal to the
Alfvén velocity of the waves.

Transport processes

These findings show that CRs are self-confined. This has major implications on their transport
processes. The resulting equation in the limit of frequent wave-particle scattering is given by
Skilling (1975)

∂fp
∂t

+(u+vD) ·∇fp = ∇· [κpb(b ·∇fp]+ 1
3p
∂fp
∂p
∇· (u+vD)+ 1

p2
∂

∂p

[
p2Γp

dfp
∂p

]
+Q, (2.49)

where f(x, p, t) is the CR distribution function (isotropic in momentum space), u is the gas
velocity, vA is the Alfvén velocity, the direction of the magnetic field is b = B/|B| and Q is
the CR source function. Momentum has been normalized to mc and κp describes the diffusion
coefficient.
Here, the derivation will be sketched briefly following Wiener et al. (2013). We start with

the Vlasov equation (Equation 2.30) under the influence of the Lorentz force (dp/dt = F L) but
evaluated in the frame of the CR-excited Alfvén waves and averaged over pitch angles. Then,
the distribution function is approximated as an expansion in the inverse scattering frequency
ν, f = f0 + f1 + f2 + ... with fi = O(ν−i). As we are in the limit of strong scattering the
distribution can be seen as isotropic plus a small anisotropy included in f1.
The left-hand side of Equation 2.49 can then be interpreted as the advective transport of

CRs whereas on the right-hand side, from left to right: diffusive transport along magnetic field
lines, diffusive shock acceleration as well as second-order Fermi acceleration (momentum-space
diffusion) and sources/sinks for the distribution function. Thus, the system is fully determined
if κ, Γp and Q are given.
When considering only the isotropic distribution function f0 in the wave frame (no cross

frame diffusion, κ = 0) and only keeping terms of order p, the transport equation simplifies to

Df0

Dt
= 1

3p
∂f0

∂p
∇· (u + vA) (2.50)

32



Thus, the CRs just move adiabatically in the wave frame, with p ∝ n1/3
cr . Scattering of the CRs

in the wave frame does not involve electric field, consequently particles conserve energy. In
the frame of the plasma however, the presence of electric fields causes the CRs to lose energy
heating the plasma in the process. The volumetric heating rate can be derived (Kulsrud 2005;
Jacob 2015) as

Γwave = −vA ·∇Pc (2.51)

The work is transmitted by the Alfvén waves in the system. Thus, their speed enters into this
wave-heating rate.
As indicated by Equation 2.36 CRs only excite Alfvén waves that propagate down the CR

pressure gradient. In addition we know that due to relatively weak damping the CRs are forced
to basically stream at the Alfvén velocity. To summarize, CRs are able to only stream down
their gradient and in the here studied limit vD → vA, CRs propagate at the streaming velocity
vst, given in this limit by

vst = −sgn
(
b̂ ·∇Pcr

)
vA (2.52)

Fluid description

The small scale and continuous interactions through pitch-angle scattering make a fluid de-
scription of CRs possible. CRs affect the thermal gas via pitch angle scatterings, which can
be cast into an effective pressure. Analogously to hydrodynamics, the three moments of fp are
defined as the CR number density ncr, CR pressure Pcr and CR energy density εcr.

ncr = 4π
∫ ∞

0
p2fp(p)dp (2.53)

Pcr = 4πmc2

3

∫ ∞
0

βp3fp(p)dp (2.54)

εcr = 4π
∫ ∞

0
p2Ep(p)fp(p)dp, (2.55)

where Ep is the kinetic energy of a CR particle given by

Ep(p) = (
√

1 + p2 − 1)mc2, (2.56)

where the closure relation is given by the equation of state for CRs

Pcr = (γcr − 1)εcr (2.57)

where γcr = 4/3 is the CR adiabatic index.
Using Equation 2.49 multiplied with Ep and integrated over the mentioned momenta of p,

one can derive the following equation for the evolution of the CR energy density εcr (Pfrommer
et al. 2017)

∂εcr
∂t

+∇· [(v + vst)(Pcr + εcr)− κεb(b ·∇εcr)] = (v + vst) ·∇Pcr + Γacc + Q̄ε, (2.58)
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where the momentum-space averaged spatial diffusion coefficient κε, the net source of mean
kinetic energy density of CRs Q̄ε and the energy gain per unit time of CRs due to second-order
Fermi acceleration Γacc are given by

κε =
∫∞

0 p2Ep(p)κp(x, p) b ·∇fp dp∫∞
0 p2Ep(p) b ·∇fp dp (2.59)

Q̄ε = 4π
∫ ∞

0
p2Ep(p)Q(x, p)dp (2.60)

Γacc = −4πmc2
∫ ∞

0
βp2Γp

∂fp
∂p

dp > 0 for ∂fp
∂p

< 0. (2.61)

In the arising picture (Pfrommer et al. 2017), the CR energy density is modulated by advection
of the CR enthalpy hcr = Pcr + εcr with total velocity v + vst according to the second term
on the left, which also captures the anisotropic diffusion of CRs along magnetic field lines.
The first term on the right captures the energy loss rate of CRs due to the volume work of
the CR pressure on the background plasma (v ·∇Pcr) and the generation of Alfvén waves
(vcr ·∇Pcr). The term Γacc describes the production of CR energy density through second-
order Fermi acceleration. Lastly, the term Q̄ε encapsulates all the remaining loss Λcr and gain
terms Γcr in the form Q̄ε = Γcr − Λcr.

2.3 AREPO
For our analysis, we use the magneto-hydrodynamical cosmological code AREPO (Springel
2010). The code is based on a moving, unstructured Voronoi mesh. The hyperbolic conserva-
tion laws of magneto-hydrodynamics are solved on the mesh using a finite volume approach.
Thereby, the code represents a combination of Lagrangian characteristics in combination with a
finite-volume Eulerian mesh code. The main idea of this approach is to inherit many advantages
of SPH techniques (e.g., intrinsic adaptivity, low advection errors, small numerical diffusion) as
well as of fixed mesh codes (e.g., better convergence for smooth flows, good shock capturing).
Numerical convergence (perfect accuracy in the limit of infinite resolution) for codes employing
SPH is first of all hard to show (Zhu et al. 2015) and in the limit of high resolution tends to
shows less optimal solutions then fixed mesh codes. AREPO, on the other hand, shows sec-
ond order numerical convergence (Pakmor et al. 2016b) while keeping a low level of numerical
truncation errors.

2.3.1 Magneto hydrodynamics solver
The Euler equations describing ideal MHD can be written as a system of hyperbolic conservation
laws for conserved quantities U and flux F (U) in the form

∂U

∂t
+∇·F = 0, (2.62)

where U and F (U) are given by

U =


ρ
ρv
ρe
B

 F (U) =


ρv

ρvvT + P1−BBT

ρev + ρv −B(v ·B)
BvT − vBT

 , (2.63)
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where P = Pgas +B2/2 is the total gas pressure and e = u+ 1
2v

2 + 1
2ρB

2 is the total energy per
unit mass, adopting the units system of Heaviside-Lorentz. The closure relation is given by the
equation of state, P = ρ(γ − 1), with adiabatic index γ.
For obtaining the fluxes over an interface, approximate Riemann problems are solved along

the normal of the interfaces (Pakmor et al. 2011, 2013). For this, the values of the conserved
quantities to the left and right of the interface are spatially extrapolated.
Heun’s method has been adopted for AREPO. It is based on a second-order Runge-Kutta

method where fluxes are estimated using the values of primitive variables both at the beginning
and at the end of the time step. Two different meshes are in theory needed for this, however, the
new mesh can be recycled at the next time step, so effectively, only one mesh construction step
is necessary per time-step however fluxes have to be calculated twice. Conservative variables
are extrapolated using spatial derivatives instead of storing intermediate states with initial
values which complicates book-keeping especially when using adaptive time-steps (Pakmor
et al. 2016b).
Gradients are estimated using a least-square gradient estimator (Pakmor et al. 2016b). Here,

the center of mass ri value of variable Qcmi of cell i is assumed to be linearly connected to each
neighboring cell’s center of mass values Qcmj at rj via the estimated gradient 〈∇φi〉. Solving
for the smallest error of extrapolated values Qcm

′
j using 〈∇φi〉 and actual values Qcmj yields

an estimate for the gradient. The weights gj for the least square optimization are assigned
according to the respective distance between neighbor j and cell i, i.e. gj ∝ 1/(|ri − rj|).
The calculated fluxes have to be evolved in time across the moving interfaces. Due to the

nature of the moving mesh in AREPO, the equations become more complex here. The fluxes
are calculated in the rest frame of the interface to prevent numerical inaccuracies due to the
fact that mesh points normally have very similar velocities in comparison to the fluid velocity.
A HLLD Rieman solver is used for the time evolution (Miyoshi and Kusano 2005). As generally
the case for fluid dynamics, the maximum time step is limited by the maximum signal speed
of a cell, which is given by the fastest magneto-acoustic waves in the system plus the velocity
of the cell (when working in the cell frame).
In addition to fulfilling the MHD equations given by Equation 2.62, magnetic fields obey the

constraint

∇ ·B = 0, (2.64)

according to Maxwell’s equations. In theory, a divergence-free initial magnetic field should keep
this property when evolved in time. However, due to discretization errors, this is in practice
not the case in MHD simulations. If ignored, these errors can significantly amplify magnetic
and velocity fields, leading to unphysical solutions (Pakmor and Springel 2013). The so called
constrained transport approach discretizes the electric and magnetic field in such a way that
their consequent evolution automatically guarantees a divergence-free magnetic field (Evans
and Hawley 1988).
Alternatively as done here, the Powell approach is adopted (Powell et al. 1999). Here, a term

describing the passive advection of magnetic fields with the flow is added to the momentum,
induction and energy equation. These modifications prevent the further growth of magnetic
field divergences in a stable manner (Pakmor and Springel 2013). In addition, the adaptations
allow for local time-stepping, which makes the code much more efficient.

2.3.2 Cosmic ray module
This section follows (Pfrommer et al. 2017), here we provide a short overview of the imple-
mentation of CRs in AREPO. CRs with energies ∼ 1GeV dominate the CR pressure which
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makes their interactions with the gas the most relevant for our analysis. AREPO focuses on
this population of CRs. They are treated as a second fluid next to the gas. So far, only the
energy density of these CRs is evolved without spectral information. As discussed in Section
2.2.2, the fluid description is justified within the framework of self-constrained CR transport
via streaming. CRs effectively stream at the speed of the Alfvén waves that they generate as
they pitch angle scatter on the waves.
Equation 2.58 shows the consequence of this mechanism as CRs are advected with the Alfvén

wave frame at velocity v + vst and diffuse along magnetic field lines. In addition, adiabatic
expansion or contraction of CRs modifies the CR energy density. CR acceleration represents
CR sources, Γacc. The pitch angle scattering process leads to a transfer of energy from the CRs
to the gas, thereby forming a sink for the CR energy density, Q̄ε.
In summary, the hyperbolic MHD equations, again expressed in the unit system of Heavyside-

Lorentz, are modified and a source term S is added

∂U ′

∂t
+∇·F ′ = S, (2.65)

where U ′ is a conserved variables and F ′(U ′) is the flux function given by (Pfrommer et al.
2017)

U ′ =


ρ
ρv
ε
εcr
B

 ,F
′ =


ρv

ρvvT + P1−BBT

(ε+ p)v −B(v ·B)
εcrv + (εcr + Pcr)vst − κεb(b ·∇εcr)

BvT − vBT

 ,

S =


0
0

+Pcr∇·v − vst ·∇Pcr + Λth + Γth
−Pcr∇·v + vst ·∇Pcr + Λcr + Γcr

0

 ,
(2.66)

where Γcr is the source term and Λcr is the sink term for CRs. Now, the total pressure is
given by P = Pth +Pcr + B2/2 and the total energy density reads ε = εth + ρv2/2 + B2/2. The
CR streaming velocity can be expressed (see Section 2.2.2) as

vst = −vA sgn(B ·∇Pcr) = − B
√
ρ

B ·∇Pcr

|B ·∇Pcr|
. (2.67)

The streaming speed of the CRs corresponds to the Alfvén speed vA and is always directed
along magnetic field lines down the CR gradient.
The MHD solver that is described in Section 2.3.1 is used to solve the equations with the

modified total pressure and energy density. First, gradients are estimated using the least-square
gradient estimator. These gradients are needed for the Runge-Kutta time integration (Pakmor
et al. 2016b). The Rieman problem across interfaces is solved with the HLLD Riemann solver
(Pakmor et al. 2011). The modified adiabatic index influences the speed of the fast and slow
magneto-acoustic waves which is of importance for determining the time-step of individual cells.
The CR energy density equation is solved by passively advecting the CRs with the gas.

Adiabatic changes Pcr∇·v are determined via Gauss’ theorem in every cell and exchanging the
net flux across cells. The remaining source terms and active CR transport are treated seperately,
i.e., via operator splitting after evolving the system by one time step. In theory, CRs can be
injected at hydrodynamical shocks in the simulation, which however would be secondary to the
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main objective of this thesis. Instead we will focus CR diffusion along magnetic fields (Pakmor
et al. 2016a) and neglect CR streaming (which is postponed to future work). For CR losses,
we consider Coulomb interactions and inelastic collisions between CRs and thermal protons as
well as Alfvén wave heating as a result of damping of Alfvén waves.

