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Abstract

Cosmic rays (CRs) play an important role in many astrophysical systems. Acting on
plasma scales to galactic environments, CRs are usually modelled as a fluid, using the
CR energy density as the evolving quantity. This method comes with the flaw that
the corresponding CR evolution equation is not in conservative form, as it contains
an adiabatic source term that couples CRs to the thermal gas. In the absence
of non-adiabatic changes, instead evolving the CR entropy density is a physically
equivalent option that avoids this potential numerical inconsistency. In this work,
we study both approaches for evolving CRs in the context of magneto-hydrodynamic
simulations using the moving-mesh code Arepo. We investigate the performance of
both methods in a sequence of shock-tube tests with various resolutions and shock
Mach numbers. We find that the entropy-conserving scheme performs best for the
idealized case of purely adiabatic CRs across the shock, while both approaches yield
similar results at lower resolution. In this setup, both schemes operate well and
almost independently of the shock Mach number. Taking active CR acceleration at
the shock into account, the energy-based method proves to be numerically much more
stable and significantly more accurate in determining the shock velocity, in particular
at low resolution, which is more typical for astrophysical large-scale simulations. For
a more realistic application, we simulate the formation of several isolated galaxies at
different halo masses and find that both numerical methods yield almost identical
results, with differences far below common astrophysical uncertainties.





Kurzzusammenfassung

Kosmische Strahlung (KS) spielt in vielen astrophysikalischen Systemen eine bedeu-
tende Rolle. Da sie sowohl auf Plasmaskalen als auch auf galaktischen Maßstäben
wirkt, modelliert man die KS für gewöhnlich als Fluid, wobei die Energiedichte
der KS als Entwicklungsgröße verwendet wird. Diese Methodik birgt jedoch den
Nachteil, dass die entsprechende Entwicklungsgleichung der KS nicht in konser-
vativer Form vorliegt, da sie einen adiabatischen Quellterm enthält, welcher die
KS mit dem thermischen Gas koppelt. In Abwesenheit nicht-adiabatischer Quell-
terme ist die Entwicklung der Entropiedichte der KS eine physikalisch gleichwer-
tige Option, welche diese potenzielle numerische Inkonsistenz vermeidet. In der
vorliegenden Arbeit werden beide Ansätze zur Entwicklung von KS im Rahmen
von magneto-hydrodynamischen Simulationen unter Verwendung des Moving-Mesh-
Codes Arepo untersucht. Die Leistungsfähigkeit beider Methoden wird in einer
Reihe von Stoßrohr-Simulationen mit unterschiedlichen Auflösungen und Stoß-Mach-
Zahlen verglichen. Das entropieerhaltende Schema liefert für den idealisierten Fall
rein adiabatischer KS in der Stoßzone die besten Ergebnisse, während bei geringerer
Auflösung beide Ansätze zu ähnlichen Resultaten führen. In dieser Konstellation
arbeiten beide Verfahren nahezu unabhängig von der Stoß-Mach-Zahl zuverlässig.
Unter Einbeziehung aktiver Beschleunigung der KS am Stoß erweist sich die en-
ergiebasierte Methode als numerisch wesentlich stabiler und erheblich genauer bei
der Bestimmung der Stoßgeschwindigkeit, insbesondere bei geringer Auflösung, die
für astrophysikalische Großraumsimulationen charakteristisch ist. Als realistischere
Anwendung wird die Entstehung mehrerer isolierter Galaxien mit unterschiedlichen
Halo-Massen simuliert. Es zeigt sich, dass beide numerischen Methoden nahezu
identische Resultate liefern, deren Diskrepanzen deutlich unterhalb der üblichen as-
trophysikalischen Unsicherheiten liegen.