Diffusion of cosmic rays

CRs have been shown to diffuse along magnetic fields as they pitch-angle scatter on magnetic
irregularities. This property is crucial for the dynamical effect of CRs on the plasma. AREPO
employs a semi-implicit solver for anisotropic CR diffusion with local timestepping (Pakmor
et al. 2016a). To ensure numerical stability in explicit solvers, time steps are required to
scale quadratically with the linear dimension of the resolution elements. If global time steps
were necessary, the cell with the smallest CR diffusion time scale would limit the time step
of every cell in the simulation. Both issues would severely limit the size of the simulation,
rendering cosmological applications impossible. The implemented solver is based on the flux
limiting scheme by Sharma and Hammett (2007) and the semi-implicit time integration scheme
developed by Sharma and Hammett (2011). In addition to the mentioned features, the solver
also ensures energy conservation and CRs are only transported from high to low abundance
regions in agreement with the entropy condition ∆S ≥ 0.
The basic diffusion equation is given by

∂εcr
∂t
−∇· [κεb (b ·∇εcr)] = 0. (2.68)

The diffusion equation is now integrated over the volume of cell i and divided by its volume Vi.
Using Gauss’s theorem, one obtains

∂εcr,i
∂t
−
∫
∂Vi

κε(b ·∇εcr)b · dAi, (2.69)

where εcr,i is the CR energy density of cell i and dAi is oriented normal to the surface of the
cell. Discretization of the problem yields

∂εcr,i
∂t
− 1
Vi

∑
j

κij(bij ·∇εcr,ij)bij ·nijAij = 0, (2.70)

where j runs over all cell interfaces, ∇εcr,ij gives the gradient of the CR energy density at the cell
interface, nij is the normal vector of the interface and Aij is its area. A sophisticated estimate
for CR energy density gradients at interfaces is crucial for satisfying the entropy condition.
Here, the gradient at the interface is estimated from the gradient at the corners of the mesh.

As before, this is done via optimization of the interpolated/extrapolated center of mass of
neighboring cells. In a Voronoi mesh the corner of a cell c is surrounded by four neighboring
cells with center of masses at positions si. A linear interpolation of the values at centers of
mass of adjacent cells is performed to their common corner with the gradient at the corner of
a cell. To estimate the gradient, the residual of the interpolation is minimized. The residual ri
is given by

ri = φ(c) + (∇φ)(si − c)− φ(si), (2.71)

where φ(c) is the unknown value at the corner of a cell, φ(si) is the value at the center of mass
si of cell i and ∇φ is the gradient at the corner.
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By setting the residual to zero (ri = 0), four independent equations are obtained with four
unknowns, namely φ(c) and ∇φ. They can be brought in the convenient form

q = MY , (2.72)

where q(φ(c),∇φ) and Y (φ(si)) are vectors and M(si, ci, ) is a matrix. Consequently, M only
contains properties related to the mesh whereas Y only contains quantities at the centers of
mass (for more details see Pakmor et al. 2016a).

M can easily be determined with standard solvers of linear algebra. Its first row is only
related to the value at the corner. If the entries are positive, this corresponds to the case
where the position of the corner is within the tetrahedron enclosed by the neighboring centers
of mass. This means that the quantity at the corner can be interpolated. In contrast, at least
one negative value implies that the position of the corner lies outside the tetrahedron. In this
case, the quantity at the corner has to be extrapolated, which is generally unstable. To retain
stability, special care has to be taken for corners with M0, j < 0. In this implementation, the
threshold is set less strictly to M0, j < −0.01, which has been proven sufficient (Pakmor et al.
2016a). Corners detected below this threshold are treated in a special way as described below.
The required value of the magnetic field at the center of the interface is determined via

weighted averages of the values of neighboring corners while considering the area in the direction
of the respective corner (see Figure 2 of Pakmor et al. 2016a). Calculating the gradient of CR
energy density is done separately for the part of the gradient that lies normal to the surface
of the interface ∇εcr,n and the part that is within the interface. Here, only the component
parallel to the magnetic field in the interface∇εcr,t is considered because the other perpendicular
component cancels out. To restrict the CR flux to flow from cells with higher CR energy density
to cells with lower CR energy, a gradient limiter is implemented. Here, a generalized version
of the van-Leer limiter (van Leer 1984) is used to calculate the gradient ∇εcr,t in the interface
along the magnetic field using the unlimited gradients in the same direction ∇εicr,t at corner i.
In case ∇εicr,t have the same sign, ∇εcr,t is calculated as

∇εcr,t = N∑
i

(
∇εicr,t

)−1 , (2.73)

where N describes the number of dimensions. The problematic corners mentioned previously
are neglected in the sum. In the special case of all corners being flagged, the stricter minmod
limiter is used. Also, if all ∇εicr,t do not all carry the same sign, ∇εcr,t is set to zero.
The normal gradients ∇εcr,n can be calculated in two ways. These are either referred to as

full or simple normal gradients. The simple normal gradient is only based on the values at the
two centers of the cells (L,R) sharing the interface in question. The gradient estimation is then
projected onto the normal of the interface.

∇εcr,n = εcr,L − εcr,R
|sL − sR|

sL − sR

sL − sR
·nface (2.74)

The mesh generating point is by definition parallel to the interface. Thus, if mesh generating
point and center of mass align perfectly the estimate is fairly accurate. Possible misalignments
slightly underestimate the true gradient.
The full normal gradient is calculated by analogy with the magnetic field, i.e. via weighted

averages with respect to the area covered in the direction of neighboring corners of the respective
interface. The value of flagged corners is replaced by the simple normal gradient estimate which
is weighted with the area in the direction of this corner. The simple normal gradient is by

38



construction in agreement with the entropy constraint. If the calculated full normal gradient
violates the constraint, it is replaced with the simple normal gradient estimate.
As mentioned above explicit time integration is heavily constrained by the global time limit

for diffusion ∆tdiffusion, which is given by

∆tdiffusion <
∆x2

κε
, (2.75)

where ∆x is the linear scale of a cell and κε is the diffusion coefficient. This van-Neumann time
step criterion follows from stability considerations. Consequently, we use a semi-implicit time
integration which is stable on longer timescales. For this, the CR energy density is advanced
in time by only considering the flux contribution due to gradients in the interfaces. Here, an
explicit forward Euler time integrator is necessary due to the non-linearity of the tangential
gradient estimate, ∇εncr,t,ij, for which a flux limiter is used. The latter makes the problem
non-linear, which would result in a very expensive implicit algorithm. The updated CR energy
density due to fluxes in the interface εñcr,i is then given by

εñcr,i = εcr,i + ∆t
Vi

∑
j

κij(bij ·∇εncr,t,ij) bij ·nijAij (2.76)

Afterwards, contributions from the flux due to the gradient normal to the interfaces are con-
sidered. Here, an implicit backward Euler scheme can be utilized for the linear gradients. The
value at the next time step of the CR energy density εn+1

cr,i can then be determined by

εn+1
cr,i = εñcr,i + ∆t

Vi

∑
j

κij(bij ·∇εn+1
cr,n,ij) bij ·nijAij (2.77)

The scheme has proven to be stable for very large time steps. However, there are cases where the
solution becomes incorrect and the entropy constraint can be violated (Pakmor et al. 2016a).

Alfvén cooling

The generated Alfvén waves by the CRs are damped via non-linear Landau damping and
turbulent damping. Damping processes take energy out of the waves and transfer it to the gas,
increasing thermal energy. The relevant term in Equation 2.65 describing the change in CR
energy density per unit time vst ·∇Pcr can be simplified using Equation 2.67 to

∆ε̇cr,A = vst ·∇Pcr = − B ·∇Pcr

|B ·∇Pcr|
B
√
ρ
·∇Pcr = −|B ·∇Pcr|√

ρ
(2.78)

All these quantities are readily available to the code. Consequently, multiplying ∆ε̇cr,ac with
the time step ∆t of the individual cell yields the gain and loss of energy density for the gas and
CRs, respectively. This is also evident from the signs in front of those terms in Equation 2.65.

Collisional loss processes

CRs lose energy through high impact parameter interactions with thermal electrons and CR
momentum is also transfered to the gas through excitations of quantized plasma oscillations in
low impact parameter interactions. Both loss terms are summarized as Coulomb losses, which
effectively transfer energy from CRs to the thermal gas. On the other hand, CRs can collide
inelastically with thermal protons to produce pions and to lose CR energy. The latter process
produces secondary electrons, which radiate energy via non thermal interactions and partially
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heat the ambient medium. Thereby, these so called hadronic losses at least partially heat the
ambient medium.
Hadronic losses mostly effect highly energetic CRs and are approximately independent of

CR momentum. Thus, the exact spectral shape can be neglected. However, Coulomb losses
linearly depend on CR momentum and low momentum CRs are most significantly affected.
Consequently, the spectral shape of the CR momentum is expected to stay invariant at the
high end but low-energy CRs transfer their energy to the thermal gas. Hence, we assume an
equilibrium momentum distribution of CRs where injection balances both forms of losses. This
is a valid approximation for times larger than the timescale of significant variability in the
injection process (Pfrommer et al. 2017).
The kinetic energy of a proton with dimensionless momentum p = Pp/(mpc) is given by

Ep(p) =
(√

1 + p2 − 1
)
mpc

2. (2.79)

The kinetic energy loss of a proton with γ � mp/me due to Coulomb losses (neglecting recoils)
is given by (Gould 1972)

−
(
dEp(p)

dt

)
Coul

= 4πe4ne
meβc

[
ln
(

2mec
2βp

~ωpl

)
− β2

2

]
≡ ACoul

β
, (2.80)

where ωpl =
√

4πe2ne/me is the plasma frequency, ne is the number density of free electrons and
β = vp/c = p/

√
1 + p2 is the dimensionless CR velocity. To obtain the equilibrium solution, the

term βp in the Coulomb logarithm is replaced by its average 〈βp〉 = 3Pcr/(mpc
2nrc). Lastly, a

characteristic Coulomb timescale τCoul can be defined as

τCoul ≡
εcr

|dεcr/dt|Coul
. (2.81)

If the kinematic CR energy exceeds the threshold value of pthrmpc = 0.78 GeV/c CR protons
inelastically collide with thermal protons to mainly form pions. Neutral pions decay after
9× 10−17 s mostly to gamma rays whereas charged pions decay via the chain (Patrignani et al.
2016).

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ

π0 → 2γ
(2.82)

About 1/6 of the initial energy of the charged pions ends up in secondary electrons and
positrons. The mildly relativistic subpopulation of the latter (γe . 200) eventually thermalize
their energy via Coulomb collisions (Rephaeli 1979; Sarazin 1999). High energy electron losses
(γe & 1, 000) are completely dominated by synchrotron and Compton scattering.
The hadronic energy loss of a CR proton population is independent of the exact proton

momenta and given by (Pfrommer et al. 2017)

−
(
dEp

dt

)
hadr

= nNσppKpmpc
3(γ − 1)θ(p− pthr) ≡ Ahadr(γ − 1)θ(p− pthr), (2.83)

where σpp ≈ 44.2 mbarn is the total pion cross section (Pfrommer and Enßlin 2004), Kp ≈
1/2 describes the inelasticity of the hadronic reaction in the limiting regime (Mannheim and
Schlickeiser 1994) and nN = ne/(1−XHe/2) is the target nuclear density in the ICM, assuming
a primordial element composition of XHe = 0.24. The Heaviside distribution θ is unity for
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positive values and zero otherwise. By analogy with the Coulomb case a timescale for hadronic
losses τhadr is defined as

τhadr ≡
εcr

|dεcr/dt|hadr
(2.84)

To estimate the collisional losses an equilibrium CR distribution is derived balancing con-
tinuous injection and discussed losses (following Enßlin et al. 2007). We assume a homo-
geneous environment and an isotropic one-dimensional CR distribution in momentum space,
f (1)
p (p, t) = 4πp2fp(p, t) and a CR injection spectrum Q(1) of the form

Q(1)(p) = Qinj p
−αinj θ(p− p1), (2.85)

where p1 is the low-momentum cutoff. Steady state solutions, ∂f (1)
p /∂t = 0, of the Fokker-

Planck equation are obtained neglecting Coulomb/hadronic losses for high/low CR momenta,
respectively. The resulting momentum distribution function f (1)

p (p) is given by

f (1)
p (p) = Qinjp

−αinj

(αinj − 1)ACoul
×
{
p3 p1 � p� p∗
p3
∗ p� p∗

(2.86)

where p∗ is the intersection momentum, which depends only on the ratio of the Coulomb-
to-hadronic loss rates as p∗ = 3

√
ACoul/Ahadr ≈ 1.1. In the following, a matched asymptotic

solution to the approximated steady-state solution is used, which reads

f (1)
p = Qinj p

−αinj θ(p− p1)
(αinj − 1) ACoul (p−3

∗ + p−3) . (2.87)

The CR energy loss rates can now readily be obtained. The Coulomb loss rate of the CR
population yields

ΛCoul =
∫ ∞
p1

f (1)
p

(
dEp
dt

)
Coul

dp = −2.78× 10−16
(

ne
cm−3

)(
εcr

erg cm−3

)
erg s−1 cm−3, (2.88)

where the normalization of the injection function Qinj is expressed through the CR energy
density εcr. In agreement with CR injection by jets of AGNs, p1 = 0.1 and αinj = 2.2 are
used. The Coulomb loss rate ΛCoul depends only weakly on the exact cutoff value p1 but more
significantly on αinj as ΛCoul = −1.35 × 10−16 to −12.8 × 10−16erg s−1 cm−3 for αinj = 2.1 to
2.7.
Similarly, the following expression for the hadronic loss rate Λhadr is obtained, yielding

Λhadr =
∫ ∞
p1

f (1)
p

(
dEp
dt

)
hadr

dp = −7.44× 10−16
(

ne
cm−3

)(
εcr

erg cm−3

)
erg s−1 cm−3, (2.89)

where the sensitivity to αinj is less severe as ΛCoul = −8.1× 10−16 to −5.6× 10−16erg s−1 cm−3

for αinj = 2.1 to 2.7. One can see that the Coulomb loss rate is sub-dominant for hard injection
indexes αinj . 2.4 whereas they dominate over hadronic losses for softer indexes.
In summary, the energy loss rate of CRs due to collisional losses can be described as Λcr =

Λhadr + ΛCoul = −λcrneεcr with rate coefficient λcr = 1.022 × 10−15 cm3 s−1. Thus, the CR
energy is updated following the solution

Ecr(t) = Ecr(t0)e−λcrnet (2.90)

Turning to the consequences for the thermal energy of the gas, all Coulomb losses of the CRs are
heating the gas. For the hadronic losses the majority of energy escapes in the form of neutrinos
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or γ-ray radiation. As mentioned above, only 1/6 of the energy ends up in secondary electrons.
Their fate depends on the Lorentz factor of the electrons. On average secondary electrons are
expected to have an energy of 〈Ee±〉 = mπ±c

2/4 = 35 MeV = 68 mec
2, which corresponds to

medium relativistic electrons that thermalize in the surrounding plasma. Consequently, the
collisional heating rate of the gas is given by Γth = −ΛCoul − Λhadr/6 = λthneεcr with the rate
coefficient for collisional heating of the ambient plasma λth = 4.02×10−16 cm3 s−1. The thermal
energy gain is then implemented as

Eth(t) = Ecr(t0)
(
1− e−λcrnet

)
(2.91)

The outlined approach is clearly valid if CR injection is balanced by collisional cooling and for
a freely cooling CR population at late times. However at early times the Coulomb cooling rate
is substantially lower in comparison to a more realistic spectral treatment (Pfrommer et al.
2017).
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3 Methods

3.1 Magnetic field setup
To study the dynamics of an AGN inflated bubble rising buoyantly in the ICM, we model an
idealized Perseus-like CC cluster. A compromise is made between a controllable setup and
a realistic cluster environment. Modelling a turbulent magnetic field appears critical as it is
expected to significantly stabilize the bubble (Section 2.1.5) and shape the dynamics of the
escaping CRs that diffuse along magnetic field lines. The magnetic field is assumed to follow
a Kolmogorov spectrum in k-space as required by observations (Bonafede et al. 2010). The
magnetic field is scaled in such a way that a constant plasma beta factor is obtained throughout
the cluster. This value is a compromise between purely isotropic collapse and pure contraction
perpendicular to the magnetic field orientation (see Section 2.1.5).
The method for the setup of the turbulent magnetic field with average value 〈B〉 = 0 is based

on Appendix A in Ruszkowski et al. (2007). Here, the simulation box is however significantly
larger, which makes it necessary to combine multiple nested meshes with adaptive resolution
such that expensive operations (regarding memory and calculation time) are still feasible during
the mesh-generation process. A further complication in our setup is the unstructured nature
of the mesh in AREPO. Because we utilize numerous Fourier transformations in the following,
the magnetic field is setup on multiple Cartesian meshes and, after the final step interpolated
to a mesh comprised of cubic cells with individual masses that agree with the mass refinement
employed by the code. This mesh is then relaxed to a honeycomb-like structure, which is the
more natural and most effective configuration of an AREPO mesh.
The three components of the magnetic field are treated independently of each other. The

following explanation, focusing on one component Bi, thus applies to all three components
(i ∈ [0, 1, 2]). Similarly, the following description focuses on the setup of a single mesh whereas
we set up all meshes with different mesh spacings accordingly. The final Gaussian-distributed
field component follows a one-dimensional power spectrum PBi

(k) of the form

PBi
(k) ∝

{
k2, k < kinj
k−5/3, kinj ≤ k

(3.1)

where the power spectrum is defined by PBi
(k) ∝ k2|B̃i(k)|2 with the Fourier transform of the

magnetic field component B̃i(k). The magnetic field follows a white noise distribution from
field fluctuations on the largest scale (smallest k-values) down to the injection scale kinj. On
scales smaller than kinj, the spectrum declines as a power-law with a Kolmogorov spectral index.
In discretized space the magnetic field component Bi,x is defined at a discrete set of vectors
in real space x. By analogy with the Fourier transforms of the magnetic field, B̃i,k is defined
at a discrete set of k-vectors k. The algorithm starts in k-space where k is inserted into the
auxiliary function fk(k) defined as

fk(k) =

 A, k < kinj
A

k
−11/3
inj

k−11/3, kinj ≤ k (3.2)

with normalisation factor A. The function fk(k) is proportional to B̃2
i,k and only depends on

the absolute value of the k-vector k = |k|. Now, the values of the magnetic field components
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B̃i,k are drawn from a Gaussian random sample with root mean square (RMS) given by the
square root of faux(k) for each k value for the real and imaginary value of B̃i,k.
For two randomly drawn values X1, X2 ∈ [0, 1), two Gaussian random variables Y1, Y2 can

be drawn using

φ = 2πX1,

r =
√
−2σ2 ln(X2),

[Y1, Y2] = [r cos(φ), r sin(φ)] ,
(3.3)

where σ2
R is the variance given by faux(k), i.e. σ2

R = faux(k). The two resulting values Y1, Y2 per
cell in k-space are set to the imaginary and real part of the k-space magnetic field components
Im(B̃i,k) = Y1,Re(B̃i,k) = Y2. The spectrum can then be normalized to the desired RMS value
of the magnetic field components in real space σB using Parseval’s theorem

σ2
B = 1

N2

∑
k

|Bi,k|2, (3.4)

where the sum extends over all k-values, of which there are a total of N . Inverting the function
yields the normalization A depending on the desired σB.
We employ the adaptive mesh refinement scheme in AREPO, which ensures that cell mass

is on the order of the target mass and, analogously, the volume for the jet cells. Thus, the
final magnetic field is interpolated to an unrelaxed mesh Mur, which is made up of cubic cells
whose mass is in the range of the target cell mass mtarget that AREPO will later refine/derefine
to. Consequently, relatively small cells are expected in the denser center of the cluster. These
are too small in order to initially create one magnetic field on a single Cartesian mesh MIni
with the constraint that every cell of MIni is smaller than every cell of Mur. Instead, one starts
out with an initial mesh M0 placed in the center of the cluster with cell sizes equal to the
smallest cell in Mur. The number of cells N in M0 is chosen to be as high as possible while
necessary algorithms for the magnetic field creation are still feasible concerning memory and
computational time. Mesh M1 with again N cells is then placed in the center of the cluster
with cell sizes of the smallest cells bordering the outer edges of M0. This process is continued
until the biggest mesh covers the desired box size of the simulation. Hereby, coarser meshes are
introduced in the outskirts of the magnetic field.
Continuing with the magnetic field creation, a loop over the following five steps is then

responsible for creating an almost divergence free magnetic field with smooth transition areas
so that a simple interpolation of the magnetic field from mesh Mi to Mi+1 is possible.

(i) Divergence cleaning in k-space. The divergence in k-space simply corresponds to the
multiplication k ·B. Thus, the divergence of the magnetic field can be projected out via
the transformation

B̃k → B̃k − k̂(k̂ · B̃k) (3.5)

(ii) Inverse FFT of B̃k to Bx. We use the scipy library fft for (inverse) Fourier transforms.
The so-called fast Fourier transform (FFT) is an optimized algorithm of the Fourier
transform, which in general would scale as N2. However, through a divide and conquer
strategy the scaling is drastically reduced to N logN (Cooley and Tukey 1965). As the
magnetic field Bx only has a real component and an identically vanishing imaginary
part, only half the information is actually needed to calculate the FFT. Scipy would
also provide an optimized algorithm for real FFT. However, for full control, we use the
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normal algorithm. Consequently, the k-space magnetic field components Bi,k have to
follow certain constraints to receive a real magnetic field Bi,x. They are given by

B̃
∗
i,k = B̃

∗
i,−k (3.6)

where the asterisk donates the complex conjugate.

(iii) Rescaling of the magnetic field to achieve an on average constant magnetic-to-thermal
pressure ratio. The average magnetic field between radii ri and ri+1 in a shell around the
center of the cluster is rescaled such that the average magnetic-to-thermal pressure ratio
xB,ext = PB/Pth within the resulting shell is constant.

(iv) Applying a projection operator to isolate meshes magnetically. As described above, the
magnetic field is created on multiple meshesMj with j ∈ [0, 1, ...,Ω]. Overlapping regions
of the meshes should not be interpolated in order to not double count contributions at a
certain distance from the center r. Only a thin merging layer at radius rm with width dm
is created through a spline which smoothly sets the magnetic field values to zero. This
layer is comprised of two independent fields and thus, possesses magnetic divergences.
These divergences are removed by projecting out field lines that cross the interface. For
this, a projection of the following form is used

Bx → Bx − g(rx)r̂x(r̂x ·Bx), (3.7)

where x̂ is the normalized distance to the border from cell x and the function g(rx) is
given by

g(rx) =
{

1−
∣∣∣cos

(
π y+∆y−1

2∆y

)∣∣∣ , 1−∆y < y < 1 + ∆y
0, otherwise

(3.8)

with y = r/rsph , ∆y = 0.05 and the radius of the to be isolated spherical shell rsph which
is for simplicity set to rm . The expression 2∆y corresponds to the width of the resulting
layer where the normal component to the shell surface has been smoothly removed.

(v) Creating smooth transitions between neighboring meshesMj andMj+1. Now, the magnetic
field lines Bx,j of mesh Mj are smoothly removed beyond the merging radius rm out to
the width of the merging layer dm and completely removed beyond this point. This is
done by multiplying Bx,j of mesh Mj with the spline fS(x) given by

fS(x) =


1, 0 < r < rm
1
2

(
cos

(
π(r−rm)
dm

)
+ 1

)
, rm ≤ r ≤ rm + dm

0, rm + dm < r

(3.9)

smoothly setting its outer regions to zero. For the larger mesh Mj+1, the matching spline
f̂S(x) is given by

f̂S(x) =


0, 0 < r < rm
1− 1

2

(
cos

(
π(r−rm)
dm

)
+ 1

)
, rm ≤ r ≤ rm + dm

1, rm + dm < r

(3.10)

and is then multiplied with Bx,j+1 to smoothly remove the inner shell at rm+dm. Only the
outer shell ofMΩ and the inner shell ofM0 remain untouched. The width of the smoothly
dropping region dm is set to the larger cell size of the two bordering meshes. The latter
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is a harsh criteria for the larger mesh of the two as the spline is basically constructed in
only one cell. We require cell sizes of Mj to be smaller at any point than in mesh Mur,
which turns out to be a challenging constraint, at least for the initial conditions used for
the high resolution runs (mtarget = 1.5× 106M�, N = (29)3 ∼ 108).

The described operations (iii) through (v) introduce magnetic divergence. Analogously to
Ruszkowski et al. (2007), we find that the divergence continuously decreases when iterating over
steps (i) through (v). The iteration process does not converge quickly so that the number of
iterations becomes a trade-off between smaller divergence and computational time. Fortunately,
the Powell scheme seems to be very stable in handling residual divergences similarily to the
results by Pakmor and Springel (2013).
An illustrative example of a created magnetic field at the lower resolution employed later is

shown in Figure 3.1. Two 2D slices of the same magnetic field component are shown. On the
left, we show the magnetic field after creation (before step (i)). The right-hand side shows the
magnetic field component after the divergence cleaning algorithm as described in step (i) has
been used, employing the same color bar that ranges from high magnetic field strengths (dark
red) to the extrema in the opposite direction (dark blue). The axis labels give the distance in
Mpc from the center of the cluster. The sharp unrealistic drops in magnetic field strength seen
on the left are clearly smoothed out to a more realistic magnetic field landscape.

Figure 3.1: On the left, we show the magnetic field component directly after setup in k-space.
On the right, we show the same magnetic field component after divergence has been
cleaned in k-space. The magnetic field is clearly smoothed out to a more realistic
continuous magnetic field with shadings through the process of divergence cleaning.

The same magnetic field component but for meshes M0 and M1 is shown in Figure 3.2 after
the spline and smoothing has been applied. To cover the whole simulation box (1.5 Mpc), a
third mesh (not shown) is needed where the spline has only been applied at the center of that
mesh using the same color bar as for Figure 3.1. The magnetic field shows the required decrease
in its radial profile and the effect of the spline at its edges.
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Figure 3.2: On the left we show the magnetic field component of mesh M0 after the magnetic
field in direction of the edge component has been projected out. On the right we
show the same magnetic field component of the next coarser mesh M1.

For the extrapolation, the magnetic field of meshesMj+1 are simply added onto the respective
cells of meshesMj, which has become possible through the usage of the splines fS(x) and f̂S(x)
as discussed in step (v). Afterwards, the magnetic field of all meshes Mj is interpolated onto
mesh Mur that is used for the relaxation step resulting in the creation of the actual initial
conditions. The interpolation to the magnetic field Bz,ur of mesh Mur is done in a volume
weighted fashion

Bz,ur =
∑

x,j Vx,jBx,j∑
x,j Vx,j

(3.11)

where the sum goes over all cells x of all meshes Mj that overlap with cell z with a nonzero
magnetic field contribution. The cell size of all cells x is by construction smaller or equal to the
cell size of cell z, i.e. Vx ≤ Vz . Consequently, there will always be magnetic field contributions
from more than one cell making up the magnetic field of cell z.
Due to the vector nature of the magnetic field, magnetic field contributions will cancel each

other when applying Equation 3.11, which reduces the magnetic field strength. Thus, the
magnetic field is uniformly rescaled, which leaves the magnetic divergence invariant. Outer
cells, which are much larger in comparison to the cells in the center of the cluster, will suffer
more significantly from this effect. Due to this inhomogeneity, the rescaling factor is chosen
such that the desired average value of xB,ext is maintained in the inner 300 kpc of the cluster,
which includes the for the analysis relevant region.
A rescaled and extrapolated magnetic field component is shown in Figure 3.3 including a

zoomed in image of the same magnetic field. The field component again runs in vertical
direction. The drop in magnetic field in the transition area between two neighboring meshes
Mj is still visible in the vertical direction.
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Figure 3.3: On the left we show the whole rescaled extrapolated magnetic field component onto
mesh Mur in vertical direction. On the right we show the same magnetic field
component zoomed onto the center of the cluster.