The presented results are based on Weber et al. (2022), which was submitted to
MNRAS. I use the present work to give a solid theoretical background to the used
arguments and to detail the numerical framework.
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1 Introduction

Cosmic rays (CRs) represent the non-thermal particle population of an astrophysical
plasma and arguably play a crucial role in understanding the self-regulated feedback
mechanisms that are at work in galaxies and galaxy clusters (Zweibel, 2017). They
acquire their high energies by diffusive acceleration processes at shocks (Marcowith
et al., 2016) driven by supernovae (SNe), or by the relativistic energy feedback from
active galactic nuclei (Guo and Oh, 2008; Jacob and Pfrommer, 2017a,b). Con-
currently, CRs suffer non-adiabatic cooling due to radiative and Coulomb losses,
scattering off of self-excited magnetic fluctuations (Kulsrud and Pearce, 1969; Shal-
aby et al., 2021), and hadronic collisions. While energetic CR electrons thereby cool
rapidly to negligible energies, rendering them dynamically insignificant in astrophys-
ical systems, the momentum-carrying CR protons have much longer cooling times
in comparison to their leptonic counterparts or thermal gas. This results in an ap-
proximate equipartition of the thermal, magnetic, and CR pressure in the mid-plane
of the Milky Way (Boulares and Cox, 1990), thus making CRs a promising agent of
galactic feedback processes.

In the past decades, various approaches have been employed to numerically model
the impact of CRs in astrophysical simulations. CRs act on a large range of scales,
from characteristic plasma scales to galaxies to galaxy clusters. To explore CR
dynamics in these macroscopic systems, the only computationally tractable approach
is to model CRs collectively as a fluid. Commonly, a one-moment formulation for the
CR fluid is applied in hydrodynamic and magneto-hydrodynamic (MHD) simulations
(Hanasz and Lesch, 2003; Enßlin et al., 2007; Jubelgas et al., 2008; Booth et al., 2013;
Salem and Bryan, 2014; Girichidis et al., 2014; Pakmor et al., 2016a; Pfrommer
et al., 2017; Dubois et al., 2019), meaning that only a single scalar quantity (CR
energy density or number density) is evolved in time. This setup is well suited
for modelling the CR transport mechanisms of advection and diffusion. However,
when applying this method to CR streaming, numerical instabilities may occur due
to unlimited flux values (Sharma et al., 2009). Hence, further improvements were
made by developing a two-moment formulation in which the energy and flux densities
of CRs are computed separately (Jiang and Oh, 2018; Thomas and Pfrommer, 2019,
2022; Chan et al., 2019; Thomas et al., 2021). The above algorithms exclusively use
a simple ’grey’ approach for CR spectra, neglecting the different effects of and on
CRs at different energies. To address this shortcoming, some codes were elaborated
to handle spectrally resolved simulations, either using additional tracer particles
(Vaidya et al., 2018; Winner et al., 2019) or by adding multiple momentum bins
per hydro-cell covering a wide range of the CR spectrum (Miniati, 2001; Yang and
Ruszkowski, 2017; Girichidis et al., 2020; Ogrodnik et al., 2021; Hopkins et al., 2022).

Each of the previous models uses a two-fluid approximation to describe the ther-
mal gas and CRs individually. Usually, the time evolution of the CR energy density
is added as an extra relation to the conventional set of hydrodynamic/MHD equa-
tions, which represent conservation laws for mass, momentum, and energy. As a
consequence, the CR energy density does not separately follow such a conservation
law. Any formulation of the CR energy density equation includes an adiabatic source
term (either Pcr∇·u or u ·∇Pcr) that couples the CR pressure Pcr to the mean ve-
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locity u of thermal gas. This term needs to be calculated in an additional step, thus
preventing the CR equation from adopting a conservative form. While this is not
a problem for smooth flows, the presence of non-vanishing spatial derivatives could
in principle be problematic for shocks because a sudden jump in density/velocity
could give rise to a continuous accumulation of numerical errors. This problem of
non-uniqueness of the CR energy density is extensively discussed by Gupta et al.
(2021).