Finally, the mesh is relaxed prior to the actual run of the simulation. This is done in order to
relax the cubic cells to a honeycomb-like structure. For Cartesian meshes, the mesh construction
is challenging for the algorithm as it corresponds to a special case of the Voronoi tessellation,
which slows down the computation significantly. Thus, the initial conditions are prepared in
this way to run the following simulations more smoothly. Relaxing a turbulent magnetic field
has the obvious effect of reducing the turbulence and thereby the amplitude of the magnetic
field. The relaxation process is thereby a compromise between mesh relaxation and maintaining
magnetic field fluctuations. The chosen relaxation time trelax ∼ 3 Myr is also used by the code
to advect part of the remaining magnetic divergences. After completion the same rescaling
algorithm is applied to start the simulation with the desired xB,ext.

3.2 Jet implementation
Jet physics spans ∼ 10 orders of magnitude in scale starting from the scales of SMBH, which
powers the jets, up to the Mpc scale of lobes created by the jet. Thus, as our numerical
models focus on the bubble physics, we have to resort to subscale modeling of the jet. The
implementation is described in detail in Weinberger et al. (2017). In the following, a summary
of the implementation details will be given, which was tested thoroughly as part of this thesis.
The jet module is designed in order to produce extragalactic jets at a linear resolution of

400 pc but, most importantly, its applicability in the future to more complex self-regulated
systems to test the viability of CR heating as a major heating mechanism for CCs has to be
maintained. This point is crucial for the injection step. In addition, the module should give
viable results in cosmological simulations to test the CR heating theory in the most realis-
tic environments possible. For the latter, downscaling of the resolution while still obtaining
essentially similar results to the high resolution runs is crucial and the module runs on local
timesteps (Weinberger et al. 2017).
As discussed before, the actual launch mechanism is not simulated due to computational

constraints and the exact mechanism is still an open question of research. Instead, the colli-
mated under-dense jet is set up in pressure equilibrium with initially dominant kinetic energy.
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A toroidal magnetic field and CRs can be added. We ensure energy conservation while setting
up the jet. The jet is active when the available energy to the jet, Ėjet, exceeds the required
energy to redistribute the gas and inject the required amount of CRs, ∆Eredist, as well as the
predefined amount of magnetic field strength, ∆EB. The remaining energy is put into kinetic
energy, ∆Ekin. Conclusively, the jet is active after time t of the last injection event at time tlast
if injection and redistribution energy amount to less than the acquired jet energy during this
period, i.e.,

∆Ekin ≥
∫ t

tlast
Ėjet(t)dt−∆EB −∆Eredist. (3.12)

Thus, the jet is not continuously injecting energy into the ambient medium but rather during
single injection events. During a typical interval of jet activity of 50 Myr, several thousand
injection events occur (Weinberger et al. 2017). Here, the available energy to the jet Ėjet is
constantly added every time step. However, the available power can also be coupled to the
time-dependent accretion process of the SMBH to mimic a realistic situation.
The amount of injected CRs and magnetic field strength can be set through the desired CR-

to-thermal pressure ratio xcr,jet and the desired average magnetic-to-thermal pressure xB,jet in
the jet, respectively. The actual bipolar injection process occurs in two circular regions with
radius h = 5 kpc aligned with the BH. A slice through a mesh with the injection regions (1,2)
is shown in Figure 3.4 with the bigger enclosing circle marking the buffer region (3). The buffer
region is used for the redistribution of mass and thermal energy from the two injection regions,
also referred to as jet regions. The black dot in the center marks the BH particle. The two
jets are launched in vertical direction away from the BH. The jet direction is referred to as n̂
throughout the paper.

Figure 3.4: The two small circles (1,2) mark the injection (jet) region (with radius 0.33h) of
the jet, which is launched in the direction opposite to the BH (black dot) in the
center. The enclosing circle (3) marks the buffer region (with radius h), which is
used for redistributing mass and thermal energy to setup up the jets (adopted from
Figure 1 of Weinberger et al. 2017).

To set up the jet the density in the jet regions, we set ρ1,2 to the desired ρtarget constant value
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as

ρ1,2 = ρtarget
V1 + V2

2V1,2
. (3.13)

The volume factor is necessary to ensure the same amount of mass in 1 and 2 as generally
V1 6= V2 . The specific thermal energy u1,2 in both regions is determined employing the following
formula

u1,2 = Ptarget

(1 + xcr,jet + xB,jet)(γ − 1)ρ1,2
, (3.14)

with the adiabatic index of the gas γ = 5/3 and the kernel-weighted pressure of the gas in
the buffer region. A SPH-smoothing kernel w(r, h) of the following type has been employed

w(r, h) = 8
πh3


1− 6

(
r
h

)2
+ 6

(
r
h

)3
, 0 < r

h
< 1

2

2
(
1− r

h

)3
, 1

2 <
r
h
≤ 1

0, r
h
> 1

(3.15)

where r is the distance to the BH. The CR specific energy can then readily be calculated as

ucr,1,2 = Ptarget

(1 + x−1
cr,jet + x−1

cr,jetxB,jet)(γcr − 1)ρ1,2
(3.16)

where γcr = 4/3 is the adiabatic index of the CRs. As a certain density in the jet regions is
specified, mass has to be removed from (added to) the jet regions and added to (removed from)
the buffer region adiabatically in a mass-weighted fashion. The attributed change in momentum
is compensated for in the buffer region. In addition, the total thermal energy change in the
jet region is compensated for as this energy is added to (removed from) the buffer region using
w(r, h). The overall change in energy due to the various described redistribution steps ∆Eredist
can be expressed as

∆Eredist =
∑

regions 1,2,3

[
mi,final

2 v2
i,final−

mi,init

2 v2
i,init+

(ui,final + ucr,i,final)mi,final − (ui,init + ucr,i,init)mi,init]
(3.17)

with the sum extending over all regions 1, 2, 3 and considering the masses m, velocities v and
thermal energies of gas u and CRs ucr of cell i at the beginning (init) and at the end (final) of
the redistribution process.
A purely toroidal magnetic field is injected in the direction

B̂i = ri × n̂

|ri × n̂|
, (3.18)

where the vector ri points from cell i into the direction of the BH. The injected magnetic field
is parametrized in the following way:

∆Bi = wB,ifBB̂i. (3.19)

Here, the factor fB denotes the scaling factor to acquire the desired average xB,jet. It is
determined by solving the following equation of the total change in magnetic field energy

∆EB =
∑
i

(Bi,init + ∆Bi)2Vi(8π)−1 −
∑
i

B2
i,initVi(8π)−1, (3.20)
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where Bi,init is the magnetic field before injection. The kernel w(r, h) is used to derive the
weights of the magnetic field wB,i in each cell i according to

wB = w(si, 0.33 h)
(

s2
i − (si · n̂)2

(0.33 h)2

)4

, (3.21)

with the vector si pointing from the center of the respective jet region to cell i and 0.33 h
corresponds to the radius of the individual jet regions.
Finally, the kinetic energy is injected where the exact value is derived from Equation 3.12.

The momentum is injected following

∆pi = w(si, 0.33 h) mi fp
n̂ · ri
|n̂ · ri| , (3.22)

where the factor fp can be calculated from the total available kinetic energy ∆Ekin by analogy
with the procedure for the magnetic field. Here, the formula describing ∆Ekin is given by

∆Ekin =
∑
i

(p2
i,ini + ∆pi)2

2mi

−
p2
i,old

2mi

. (3.23)

In addition to the desired amount of CRs and magnetic fields, we inject a passive scalar. During
each injection event, the mass fraction of the jet material xjet is set to one. The mass fraction
is only advected with the flow.
To optimize computation and focus on relevant lobe physics, three different refinement criteria

are used. Normally, the refinement criteria is based on maintaining the mass of each cell. The
cell is refined/derefined if the mass in this cell exceeds/drops below a certain specified target
mass mtarget,0 (Vogelsberger et al. 2012). This mass-based refinement criteria is employed to
keep the computations in the outskirts of the cluster to a minimum.
As we focus our attention to the center for the lobes, we additionally use a crucial volume-

based refinement criterion. The lobes are about three orders of magnitude more dilute than
the surrounding medium in the center of the cluster such that the mass-based refinement would
immediately create very large cells resulting in poorly resolved lobe dynamics. Summarizing
the two mentioned criteria an effective target mass mtarget,i is calculated in each cell

mtarget,i = fρiVtarget + (1− f)mtarget,0, (3.24)

which is used for refinement with

f = 0.5 + 0.5 tanh
(
xtracer,i − 10−4

10−5

)
. (3.25)

This has proven to achieve uniform spatial resolution of the jet and lobe structure. Due to the
low diffusivity of AREPO, the exterior regions are not significantly affected by the refinement
criteria (Weinberger et al. 2017). In contrast, the boundary layer between under-dense lobe
and surrounding is very relevant. To capture interface effects in more detail, a third refinement
criterion is employed which is based on the steepness of the density gradient |∇ρ|. This form
of refinement is utilized and then replaces the previously mentioned criteria in cell i if

V
1/3
i |∇ρi| > 0.5ρi. (3.26)

To prevent runaway refinement, the volume of every cell is restricted to a certain minimum
volume Vmin which is in general set to Vmin = Vtarget/2. To impede very large differences in
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resolution between neighbouring cells, refinement is applied when adjacent cells have volumes
deviating by a factor of three or larger. To follow the flow more accurately, heavily distorted
cells are refined more easily (Weinberger et al. 2017).
We allow CRs to anisotropically diffuse out of the bubbles following magnetic field lines. Jets

are assumed to posses a magnetic field that is isolated from the magnetic field of the cluster.
To replicate this scenario, special care is taken of the magnetic isolation of the injection zone.
Otherwise, CRs would be able to immediately diffuse out of the bubbles. In practice, this
is enforced through application of the same projection operator employed at the interface of
the magnetic fields on different meshes when setting up the magnetic field. Analogously, the
operation given in Equation 3.7 is now employed on the fly in AREPO. In contrast, the width
of the interface layer ∆x = 0.165 is set to a less intervening value. The whole circular injection
zone is also only considered initially. Later this would impede the structure of the magnetic
field in the direction of the moving jet. Consequently, to only include cells in a cone at the
back of the injection region, we require for isolation

r2
i < 0.8(0.67 h)2, (3.27)

where ri is the distance of cell i to the BH, which seems to work in practice. The routine is
applied every timestep during which the jet is injecting. Thus, the jet region is magnetically
isolated at the beginning of every individual injection process. The removed magnetic field
strength is later added with the respective kernel to the injected magnetic field during the
respective injection event.

3.3 Cluster properties
To study the evolution of the lobes and CRs generated by the jet module, we set up an
idealized cluster. The turbulent magnetic field is set up in an otherwise ordinary NFW potential
(Equation 2.1) in static equilibrium. The turbulent nature of the magnetic field will however
initiate motions in the thermal gas. The free parameters of the NFW profile have been chosen
to model the Perseus cluster, one of the best studied CCs. The mass within r200 = 2.12 Mpc
is chosen to be M200 = 1015M� with concentration parameter c = 5. The analytical potential
sets the gravitational force on each cell.
The gas component of the cluster set up is based on a double-beta profile (Equation 2.17) fit

to the electron number density by Churazov et al. (2003). In addition, a gas fraction of 16%
within r200 is assumed to scale the number electron number density n to

n = 26.9×10−3

1 +
(

r

57 kpc

)2
−1.8

cm−3+2.8×10−3

1 +
(

r

200 kpc

)2
−0.87

cm−3. (3.28)

The pressure of each individual cell is obtained from the condition of hydrostatic equilibrium
and the constraint that the pressure vanishes at a radius of 3 Mpc. Here, also the pressure
contributions from the magnetic field fluctuations are corrected for by applying the opposite
perturbations to temperature.

3.4 Configuration and parameters
Jet and magnetic field parameters that were left unchanged for the analysis are summarized in
Table 3.1 as well as the parameters that concern the resolution. An overview of the suite of
simulations analyzed is given in Table 3.2.
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Jet parameters
Jet density ρtarget 10−28 g cm−3

Black hole region h 5 kpc
CR fraction xcr,jet 1.0

Magnetic field parameters
Injection scale kinj 37.5−1 kpc−1

Resolution
Target mass mtarget,0 low res: 1.5× 107 M�

fid. res: 1.5× 106 M�
Target volume V

1/3
target low res: 872 pc

fid. res: 405 pc
Minimum volume Vmin Vtarget/2

Table 3.1: A summary of the fixed parameters of the simulation and the two different resolution
setups.

Name Pjet xB,ext xB,jet tjet κ Turb.
[erg s−1] [Myr] [cm2 s−1]

fid (MY1) 3× 1044 0.05 0.1 10 1× 1029 Yes
X5M0 3× 1044 0.05 0 10 1× 1029 Yes
X5M10 3× 1044 0.05 1 10 1× 1029 Yes
X1M1 3× 1044 0.01 0.1 10 1× 1029 Yes
NX0M0 3× 1044 0 0 10 0 Yes
NX0M1 3× 1044 0 0.1 10 0 Yes
NX0M0P 3× 1044 0 0 10 0 No
NX0M1P 3× 1044 0 0.1 10 0 No
E743X5M1 7× 1043 0.05 0.1 10 1× 1029 Yes
E44X5M1 1× 1044 0.05 0.1 10 1× 1029 Yes
E45X5M1 1× 1045 0.05 0.1 10 1× 1029 Yes
X5M1MY2 3× 1044 0.05 0.1 20 1× 1029 Yes
X5M1MY5 3× 1044 0.05 0.1 20 1× 1029 Yes

Table 3.2: Jet parameters of the different models with jet power Pjet, external magnetic pres-
sure xB,ext, jet magnetic fraction xB,jet, time of activity of the jet tjet, CR diffusion
coefficient κ and whether the ICM is turbulent.

The lobes always contain a population of CR protons in our simulations. Their assumed
pressure fraction xcr,jet can be justified as follows. As discussed in Section 2.1.3, the lobes of
FRI sources need an additional pressure component in addition to radiating leptons. Initially
entrained protons by the jet seem to be a likely candidate. These protons could then, by analog
with the electrons, be accelerated in the jet and create a relativistic population of protons in the
lobes (Pfrommer 2013). The observed diffuse radio emission of radio mini halos in CCs is also
in agreement with such a hadronic model as discussed in Section 2.2.1. The higher detection
rate for warmer CCs cluster with presumably on-going feedback processes supports this theory
(Jacob and Pfrommer 2017b).
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The injected CR pressure fraction xcr,jet = Pcr,jet/Pth,jet in our simulations is up to two orders
of magnitude lower than observed values (Croston 2008). This is due to numerical issues that
arise with the current implementation. However, the dynamical effect, which is mostly relevant
in the following discussion, is assumed to be sub-dominant.
We create one turbulent realization of the magnetic field and scale the amplitude of B. To

mimic the effect of turbulence in the ICM without intra-cluster MHD effects, we also model
thermal pressure fluctuations with amplitudes equal to our MHD perturbations, i.e. xturb =
ρv2/Pth ∼ 0.05.
In the following not all simulations will be discussed in detail but the for the section relevant

insights from varying parameters will be discussed.
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4 Analysis

In this section, an overview of the general evolution of the rising bubble is given (Section 4.1).
The magnetic field in the wake of the bubble is amplified in the simulation and the bubble is
stabilized by the magnetic field that is draped around the bubble interface. Both effects are
discussed in Section 4.2. Finally, we analyze the dynamics and distribution of the injected CRs
in Section 4.3.

4.1 Characteristic evolution of rising bubble

4.1.1 General evolution
The identified phases of bubble evolution are largely independent of resolution (mtarget ,Vtarget)
and other free parameters of the models with regard to the CRs (κcr, xcr), external magnetic
field (xB,ext) and the jet itself (Pjet, tjet, xB,jet).
The evolution of the fiducial run can be seen in Figure 4.1. The figure shows the density ρ,

the velocity in units of the sound speed v/cs, the tension to total force ratio xBtens , the kinetic-
to-thermal pressure ratio xkin = Pkin/Pth, the magnetic-to-thermal pressure ratio xB = PB/Pth
and the CR-to-thermal pressure ratio xcr = Pcr/Pth. The tension force is derived from the
Lorentz force density in the momentum equation, which reads ne/c (v ×B) = 1/c (J ×B) =
1/(4π)

[
(B · ∇) B −∇

(
1/2 B2

)]
where n is the number density of charges and J = nev =

c/(4π) (∇×B) is the current density. The first term describes the tension force and the second
the magnetic pressure force. Here, the absolute value of the specific tension force is defined as
FBtens = |(B · ∇) B| /(4πρ). The value of xBtens is then computed as the ratio between FBtens

and the other forces acting on the system including the thermal, magnetic and CR specific
pressure forces and the specific gravitational force.
The jet is injected and accelerated in the center of the cluster. A quasi-isotropic subsonic

shock wave is observed, which is initiated by the jet. Secondly, the lobe is inflated by jet
material that is deflected at the contact discontinuity between the jet and the shock. After
the jet ceases to power the lobes, the lobes decouple from the BH. Bubbles rise buoyantly in
the atmosphere of the cluster. Dense and cool cluster material streams down to the center of
the cluster and fills the low-density wake of the bubble. The bubble drags magnetic field lines,
which are amplified. Finally, the bubble fragments due to vorticity that is generated in the
wake. The under-dense, high-entropy gas moves upward until isentropy is established. A more
detailed description follows:

(i) Propagating shock wave: The evolution of the jet and lobes has been studied in
previous simulations (Lind et al. 1989; Reynolds et al. 2002) with very similar results.
Throughout the injection phase a shock is driven by the accelerated material. In the
fiducial model, the jet can be identified at 10 Myr in Figure 4.1 as a kinetically dominated,
supersonic (v/cs ≈ 1) outflow.
The jet material drives a large, initially elliptical shock into the ambient medium. The
backflow of the ICM fills in the under-pressured wake. In addition, the lobe is inflated
by material that is deflected at the contact discontinuity between the jet and the shock.
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The extend of the working surface of the shock causes the initial momentum of the jet
to be distributed on a larger area. Thereby, lower speeds can be reached if instead the
jet would drill into the ambient medium. The backflow gradually slows down and forms
an extended lobe around the jet. The width of this expansion appears limited by the
magnetic tension force such that a highly oblique bow shock develops.

Figure 4.1: The density ρ, velocity in units of sound speed v/cs, tension to total force ratio
xBtens , kinetic-to-thermal pressure ratio xkin, magnetic-to-thermal pressure ratio xB
and CR-to-thermal pressure ratio xcr are portrayed of the fiducial run. The images
correspond to thin 80 kpc − 60 kpc − 2 kpc projections weighted with the jet
tracer mass fraction to highlight the features of the jet centered at (40, 0, 0). The
arrows show the kinetic energy flux F kin where arrow length and color are scaled
logarithmically with respect to the absolute value |F kin|x,z in the x − z plane that
is shown. The color scales are fixed for different times shown, respectively.
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After the jet is switched off at 10 Myr, the kinetic energy fraction xkin drops significantly
within the lobe. Consequently, the working surface disappears and the previously strong
backflow ceases. The jet’s head slows down to subsonic speeds.
The kinetic energy is converted to thermal energy. However, this happens on time scales
that are not resolved by the simulation. It can be deduced from the energy contributions
of the lobes, which are the magnetic field energy, the CR energy, the kinetic energy and
the thermal energy. Figure 4.2 shows that from 10 Myr the majority of the kinetic energy
is converted into thermal energy. The accelerated shock front is faster than the bubble and
escapes into the ambient medium. The figure shows a stationary total energy density εtot.
The kinetic energy contribution εkin/εtot decreases at the expanse of an increasing thermal
energy contribution εu/εtot. The CR εcr/εtot and magnetic energy εB/εtot contribution stay
approximately constant. The CRs are concentrated in the lower part. The magnetic field
is energetically subdominant in the bulk of the ICM and is enhanced at the rim of the
bubbles.

Figure 4.2: The kinetic εkin, CR εcr, thermal εu and magnetic εB energy density, which are
normalized to the total energy density εtot = εkin + εcr + εu + εB, are shown just
after injection. The projections have dimensions 60 kpc − 50 kpc − 2 kpc and are
weighted with the jet mass xjet,i mi.

(ii) Rising bubble: After jet activity ceases, the system represents a configuration of a high
entropy concentration in the center of a stratified gravitational potential. According to
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the Schwarzschild condition for buoyancy instability dS/dr < 0, the system is highly
unstable. The bubble rises until Sint = Sext. The former bubble becomes part of the
cluster atmosphere.

As evident from Figure 4.1, the bubble leaves a low-density cavity in its wake. Instreaming
gas is accelerated into this region. As it passes the lobe, it induces a high degree of vor-
ticity, especially in the lower half of the bubble. As a result, the bubble gets magnetically
connected to the wake region, thereby enabling CRs to diffuse out. Purely hydrodynami-
cal jets propagating into an unmagnetized ICM are quickly disrupted by the overshooting
gas that impinges on the lower envelope of the bubbles (see Figure A.1). The bubble is
prone to powerful Rayleigh-Taylor and Kelvin-Helmholtz instabilities, which disrupt the
lobe on a short time-scale. Our results reproduce well-known findings in the literature
(e.g., Reynolds et al. 2005; Ruszkowski et al. 2007). The longevity of bubbles in X-ray and
radio observations excludes this purely hydrodynamical model; thus, we will not discuss
this model any further in the following.

On the other hand in a magnetized cluster atmosphere, i.e., xB,ext 6= 0, the external
magnetic field provides a strong tension force that is able to stabilize the lobe against
the up-flowing gas. This becomes evident from the tension-to-total force ratio that shows
values on the order of unity along the rim of the bubble. The force ratio includes con-
tributions from gravity as well as thermal, magnetic and CR pressure forces. Although
the initial magnetic field with xB = 0.05 is energetically negligible the magnetic tension
force is still relevant because of strongly bend field lines. The other forces balance each
other. In addition, the magnetic tension is enhanced at the rim of the bubble via draping
of magnetic fields.

In contrast, Figure 4.3 shows run NX0M1P in a quiet, unmagnetized cluster with only CR
advection. The bubble shows higher degrees of fragmentation. This can be determined
from the CR fraction as diffusion is not active. Thus, fragmentation represents the only
mechanism for CRs to leave the bubble. By analogy with the fiducial run, we see a
high level of vorticity in the bubble. The spherical bubble transforms into a torus-like
structure due to the upwards accelerating backflow. The torus is maintained due to the
circulation flow resulting from vorticity conservation. The magnetic tension is not able
to provide sufficient stability. This difference in stability can be explained with the lack
of an external magnetic field, which would otherwise provide the crucial stabilizing effect
in terms of magnetic draping (see Section 4.2.1).

The shearing motion of the upwards moving bubble represents conditions for the devel-
opment of Kelvin-Helmholtz (KH) instabilities. These are expected to be significantly
suppressed by the surface tension that is provided by magnetic fields. Earlier simulations
(Churazov et al. 2001; Reynolds et al. 2002) without magnetic fields show the bubble to
be disrupted by a combination of KH and Rayleigh-Taylor (RT) instabilities. However,
simulations with magnetic fields or viscosity significantly increase the disruption timescale
(Reynolds et al. 2005; Guo 2015). In addition to the inclusion of magnetic fields, our simu-
lations are able to resolve a high density contrast. Artificial mixing between interface cells
through numerical diffusion is significantly suppressed. This is due to more aggressive
refinement criteria compared to previous simulations.

The explicit timescales for both the KH and the RT instability, τKH and τRT, are given
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Figure 4.3: Same as in Figure 4.1 but now run NX0M1P is shown, i.e. xB,jet = 0.1 and a quiet,
unmagnetized cluster.

by (Chandrasekhar 1981):

τKH = ρ1 + ρ2

(ρ1ρ2)0.5
1

∆vk ≈
(
ρ2

ρ1

)0.5

τRT =
∣∣∣∣∣ρ1 + ρ2

ρ1 − ρ2

1
v̇k

∣∣∣∣∣ ≈ 1
|v̇k|0.5

,

(4.1)

where ρ1 is the density of the lobe, ρ2 is the density of surrounding medium, ∆v is the
relative velocity of the shear flow at interface, v̇ is the acceleration of the lobe and k is the
wavenumber of the perturbation. Typical values for our simulations (∆v ≈ 500 km s−1,
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ρ1/ρ2 ≈ 10−3) yield the following timescales

τKH ≈ 600 (k 10kpc)−1 Myr
τRT ≈ 30 (k 10kpc)−0.5 Myr

(4.2)

Consequently, KH instabilities are not expected to arise on scales λ < 10 kpc.
Figure 4.4 shows the early lobe evolution of runs with different magnetic field parame-
ters. Thin projections of the jet tracer mass fraction xjet are portrayed. Developing KH
instabilities can be seen in run NX0M1 and NX0M1P and possibly in run X1M1. The
magnetization of the lobe does not seem relevant, probably due to the low magnetic field
strength there (e.g., see Figure 4.11). The strength of the magnetic field in the fiducial
run is sufficient to suppress KH instabilities. In contrast, the lower external magnetic
field strength in run X1M1 does not completely suppress them.
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Figure 4.4: Projections of the jet tracer mass fraction xjet are shown for runs with different
degrees of magnetization in the lobes (’M’) and the cluster (’X’). The projections
have dimensions 80 kpc−40 kpc−4 kpc and are weighted with the jet mass xjet,i mi.
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(iii) Disruption of the bubble: Figure 4.5 shows the long-term evolution of a bubble in
the fiducial run. The symmetry of the bubble is quickly disturbed, which impedes the
analysis. Consequently, the projections show the simulation rotated by π/4 from left to
right. At later times (> 100 Myr), the curved bubble surface stretches out and becomes
more elongated. This is mainly due to the effect of gravity, which points towards the
center of the cluster. To stay in local hydrostatic equilibrium, the bubble aligns with the
equipotential surface.
At some point the surface tension of the bubble is not able to confine the bubble any
longer. The bubble breaks into two and both bubbles continue to rise. The inflowing gas
still causes the inner part of the bubble to mix heavily with the cluster material and stir
turbulence within the bubble. All runs show the creation of vorticity in the wake of the
bubble and to varying degrees inside the bubble. This crucial feature is identified as a
general characteristic of a RT instability. It is explored in the following with regard to
mixing and disruption of the bubble.

a) Mixing The prevalence of mixing can be seen when looking at the evolution of
the jet tracer xjet in Figure 4.5. The fraction decreases significantly over time. The
vorticity-dominated center of the bubble becomes completely diluted over time. Only
the outer shell of the bubble stays confined. Figure 4.6 shows the evolution of the
cumulative volume fraction up to a certain density ρ. Only cells within the bubble
are considered here, which is defined as cells with a tracer value of xjet > 10−3.
If mostly cells with xjet ∼ 10−3 make up the lobe, then by definition, the lobe will
contain a lot of mass from the exterior material. This causes the lobe material
density to increase. Initially, around 40−50% of the volume of the lobe is filled with
low-density gas (ρjet = 1× 10−28 gcm−3) in all runs.
The material becomes denser over time with significant difference between setups.
Jets without any injected magnetic field in their lobes (’M0’, xB,jet = 0) generally
show more rapid mixing. Magnetic fields make the fluid more viscous through their
pressure and tension forces, irrespective of their exact strengths. The runs in a quiet
atmosphere (’P’) show significant initial mixing. However, on longer timescales these
bubbles reach a stable state that impedes mixing. The absence of external disruption
limits the degree of mixing, which is in agreement with Bourne and Sijacki (2017).
As discussed in the previous section, the strength of the external magnetic field sets
the degree of KH instabilities. Figure 4.8 shows the full projection of the jet tracer.
Early fragmentation is visible in all runs. Partly, this can be explained with KH
instabilities. However, a clear correlation between mixing and external magnetic
field strength cannot explain the result. In addition, the degree of magnetization of
the lobes appears crucial, where magnetized lobes provide more stability.
The discussed trend can also be seen in Figure 4.7. Here, the cumulative volume
fraction of gas with higher jet mass fractions is depicted as a function of the jet mass
fraction. The run with magnetized lobes is able to retain larger volume fractions with
high jet mass fractions early on. Magnetic fields keep the gas confined. Projections
of the vorticity in Figure 4.9 support this idea. The vorticity of runs X1M1 and fid
appear to originate from the wake of bubble fragments. On the other hand, in run
NX0M1 more tracks can be identified. The setup of a quiet atmosphere (especially
with magnetized lobes) retains a high jet fraction on large timescales. Run NX0M1
shows slightly higher levels of mixing. The bubbles appear to fragment more often.
However, due to the magnetized lobes, the newly formed bubbles still retain their
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Figure 4.5: The jet tracer mass fraction xjet of the fiducial run is shown with a quiver plot of
the kinetic energy flux Fkin. The simulation is rotated by π/4 along the vertical axis
from left to right. Thin projections, which are weighted with the jet mass xjet,i mi,
with 100 kpc − 85 kpc − 4 kpc for both the arrows and the background image are
depicted.

jet mass fraction. This explains the observed trend in Figure 4.7 with higher volume
fractions for runs with magnetized lobes as well as magnetized atmospheres, where
the former effect dominates.
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Figure 4.6: The volume fraction up to a certain density ρ as a function of density for different
simulations within the bubble (xjet > 10−3) at times 9 Myr (line) and 107 Myr
(dashed).

Figure 4.7: The volume fraction ∆V/V (< xjet) of gas below a certain jet tracer fraction as a
function of the jet tracer density xjet for different simulations within 100 kpc of the
cluster center at times 9 Myr (line) and 107 Myr (dashed).
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Figure 4.8: Evolution of the jet tracer mass fraction xjet for indicated runs (left-right) and times
(top-bottom). Projections have dimensions 120kpc− 100kpc− 100kpc centered at
(60, 0, 0) and are weighted with the jet mass xjet,i mi.
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Figure 4.9: Evolution of the vorticity (∇ × v)2 for indicated runs (left-right) and times (top-
bottom). Projections have dimensions 120kpc − 100kpc − 4kpc each centered at
(60, 0, 0) and are weighted with the jet mass xjet,i mi. Contours represent xjet from
light to dark at 10−4, 10−3, 10−2, 10−1 and are volume-weighted.
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b) Time of disruption Defining the exact time of disruption of a bubble in the simu-
lations is ambiguous. There are different disruption times depending on whether one
requires the low-density bubble to simply be connected or whether one is interested
in the time of maximum energy deposition into the IGM.
The vertical spread of the shell and the lower magnetic field energy (at later times /
higher altitudes) decreases the stability of the bubble. The central region of the
bubble appears the most vulnerable part. The vortex flows can interact and cancel
their respective horizontal velocity contributions such that the vertical component
dominates. The vertex-flows might push bubble material to either side of the lobe
and penetrate the bubble at late times. Consequently, the bubble splits and two
independent bubbles are created.
For the quiescent case, the disruption of the bubble surface occurs early as the
vorticity-induced, upwards-moving flow is able to penetrate the center of the bubble
surface (Figure 4.8). However, the remaining torus continues its path upwards in
the cluster atmosphere. Also, if the strong vorticity in the wake of a turbulent
environment has disrupted a bubble, the bubble normally is split in half. If enough
material remains in the two newly created low density concentrations, these two new
bubbles continue to rise. This can be deduced from Figure 4.8, where all simulations
but the quiescent case show such a behavior.
As discussed, the magnetic field affects the morphology of the bubble and the con-
centration of bubble material. Interestingly, no significant differences in the final
tracer distribution (Figure 4.8) become apparent. In the absence of turbulence, the
bubble can freely rise upwards, which explains the higher altitude of run NX0M1P.
Run NX0M1 is more prone to the KH instability that leads to larger degrees of
mixing. The buoyancy rise time of the diluted gas density increases.

4.1.2 Dependence of jet parameters on evolution
So far, we studied the impact of the external and internal magnetic field of the jet on the
morphology of the bubbles and their evolution. Now, we focus on

• duration of jet activity tjet,

• resolution,

• jet power Pjet.

They affect the outcome of the simulation with regard to the traveled distance of the jet and
the final anisotropy of the jet material. These properties are crucial for assessing the viability
of jets as sources of the feedback in CC clusters.

Jet power

To compare the influence of varying the power of the jet Pjet (a free parameter in the current
model), we show projections of the density in Figure 4.10 for runs with varying jet power at
81 Myr after jet launch. The simulations are rotated (bottom-up) to account for projection
effects. The jet activity tjet in all simulations was left at the fiducial value of tjet = 10 Myr. It
can be seen that, for higher jet powers, the lobes propagate further and the bubbles become
significantly larger. This can be explained with a surplus of kinetic energy in the high-powered
jets.
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Initially, low-power bubbles show a larger angle of deflection in the horizontal direction than
the higher-power runs (Figure A.2). At around 200 Myr, bubbles start to break up and the
remnants continue to rise (Figure A.3). The timescale appears independent of power, which
will be studied in more detail in the future. The fragmentation process continues, especially
for the high power runs, spreading their lobe material in horizontal directions (Figure A.4). In
summary, the jet tracer distribution of low-power jets is confined to the center with significant
relative spread in direction perpendicular to the jet.
On the other hand, the jet tracers of high-power jets fragments and spreads vertically at

similar time as the low-power bubbles. In addition, jet material can reach higher altitudes,
where a significant vertical spread is observable. Buoyancy forces are active for longer and
the bubbles reach higher altitudes. Mixing in the bubble appears to affect a fraction of the
bubble material. The presumably higher amount of vorticity created by a faster bubble cannot
compensate for this.
The jet tracer distribution is relevant with regard to CR heating as it traces the CR dis-

tribution (for CR diffusion coefficients . 1029 cm2 s−1). Consequently, to heat the inner
cluster region, lower-power jets are most efficient. If the power of the jet is larger than
Pjet & 5 × 1044 erg s−1 (with tjet = 10 Myr), the bubble will be disrupted and fragment at
rather high altitudes. As shown in the next section, the jet activity has a similar effect on
the CR distribution. Thus, the combination of the parameters proves crucial for the jet tracer
contribution.
Figure 4.11 shows the magnetic field strength of the discussed runs. At least qualitatively,

the magnetic field in the wake of the bubbles of high-power jets is significantly more enhanced
than for the bubbles of low-power jets. The kinetic energy flux shows higher values in these re-
gions. This observation and the coincidence of magnetic field amplifications and high vorticity
in Figure 4.16 suggests that the cluster magnetic field is magnified through shear flows. Conse-
quently, higher/lower kinetic energies in high-power/lower-power jets lead to stronger/smaller
field amplifications.
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Figure 4.10: The density is shown for simulations with increasing power from left to right (7×
1043 − 1044 − 3× 1044 − 1045 erg s−1) at 81 Myr. A kinetic energy flux Fkin arrow
plot and CR energy density εcr contours are overlaid. Contours correspond to
10−13 − 10−12 − 10−11 erg cm−3 from dark to light. We display thin projections of
all quantities (150kpc− 70kpc− 4kpc), weighted with the jet mass except for the
arrows, which were obtained from a slice. The simulation has been subsequently
rotated by π/4 around the vertical axis (top to bottom). 69



Figure 4.11: Same as in Figure 4.10, but showing the root mean squared value of the magnetic
field with color and B in the x− z plane with arrows.
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Duration of jet activity

To study the impact of the duration of the jet activity tjet with constant jet power (Pjet =
3 × 1043 erg/s), runs with tjet = 10, 20, 50 Myr are portrayed in Figure 4.12. The observed
trend is similar to the trend with jet power. Initially, jets with lower tjet have lower kinetic
energies. Their lobes/bubbles fragment at lower altitudes (Figure A.5). The relative spread of
the jet tracers in horizontal to vertical direction increases for lower tjet. At around 200 Myr, the
bubbles break up (see Figure A.6). A smaller bubble rises from the center of run X5M1MY5,
which is possibly an artifact of the jet implementation (see below). At later times, the bubbles
in runs with larger tjet fragment in the cluster atmosphere and spread more in horizontal
direction. The bubbles with high tjet, seen in Figure A.7 at 422 Myr, still have significant
jet tracer fractions and their subsequent spread appears to be limited by the runtime of the
simulation.
Conclusively, the energy of the bubble appears to be the relevant quantity rather than the

activity of the jet or the power of the jet. In the future one could try to vary Pjet and tjet such
that the total injected energy stays constant, i.e. Pjettjet = const. This would allow for more
quantitative statements.
In run XM1LO, a central peculiar low density blob is visible in the east of the central BH.

The blob presumably originates from backflows in the two lobes, when the jet is still active. The
long activity of jet allows the material in the two backflows to combine and to form the small
bubble. The bubble deattaches from the main bubbles and rises slowly in the ICM. Its initial
velocity is low compared to the velocity of the material in the lobes due to these interactions.
This explains the small final distance to the center of the cluster compared to either lobes.
The magnetic field strength of the central region is extraordinary low, as seen in Figure 4.13.

This is the result of the magnetic isolation of the bubble. The algorithm projects the radial
magnetic field component threading the jet surface. As no additional magnetic field is injected
in the center and the cleaning process is active for a long time, the removal of magnetic fields
becomes significant (see Section 4.2.2). However, this effect should not have a significant impact
on our work.
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Figure 4.12: Same as Figure 4.10. Here, the density is shown for simulations with increasing jet
activity from left to right (tjet = 10, 20, 50 Myr). The dimensions of the projection
box also changed to 200kpc− 120kpc− 4kpc.
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Figure 4.13: Same as in Figure 4.12, but showing the root mean squared value of the magnetic
field with color and B in the x− z plane with arrows.

73



Resolution

Turning to the resolution dependence of evolutionary features of the bubble, we show the
evolution of a low resolution run with otherwise fiducial parameters in Figure 4.14. From the
density evolution, the bubbles are observed to mix more than in the fiducial run. The velocity
in the low resolution jet is lower compared to the jet in the high resolution run. Here, the
kinetic energy flux is injected in larger cells. To resolve the contrast in velocity between jet and
surrounding lobes a minimum number of cells is required. In the fiducial run, on the order of
five cells are affected. Correspondingly, a similar number of cells is required to resolve the low
resolution jet, which increases its radius.
In the low resolution run, a backflow combines the two forming lobes. The newly formed low-

density bubble rises independently from the two main bubbles. The stronger backflow possibly
arises from residual magnetic lines that still connect the two injection regions. Gas from one
region can flow along the field lines and mix with the gas from the other region. Their momenta
partially cancel and the newly formed buoyantly bubble rises.
In addition, the two main bubbles are observed to rise to considerably lower altitudes com-

pared to the run with fiducial resolution. The wider jet creates a wider working surface, which
spread its momentum. The bubble is assumed to rise to lower altitudes. In addition, more
efficient mixing dilutes the material, which lowers its buoyant velocity.
From the general evolution of the bubble and Figure 4.15 the process of draping is independent

of resolution. However, the magnetic field amplification seems to be absent in Figures 4.15,
4.14. The lower velocity results in a considerably smaller amount of vorticity, which appears
crucial to enhance the magnetic field.

74



Figure 4.14: Same as Figure 4.1 for the low resolution run as defined in Table 3.1. Here, the
dimensions of the box are 100kpc− 80kpc− 4kpc centered on the BH.
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Figure 4.15: Same as in Figure 4.16 for the low resolution run.
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4.2 Bubble influence on external magnetic field
4.2.1 Draping of bubble
As discussed in Section 4.1.1, the external magnetic field provides significant stability to the
bubble. The external magnetic field lines are swept up by the buoyantly rising bubble. They
provide stabilizing magnetic tension to the shell of the bubble. The density of field lines is
limited by the resulting magnetic pressure. Excess field lines are advected over the hull of the
bubble. This process is referred to as (magnetic) draping by Dursi and Pfrommer (2008). The
draped layer of magnetic fields constrains anisotropically diffusing CRs within the bubble to
only escape at the lower end of the bubble, which is not draped.
Dursi and Pfrommer (2008) find the ratio of magnetic-to-ram pressure PB/Pram to be the

crucial parameter to identify the draping layer, where PB/Pram ≈ 1. This ratio, the gas-to-
signal speed v/cs, magnetic tension to total forces PB/Pram and the magnetic energy density
εB are shown in Figure 4.16. The bubble can be identified as a low-density cavity with low
degrees of magnetization and high temperature, which results in a higher signal speed (lower
v/cs). The outer density contour approximately traces the boundary layer of the bubble. The
magnetic-to-ram pressure ratio is observed to increase at this layer.
The value of PB/Pram ≈ 1 is approximately reached. In addition, the magnetic field shows

enhancement as a magnetic layer (B) with the field vectors pointing along the bubble. For
similar simulations with a turbulent atmosphere (Ruszkowski et al. 2008) the effect of draping
is also observed. As becomes evident from Figure 4.16, the bubble is constantly redirected
by the ambient medium. However, it stays confined for longer than 100 Myr and constantly
changes its morphology due to the combination of external turbulence, magnetic field alignment
(magnetic tension), magnetic pressure and strong turbulence within the bubble (4.16).
Studying the magnetic field structure close to the surface of the bubble is severely impeded

by the turbulent nature of the background. Figure 4.17 shows a slice of the absolute value of
the magnetic field of the bubble at 98 Myr. Each consecutive image has been rotated along the
vertical axis by π/3 (from left to right). The average of the magnetic field is computed along
the indicated cylinder, which is tilted with respect to the vertical axis. The cylinder is oriented
such that it threads the surface of the bubble approximately along the normal of its surface
and passes through the center of the bubble.
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Figure 4.16: The velocity in units of the sound speed v/cs, the magnetic tension to total forces
ratio PB/Pram, the magnetic-to-ram pressure ratio PB/Pram and the magnetic field
energy density εB are shown for intermediate times of the fiducial simulation.
Arrows show the relative kinetic energy flux Fkin and the magnetic field B on top
of (jet mass-weighted) projections with 50 kpc − 30 kpc − 4 kpc. Contour lines
corresponding to gas densities ρ of 8× 10−28, 10−27, 7× 10−27 cm−3 are overlaid.
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Figure 4.17: The absolute value of the magnetic field B is shown at 98 Myr. The second and
third image are rotated by π/3 and 2π/3 π/3 around the vertical axis. Contour
lines correspond to the extend of the cylinder with radius r = 1 kpc, which is used
to average the magnetic field as shown in Figure 4.18. All quantities correspond
to slices with dimensions 50 kpc− 40 kpc centered on the bubble.

We show the volume-weighted average of the absolute magnetic field along the cylinder in
Figure 4.18 with bins containing the same amount of cells. The dominant peak in the magnetic
field profile is due to magnetic field amplifications in the wake of the bubble, which will be
described in the next section. At a distance of 10 kpc from the center of the bubble the
magnetic field is also increased. Comparing the position with the outer layer of the bubble
in Figure 4.17, enables us to identify this as the draped magnetic field layer. The result is
in agreement with previous idealized simulations (Dursi and Pfrommer 2008) as described in
Section 2.1.5. However, the layer is less well-defined. Irregularities due to the turbulence impair
the accuracy of the radial profile.
We also show the distribution of selected cells Ncell in equidistant bins. The number of

available cells traces the resolution of the simulation that is given by the refinement criteria
(see Section 3.2). The excess of cells in the bubble results from the volume and jet tracer criteria.
To resolve the draping layer, the criterion based on the density gradient proves crucial. The
draping layer appears reasonably resolved. Increasing the radius of the cylinder increases the
statistics but at the expanse of smearing the surface layer.
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Figure 4.18: The average magnetic field along the stagnation line is shown as a function of
distance from the center to the bubble. The dark blue line corresponds to the
volume averaged magnetic field with upper (90%) and lower (10%) percentiles
indicated as lighter dashed lines for bins with equal number of cells. The black
dashed line characterizes the number of cells in equidistant bins, which traces the
morphology of the bubble. The magnetic field is significantly amplified in the wake
of the bubble (z . 0) and peaks around 10 kpc which corresponds to the draped
magnetic field layer.

4.2.2 Dynamo in wake

In the wake of the bubble, the magnetic field is amplified. In Figure 4.16, the magnetic field
just below the bubble is increased by an order compared to the environment. This mechanism
becomes active between 20-50 Myr. Correlation analysis suggests that the mechanism is based
on a dynamo effect and/or adiabatic compression induced by the significant level of vorticity in
the wake of the bubbles. To study the evolution and parameter dependence in more detail, the
average magnetic energy density is shown as a function of time for runs with varying magnetic
field parameters (Figure 4.19) and jet parameters (Figure 4.20). The magnetic field energy
density εB has been averaged in a cylinder C‖ with radius 10 kpc, which is centered on the BH
extending between the bottom of the two bubbles. For comparison, εB is averaged in a cylinder
C⊥ with the same dimensions perpendicular to the original one. In Figure 4.21, both cylinders
are superimposed on the magnetic field energy density of the fiducial run at 90 Myr.
Initially, all runs have a larger magnetic field in C⊥ than in C‖. At this time, the height of

the cylinder is smaller than its radius. This effectively causes the regions that C⊥ and C‖ probe
to switch. In addition, the depletion of magnetic fields due to the magnetic isolation of the jet
region has to be kept in mind. For this, Figure 4.23 shows the magnetic field strength around
the BH at 18.4 Myr for the fiducial run as well as for a run without magnetic isolation.
In the fiducial run, the low magnetic field residuals from the isolation are advected from the

jet injection region. On the contrary, high magnetic fields connect the two jet regions in the
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Figure 4.19: The average magnetic energy density ΣEB/ΣV is plotted as a function of time
of runs with different magnetic fields parameters. The average was computed in
cylinders centered on the BH with radius 10 kpc and a height spanning in between
the bottoms of the bubbles at respective times. For the dashed lines the same
average was taken within a cylinder, that was rotated by π/2 with respect to the
original cylinder.

comparing run. The result of the magnetic field structure can be seen in the density evolution,
which is shown in Figure 4.22. In the fiducial run, the two lobes are clearly separated, which
is in agreement with observations (Section 2.1.3). On the contrary, the run without magnetic
isolation shows interactions between regions. Here, magnetic field lines connect the two regions
spatially and thereby dynamically.
A low-density cavity is observed in the central region. The under-dense jet leads to the

expulsion of a significant mass fraction from the central region. The redistribution process leads
to a net mass loss in the center. For the fiducial jet powers and periods of activity, the density
contrast of the cavity corresponds merely to a factor of three. In the regime of higher Pjet and
tjet, this corresponds to a significant mass depletion in the center. Then, major consequences
are expected for the stability of the simulation. In general, this magnetically-depleted region
represents a low-density cavity, which is unstable to buoyancy and subsequently rises in the
cluster atmosphere, in many cases, in the wake of either bubble. Consequently, the magnetic
field strength in C‖ is decreased.
In Figure 4.19, at intermediate times (∼ 30 Myr) the magnetic field enhancement in region

C‖ compared to C⊥ is visible. The ratio approaches unity at ∼ 90 Myr. The decrease of the
enhancement is partly due to the horizontal distance of the lower bubble, whose wake is not
fully included in C‖ anymore. On the other hand, run X1M1 shows the clearest amplification.
The weaker magnetic field less severely deflects the bubble, which makes the dynamo more
efficient. In addition, the cylinders are well suited to follow the evolution of the bubbles. In
run X5M0, the amplification is only detected for a short period. As discussed in Section 4.1.1,
unmagnetized bubbles fragment more often and thereby mix more efficiently. Consequently, a
decrease in the buoyancy velocity is expected, which decreases the vorticity in the wake of the
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Figure 4.20: Same as Figure 4.19 for runs with different jet powers and jet activity.

bubble. The dynamo becomes less efficient.
In Figure 4.20, the ratio of magnetic field amplification scales with the duration of the jet

activity tjet. As discussed in Section 4.1.2, higher tjet translates to higher velocities of bubbles
and consequently, higher vorticity in the wake of the bubble. The dynamo is more effective.
In the case of run X5M1MY5, a significant magnetic field depletion in the central region is
present, which can be compensated by the gain in magnetic field amplification.
Interestingly, run X5M1MY2 shows stronger enhancement than run E45X5M1, even though

more energy was injected in run E45X5M1. In the case of high jet powers (run E45X5M1), a
clear central magnetically-depleted cavity exists. The strong backflows in the two jets is able to
connect the two lobes. The two rising bubbles drag material along their wake. Consequently,
the magnetic field starts out with lower initial field strengths, which weakens the dynamo. The
vorticity is also spread over a larger area. Thus, magnetic enhancement through adiabatic
compression becomes less efficient.
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Figure 4.21: A slice of the magnetic field energy density εB of the fiducial run at 81 Myr. From
left to right the images have been rotated by π/4, respectively. The red contour
line corresponds to the cylinder approximately enclosed between the two bottoms
of the bubbles. The enclosed cells are used to determine the average magnetic
energy density. The cylinder with the same dimension has then been rotated by
π/2 (shown in grey) to calculate an averaged comparison value. The slice have
dimensions 120 kpc− 120 kpc centered on the BH.

Figure 4.22: Slices of the central cluster density ρ at 18.4 Myr. From left to right the images
have been rotated by π/4, respectively. The slices are centered on the black hole
and have dimensions 40 kpc− 30 kpc.
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Figure 4.23: Same as in Figure 4.22 for the absolute magnetic field strength.
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4.3 CR distribution
We now examine the spatial distribution of CRs for different CR transport processes and discuss
the impact of a single AGN outburst on CR Alfvén cooling. The volume covering fraction and
isotropy of the CRs, which are initially contained in the bubble, is essential for the viability of
the CR heating model for CC clusters (Section 2.1.4). We note that in order to study study
self-regulated heating and radiative cooling CC cluster multiple injection events have to be
considered. In addition, jet energies may differ considerably.

4.3.1 Diffusion coefficient and cooling timescale
In the CR fluid model, CRs are to first order confined to the magnetic field that is flux frozen
in the plasma. Thus, they are only advected with the gas. In addition, they can stream
and diffuse relative to the gas. Here, we consider the streaming instability, which causes the
CRs to move along magnetic field lines with a drift velocity relative to the gas. In a cluster
environment, we have shown that the drift velocity vD approximately corresponds to the Alfvén
speed, vA (Section 2.2.2), i.e., vD− vA = c2/νLcr, where ν is the pitch-angle scattering rate and
Lcr ∼ Pcr/∇Pcr is the CR gradient scale (Kulsrud 2005). In addition, CRs diffuse along the field
lines with a diffusion coefficient D‖ = c2/ν = (vD − vA)Lcr. Thus, spatial diffusion is negligible
here. Analogously to Sharma et al. (2009), we interpret the numerical diffusion coefficient of
the CRs, κ, as an effective diffusion coefficient that combines spatial diffusion as well as CR
streaming. Its value can then be estimated by κcr ∼ vALcr. In practice, the Alfvén velocity
and the CR diffusion length scale depend on the CR injection mechanism and the cluster
environment. We chose a fiducial value of κ ∼ 1029 cm2 s−1 as it yields approximately self-
consistent results in the cluster environment. The value is also in agreement with the measured
Galactic diffusion coefficient κMW ∼ 1028 cm2 s−1 for ∼ GeV particles, since vA ∼ 30 km s−1

and Lcr ∼ 3 kpc (Berezinskii et al. 1990).
In Figure 4.24, we show projections of the CR energy density εcr, the Alfvén cooling timescale

tA ∼ εcr/∆ε̇cr,A ∼ εcr/(vA∇Pcr) ∼ Lcr/vA (see Section 2.3.2), the Alfvén velocity vA, the
estimated CR diffusion coefficient κcr,A = vALcr, the Alfvén heating rate HA = −∆ε̇cr,A =
vA∇Pcr and the jet mass fraction xjet in the fiducial run. Here, we include CR cooling in
the form of Alfvén and non-adiabatic losses (see Section 2.3.2). In practice, the hadronic and
Coulomb losses are sub-dominant to the Alfvén losses. However, all cooling processes (’full
cooling’) are active in the runs, which we analyze in this section.
Figure 4.24 shows that the employed CR diffusion coefficient κ = 1029 cm2 s−1 is roughly in

agreement with the value expected in the CR streaming picture. However, in the wake of the
bubble values in excess of the adopted values by one order of magnitude are reached.
In a low-density, highly magnetized environment, a stratified CR population is expected to

cool fast. This is the configuration in the initial lobe (see Figure 4.24). Here, the Alfvén cooling
time tA is on the order of ∼ 1 Myr. We assume that the CR population is accelerated and
quickly establishes a uniform distribution within the bubble so that the CR population does
not suffer from significant Alfvén wave losses. Thus, we prevent unrealistically high CR losses
in the bubble due to numerical small-scale gradient fluctuations by disabling Alfvén cooling
in cells where xjet ≥ 10−3. The overall cooling timescale outside the lobe is on the order of
10 − 100 Myr. Thus, in the following the resulting CR distribution is analyzed at ∼ 70 Myr
for the early and at ∼ 200 Myr for the late evolution.
In addition, significant deviations from this cooling times scale are observed in the wake of

the bubble. As described in Section 4.2.2, the magnetic field is substantially amplified here,
causing the Alfvén cooling time to reach values of order 1 Myr. In addition, the Alfvén heating
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rate HA reaches its maximum outside the bubble. Results for a cooling CR population are
limited to the fiducial run. However, this region can only correctly be accounted for if CR
cooling processes are taken into account. In the future, runs with various parameters related to
CRs, magnetic fields and the jet will be analyzed to quantify the robustness of our conclusions.

Figure 4.24: The CR energy density εcr, the Alfvén cooling timescale tA, the Alfvén velocity
vA, the estimated CR diffusion coefficient κcr,A, the Alfvén heating rate HA and
the jet mass fraction xjet are shown of the fiducial run with full CR cooling. See
text for their definitions. The images correspond to thin 80 kpc− 60 kpc− 4 kpc
projections weighted with the jet tracer mass fraction. The box extends from the
BH at the bottom and cuts through the central region of the bubble. The grey
contour corresponds to xjet = 10−4 and is a projection of the same dimensions
weighted with the volume.
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4.3.2 CR covering fraction
Relevance of diffusion Semi-analytical, steady-state models of the CR-heating mechanism
in CC clusters rely on one-dimensional CR injection functions (e.g., Guo and Oh 2008; Jacob
and Pfrommer 2017a). To test this assumption, a self-regulating simulation is necessary. In
Figure 4.25, we show the radial profile of the CR distribution for the fiducial run, the same run
without diffusion, as well as a run with full CR cooling and diffusion at 72 Myr and 212 Myr.
While CRs are confined to the bubble in the advection-only simulations, CRs are conducted
out of the bubble along the magnetic filaments in our CR diffusion model. The run including
diffusion shows a smoothly declining CR distribution terminating in an increase of εcr at the
position of the bubbles at all times. CR cooling solemnly decreases the normalization of the
profile.

Figure 4.25: Radial profile of the CR energy density εcr (left) and the Alfvén heating rate HA
(right) of the fiducial run with CR diffusion (blue), without CR diffusion (yellow)
as well as with full CR cooling and diffusion (red) at 72 Myr (solid) and 212 Myr
(dashed). We obtained the profile by taking the volume-weighted mean of εcr or
HA in each radial bin.

On the other hand, if CRs are only allowed to advect, they follow closely the distribution
of the bubble or its fragments. At early times, the peak close to the cluster center can be
attributed to early fragmentation of the bubble (see Figure 4.8). The bubble corresponds to
the second peak. More CRs remain inside the bubble such that the second peak predominates
in the run with only advecting CRs compared to runs with CR diffusion. At later times, the
bubble fragments and its material spreads horizontally. The wide second peak shows this trend.
Inside the cluster, CRs are distributed by means of turbulent mixing.
A similar trend can be seen in the radial profile of the Alfvén heating rate. The larger

isotropy of CRs amounts to a larger heating rate in the center of the cluster. In addition, the
enhanced magnetic fields and high concentrations of escaping CRs lead to an increase of HA
in the wake of the bubbles. Diffusion does not smooth the gradients of the purely advecting
CRs, which show larger peak heating rates in comparison to simulations with CR diffusion. At
212 Myr, the more pronounced peak at the position of the bubble traces out the location of
bubble fragments at this time. They exhibit larger gradients than the smoother distribution in
the bubble.
The radial profile is misleading in conditions where the CR distribution is highly anisotropic.

This is the case for advecting CRs and diffusing CRs at larger radii. This can be seen in Figure
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4.29. Here, we show a two-dimensional phase diagram of volume in the phase diagram of the
CR energy density εcr and radius r for the fiducial run and the run without CR diffusion.
Each bin is normalized with the volume of each radial shell. Collapsing this distribution along
the vertical axis yields the volume fraction at each radial bin. Note the different scale of εcr
compared to Figure 4.25.
The purely advected CRs are confined to insignificant volume fractions of the cluster. The

level of turbulence is insufficient in mixing them in a volume-filling fashion. On the other hand,
the diffusing CRs effectively fill the inner 20−30 kpc. However, their energy density decreases,
which has an impact on the efficiency of Alfvén wave heating.

Effect of cooling The evolution of the volume occupied by εcr as a function of radius is
depicted in Figures 4.28 in the full cooling model. The cooling of CRs decreases the CR energy
density. The bubble is still able to sustain high energy fractions out to large radii. One can see
a clear decrease in isotropy of the cooling CR population to the fiducial run.
Initially, CRs are confined to the bubble. By construction, they are not allowed to cool.

However, as discernable in Figure 4.24 or 4.5 the threshold value of xjet only includes the outer
shell of the bubble. This is the reason for the depletion of CRs in the lower part of the bubbles
in Figure 4.24. However, the cooling time becomes up to three orders of magnitude smaller in
the bubble. Until 212 Myr, highly concentrated CRs cool in the central region. The bubble
can still be identified in both runs and contains a large fraction of the total CR population. At
this point, the bubble is in the process of fragmentation, which causes the material to spread
horizontally (Figure 4.8).

CR distribution and heating rates The continuous dilution of bubble material allows larger
fractions of CRs in the bubble to be cooled. On the other hand, the dilution comes with an
increase in cooling time. Thus, the volume filling fraction of CRs in the cluster, especially at
larger radii, depends on the time scale of CR depletion. This can also be concluded from the
Alfvén heating rate, HA. Figure 4.30 shows the volume occupied by HA as a function of radius
in the fiducial run with CR cooling at 72 Myr and 212 Myr. By analogy with the phase diagram
of εcr, we normalize each bin with the volume of the radial shells.
At 72 Myr, the maximum heating rate declines from the bubble towards the center due to

the increase of the CR pressure gradient and the enhanced magnetic fields. The slope is only
modulated by a peak at ∼ 10 kpc, which appears to correspond to CR-filled bubble fragments.
At 212 Myr, the overall heating rate decreases while the bubble represents a local maximum of
HA.
To test for numerical resolution, Figure 4.31 shows the same phase diagram for the fiducial

run and the fiducial run at lower resolution at 212 Myr. The low-resolution run shows a more
centrally concentrated heating rate. The low resolution bubble disrupts earlier and the CRs are
more uniformly distributed in the inner region. As mentioned above, a third bubble arises in
this run, which drains entropy from the main bubbles. In addition, mixing appears to be more
significant. The exact impact of numerical resolution in self-regulated systems will be analyzed
in the future as it may prove critical for heating the inner-most core of the cluster. The reason
for the formation and evolution of the third bubble will be more closely examined.
Interestingly, varying the degree of magnetization of the lobes or the external magnetic field

shows no significant effect on the CR distribution. Figure 4.26 shows the cumulative CR
energy for runs with different MHD parameters. They all show very similar trends. Thus, the
difference in mixing and early fragmentation is a secondary effect. The CR diffusion timescale
out of the bubbles is independent of these parameters. In addition, the final disruption of
the bubbles results in similar final jet tracer configurations (see Figure 4.8). The timescales
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of fragmentation are too similar to significantly alter the buoyancy timescale. However, the
magnetic enhancement in the wake of the bubbles varies. In the future, CR cooling should be
included in these runs to determine its importance.
In Figure 4.26, the bubble in the run without diffusion deposits only ∼ 10% of the total CR

energy in the inner 50 kpc. The run without magnetized lobes shows a very similar behavior to
the run where the bubble was not magnetically isolated. The early CR losses due to diffusion
through the shell of the bubble in the run without magnetically isolated lobes and the loss of
CRs due to bubble fragmentation in the case of the run with unmagnetized lobes show a very
similar trend at small radii. However, the fragmentation process translates to a continuous CR
loss from the bubble in the run with unmagnetized lobes. Thus, the trends diverge at ∼ 50 kpc.

Figure 4.26: The cumulative, normalized sum of the CR energy in the indicated runs at times
72 Myr (left) and 212 Myr (right). The profiles are normalized to the total CR
energy present at the respective time in the individual runs.

On the other hand, the amount of injected jet energy into the bubble is expected to signifi-
cantly alter the CR distribution and thereby the CR heating rate. This parameter is responsible
for the traveled distance and travel time of the bubble as argued in Section 4.1.2. Figure 4.27
shows the cumulative, normalized energy of fiducial runs with varying jet powers, resolution
and time of jet activity. Energy correlates strongly with the distance of deposited CR energy
for runs at the same resolution, where the higher the energy, the further the CRs are trans-
ported. The large gradient at the end of each line corresponds to the bubble, which contains
a larger fraction of energy for more energetic jets. The diffusion timescale appears to vary
insignificantly. A different diffusion coefficient should alter this result.
Figure 4.27 emphasizes the complexity of the resulting CR distribution in a self-regulated

system. Highly energetic jets penetrate much further into the IGM. CRs will have less time to
escape and heat the center of the cluster. Initial low cooling rates lead to low powered jets which
stay confined to the center of the cluster and inject their energy here. In addition, the higher
magnetic field enhancement in the wake of more energetic bubbles leads to stronger cooling
and might increase the anisotropy of the CR distribution. Recent simulations of self-regulated
systems (Yang and Reynolds 2016a; Ruszkowski et al. 2017) show energetic jets. However, the
energy of the bubble depends also on the expulsion timescale of the lobe from the jet. The
details of this will be modeled in future simulations.
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Figure 4.27: The cumulative, normalized sum of the CR energy in the indicated runs at times
72 Myr (left) and 212 Myr (right). The profiles are normalized to the total CR
energy present at the respective time in the individual runs.
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Figure 4.28: Phase diagram of the CR energy density εcr of the fiducial run including full CR
cooling at 72 Myr (top) and 240 Myr (bottom). The volume fraction covered by
a radial bin of CR energy density, Vcr(r), is normalized by the total volume of
the spherical shell that contains the radial bin, V (r). Summing over the volume
faction in each radial bin yields the histograms at the top.
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Figure 4.29: Same as Figure 4.28 for the fiducial run and the fiducial run without CR diffusion.

92



Figure 4.30: Same as Figure 4.28 for the instantaneous Alfvén heating rate.

93



Figure 4.31: Same as Figure 4.30 for the fiducial run and a low resolution run with fiducial
parameters.

94



5 Conclusion

A promising heating mechanism for CC clusters is the dissipation of Alfvén waves, which
are excited by streaming CRs. In this picture, CRs originate from lobes that are inflated
by relativistic jets from the central galactic nuclei. Here, we study the evolution of these
bubbles and their effect on the cluster atmosphere with numerical simulations. This allows us
to constrain models of cluster heating in general and specifically, it enables us to study the
resulting three-dimensional distribution of CRs in the Alfvén wave-heating model.
In this thesis, we assisted in the development of a jet module that allows us to self-consistently

inflate bubbles and study their interaction with the ICM. The presence of turbulent cluster
magnetic fields changes the bubble evolution and proves critical for estimating realistic heating
rate. To this end, we create a Gaussian-distributed magnetic field on a nested mesh in order
to model a magnetized, turbulent cluster atmosphere. We analyze runs with varying magnetic
field strength, degree of lobe magnetization, jet power and duration of jet activity and find the
following main results.
After a jet-inflated lobe detaches from its source, it rises buoyantly in the cluster atmosphere.

This causes an under-pressured wake, which accelerates gas towards it. As this flow focuses past
the bubble, it acquires vorticity, moves up again, overshoots and pierces through the bottom
of the bubble. We show that the bubble fragmentation timescale increases for nonzero cluster
magnetic field strengths. This is explained by magnetic draping around the rising bubble. The
magnetic draping layer provides stabilizing magnetic tension against these Rayleigh-Taylor in-
stabilities. Kelvin-Helmholtz instabilities are additionally suppressed in magnetized clusters,
which impedes mixing. On the other hand, we demonstrate that turbulent environments en-
hance mixing in comparison to a quiet atmosphere.
As expected, we find that the jet energy determines the evolution of the jet while the exact jet

time of activity and jet power are only secondary parameters. Numerical resolution determines
how far bubbles propagate in the atmosphere. Lowering the resolution broadens the jet width
that is required to resolve the velocity gradient. This causes the jet momentum to be distributed
over a larger area. Consequently, the jet encounters a larger ram pressure and slows down faster.
We show that adiabatic compression and possibly a dynamical dynamo enhance magnetic

field strengths in the wake of the bubbles. The degree of enhancement is larger for more
energetic jets, which reach larger distances from the cluster center. Consequently, they induce
stronger back flows in their wake.
CR diffusion is crucial for transporting the CRs from the bubble into the central ICM. We find

relatively isotropic CR distributions in the cluster core for low-luminosity jets while the degree
of isotropy decreases with increasing jet luminosity. For purely advected cosmic rays, the effects
of bubble fragmentation and consecutive mixing yields insufficient volume covering fractions
for CR heating to offset radiative gas cooling after one outburst. Jet energy rather than degree
of magnetization is found to be the important parameter that governs the distribution of CRs.
More energetic jets reduce the CR escape time, which is further modulated by the diffusion
coefficient.
CR cooling alters this picture as it decreases the isotropy and the overall normalization of

the CR heating rate. The magnetic field amplification and the high CR gradient in the wake
of the bubbles translate to efficient CR heating, which thus decreases CR energy adiabatically
at a fast rate.
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In the future, we will study the origin of the magnetic field amplifications in more detail,
especially with regard to the correlation between magnetic and jet energy. Finally, by applying
our findings to simulation with radiative gas cooling we will study whether CR Alfvén-wave
heating is a viable and locally stable mechanism for self-regulated systems and thus successful
in quenching cluster cooling flows.

96



Part I

Appendix

97



A Additional Figures

98



Figure A.1: The density ρ, velocity in units of sound speed v/cs, jet mass fraction xjet, kinetic-
to-thermal pressure ratio xkin and CR-to-thermal pressure ratio xcr are portrayed
of the fiducial run without MHD. The images correspond to thin 80 kpc−60 kpc−
2 kpc projections weighted with the jet tracer mass fraction to highlight the features
of the jet centered at (40, 0, 0). The arrows show the kinetic energy flux F kin where
arrow length and color are scaled logarithmically with respect to the absolute value
|F kin|x,z in the x − z plane that is shown. The color scales are fixed for different
times shown, respectively.
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Figure A.2: The jet mass fraction xjet is shown for simulations with varying jet power
at 80.5 Myr. Contours represent the CR energy density from dark to light
10−13 − 10−12 − 10−11 erg cm−3. Thin projections of the background and the
contours have dimensions 160kpc− 96kpc− 4kpc, which are weighted with the jet
mass and the volume, respectively. The simulations are rotated by π/4 around the
vertical axis from top to bottom.100



Figure A.3: Same as Figure A.2 at 185.4 Myr. Here, the projections of the background and the
contours have dimensions 220kpc− 132kpc− 4kpc.
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Figure A.4: Same as Figure A.2 at 422.4 Myr. Here, the projections of the background and the
contours have dimensions 300kpc− 180kpc− 4kpc.
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Figure A.5: The jet mass fraction xjet is shown for simulations with varying jet activity at
80.5 Myr. Contours represent the CR energy density from dark to light 10−13 −
10−12− 10−11 erg cm−3. Thin projections of the background and the contours have
dimensions 200kpc− 130kpc− 4kpc, which are weighted with the jet mass and the
volume, respectively. The simulations are rotated by π/4 around the vertical axis
from top to bottom. 103



Figure A.6: Same as Figure A.5 at 185.4 Myr. Here, the projections of the background and the
contours have dimensions 270kpc− 175.5kpc− 4kpc.
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Figure A.7: Same as Figure A.5 at 422.4 Myr. Here, the projections of the background and the
contours have dimensions 400kpc− 260kpc− 4kpc.
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