To overcome this potential numerical flaw, alternative schemes have been devel-
oped to integrate CR physics into the simulations, based on ideas by Ryu et al.
(1993). Here, rather than CR energy, a modified CR entropy density, ρKcr =
Pcr/ρ

γcr−1 with γcr the adiabatic index of the CRs, is used as the relevant quan-
tity to describe the CR fluid (Kudoh and Hanawa, 2016; Semenov et al., 2021).
This approach has the evident benefit that the CR equation is in conservative form,
so that Godunov-type solvers can be straightforwardly applied. However, this for-
mulation is only valid in the absence of non-adiabatic changes, where entropy is
conserved. This is neither the case for astrophysical shocks in which CRs are ac-
celerated, nor for radiative, hadronic, and Alfvén wave cooling. In such cases, one
would have to switch back to the energy description. Furthermore, the unavoidable
dependence on mass density can lead to an immediate impact of (numerical) density
fluctuations on the entropy variable, particularly in regimes of low resolution, which
is the default scenario in large-scale simulations. Moreover, the total energy is not
explicitly conserved in such schemes.

In their detailed study, Gupta et al. (2021) state that solving the two-fluid equa-
tions across shocks generally yields unique results only when an additional CR sub-
grid closure is assumed, regardless of the employed numerical method. Without
using such an artificial closure, they recommend adopting the energy-based method
where the total energy and CR energy are evolved in an unsplit scheme and the
source term is added as Pcr∇·u , because this approach proves to be most stable in
that case. Further, they argue that the entropy-conserving scheme does not provide
satisfactory results in simple stability tests. Additionally, they point out that assum-
ing a constant CR entropy across shocks is not physically justified because CRs are
accelerated at shocks. Another study on the differences of the energy-based method
and the entropy-conserving scheme is provided by Semenov et al. (2021). According
to their results, the use of the energy-based method leads to spurious entropy gener-
ation at shocks due to the numerical inaccuracies described earlier. Moreover, they
find that this error depends on the shock Mach number and the adiabatic indices
of the two fluids, while the entropy-conserving scheme does not suffer from any of
these inaccuracies. This led them to conclude that the entropy-conserving scheme
is the preferred choice to model CR fluids.

In this work, we investigate the differences of the CR energy and CR entropy
formulations for CR transport performing simulations that are carried out with the
moving-mesh code Arepo. We use Heaviside-Lorentz units throughout this work.
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2 Theoretical background

In this section, we present the theoretical background of this work. We justify
and derive the equations of ideal MHD in Sec. 2.1, we review the main properties of
astrophysical shocks in Sec. 2.2, we introduce the key points of CR physics in Sec. 2.3,
and we present the set of CR-MHD equations we use in this work in Sec. 2.4.

2.1 Ideal MHD

2.1.1 Fluid approximation

To derive the equations of ideal MHD, we consider the thermal plasma of astrophysi-
cal systems in the so-called fluid approximation, which allows studying multi-particle
systems collectively covered by a small set of physical quantities. In the following,
we discuss the crucial aspects of this approximation based on Pfrommer (2022a).

We describe the thermal plasma as a perfectly conducting fluid with an equation
of state (EOS) Pth = (γth − 1)εth that links the thermal pressure Pth to the thermal
energy density εth via the adiabatic exponent γth = 5/3 of an ideal, non-relativistic
gas. This fluid approximation is only valid when the mean free path λmfp of the gas
particles is much smaller than the typical size L of the astrophysical system, result-
ing in frequent binary interactions of the particles and rendering their momentum
distribution to approach a smooth Maxwell-Boltzmann distribution. For electrons,
which primarily mediate the temperature in the plasma, the classical electron radius
re can be determined to an order of magnitude by equating its thermal energy and
electrostatic potential:

re ≈
e2

kBTe

, (1)

where e is the elementary charge, Te is the electron temperature, and kB denotes
Boltzmann’s constant. The mean free path of a thermal electron can then be ex-
pressed as:

λmfp =
1

ne σ ln ΛC

=
1

neπr2
e ln ΛC

, (2)

where ne is the electron number density, and σ is the electron cross-section sup-
plemented by a correction factor ln ΛC, the Coulomb logarithm, that accounts for
distant electrostatic interactions. Translating Eq. (2) to typical astrophysical scales,
the collisional electron mean free path reads as:

λmfp = 10−5 pc

(
Te

104 K

)2 ( ne

cm−3

)−1

. (3)

Since L ∼ kpc for galaxies, we have λmfp � L and can thus treat the cold and warm
phase of the interstellar medium (ISM) as a fluid. However, the hot, volume-filling
phase (Te ≥ 106 K, ne ≤ 10−2 cm−3) has λmfp ≥ 10 pc, so that kinetic plasma effects
have to be considered, which may substantially lower the effective mean free path.
This is the case, for example, in the outskirts of galaxies or galaxy clusters.
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2.1.2 Equations of ideal MHD

We can now derive the equations of ideal MHD, which represent conservation laws for
mass, momentum and energy, neglecting viscosity and convective heat flux (Pringle
and King, 2007; Raychaudhuri, 2022).

Continuity equation The fluid mass contained in a constant volume V can
change in time only if there is a mass flux through the volume surface A:

∂

∂t

∫
V

ρ dV = −
∫
A

ρu · n dA , (4)

where ρ is the gas mass density, u is the mean bulk velocity of the gas, and n denotes
the normal vector to the volume surface A. Since V is constant, we can take the
time derivative on the left-hand side (LHS) into the integral, and we apply Gauss’
divergence theorem to the integrand on the right-hand side (RHS):∫

V

(
∂ρ

∂t
+∇ · ρu

)
dV = 0 . (5)

This must hold for any volume, and thus the integrand itself must vanish:

∂ρ

∂t
+∇ · ρu = 0 . (6)

This is the continuity equation of ideal MHD. If we perform the integration in Eq. (5)
assuming V →∞ and again apply Gauss’ divergence theorem, we find that the total
gas mass M is conserved since any flux vanishes at infinity:∫

V

(
∂ρ

∂t
+∇ · ρu

)
dV =

∂M

∂t
+ lim

A→∞

∫
A

ρu · n dA =
dM

dt
= 0. (7)

Momentum conservation We apply the same considerations to the momentum
of the gas, taking into account that force densities f cause additional acceleration,
and obtain:

∂(ρu)

∂t
+∇ · ρuu = f . (8)

Regarding a thermal plasma, the relevant force densities are:

f = fP + fG + fL = −∇Pth + ρ∇Φ+
j

c
×B, (9)

where fP is the pressure gradient force density, fG is the gravitational force den-
sity, fL is the Lorentz force density, Pth denotes the thermal gas pressure, Φ is the
gravitational potential described by Poisson’s equation ∇2Φ = 4πGρ with Newton’s
constant G, j is the current density, B is the mean magnetic field, and c denotes
the speed of light. We employ Ampere’s law at low frequencies, ∇×B = j/c, to
reformulate the Lorentz force:

fL = (B ·∇)B − 1

2
∇B2, (10)
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where the terms on the RHS denote force densities due to magnetic tension and
magnetic pressure, respectively. Substituting into Eq. (8), employing the identity
∇ ·BB = (B · ∇)B, and rearranging terms, we find:

∂(ρu)

∂t
+∇ · (ρuu + P1−BB) = ρ∇Φ , (11)

where P = Pth +B2/2 is the total MHD pressure composed of thermal and magnetic
pressure. This is the momentum equation of ideal MHD, which states momentum
conservation in the absence of gravity. Combining Eq. (11) with the identity:

∂

∂t
(ρu) +∇ · (ρuu) = ρ

[
∂u

∂t
+ (u · ∇)u

]
, (12)

the momentum equation can be expressed in simplified form:

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+
∇ ·BB

ρ
+ ρ∇Φ . (13)

Energy conservation We describe the energy density ε = εth + 1
2
ρu2 contained

in an arbitrary volume as the sum of thermal and kinetic energy densities. This
quantity can change either by energy flux through the volume surface, by pressure
work done on the surface, or by external gravitational forces ρ∇Φ:

∂

∂t
(εth +

1

2
ρu2) +∇ · (εth +

1

2
ρu2 + Pth)u = ρu · ∇Φ . (14)

This does not yet include the magnetic energy. We combine Faraday’s induction
equation ∂B/∂t = −c∇×E and the ideal Ohm law E = −u×B/c in the limit
of infinite conductivity, yielding:

∂B

∂t
=∇× (u×B) = −∇ · (Bu− uB) , (15)

where we have used the constraint of vanishing divergence of the magnetic field,
∇ ·B = 0, in the last step. We multiply Eq. (15) by B and find:

∂

∂t
(
1

2
B2) +∇ ·

[
B2u−B(u ·B)

]
= 0. (16)

Noticing that εB = B2/2, we arrive at

∂εB

∂t
+∇ ·

[
(εB +

1

2
B2)u−B(u ·B)

]
= 0. (17)

This is the evolution equation of magnetic energy density of ideal MHD. Adding
Eqs. (14) and (17) yields:

∂ε

∂t
+∇ · [(ε+ P )u−B(u ·B)] = −ρu · ∇Φ , (18)
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where ε = εth + ρu2/2 + εB is the total MHD energy density. This is the energy
conservation equation of ideal MHD. The kinetic term of the MHD energy density
obeys a conservation law that reads as:

∂

∂t

(
1

2
ρu2

)
= −∇ ·

(
1

2
ρu2u

)
− u · ∇P − ρu · ∇Φ. (19)

Substituting into Eq. (14) and inserting the EOS of the thermal gas gives:

∂Pth

∂t
= −γthPth∇ · u− u · ∇Pth, (20)

which describes the evolution of the internal energy density of the thermal gas.

Entropy conservation Considering the first law of thermodynamics:

dε

ρ
=
P

ρ2
dρ+ Tds, (21)

where T is the temperature of the system, and s denotes the specific entropy. Com-
bining it with Eqs. (6) and (18) and neglecting magnetic fields, we arrive at:

∂(ρs)

∂t
+∇ · (ρsu) = 0 , (22)

which states conservation of entropy density in the absence of viscosity and heat
conduction. The general EOS for an ideal gas reads in its differential form:

dε

ρ
=

1

γ − 1

(
dP

ρ
− P

ρ2
dρ

)
, (23)

where γ is the adiabatic index of the gas. Substituting into Eq. (21) and assuming
only adiabatic changes (ds = 0), we obtain:

P = P0

(
ρ

ρ0

)γ
≡ Kργ. (24)

Consequently, for a polytropic gas, K defines a quantity that remains constant under
adiabatic changes and is therefore called entropy.

2.1.3 Eigenstructure of ideal MHD

We investigate the eigenstructure of ideal MHD and are thus interested in the eigen-
values of the corresponding set of equations. Neglecting gravity (∇Φ = 0), the
conservation laws for mass, momentum, energy, and magnetic fields of ideal MHD
can be expressed in a more compact form:

∂

∂t
U +∇ · F (U ) = 0. (25)
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Here, U contains the conserved quantities and F represents the fluxes of the system:

U =


ρ
ρu
ε
B

, F =


ρu

ρuu + P1 + BB
(ε+ P )u + B(u ·B)

Bu + uB

 . (26)

To reduce the complexity of the following considerations, we focus on a plane-parallel
scenario, i.e. ∂/∂y = ∂/∂z = 0, ∂/∂x = d/dx. We carry out the spatial derivative in
Eq. (25) to find its quasi-linear formulation:

∂

∂t
U + A(U)

dU

dx
= 0, (27)

whereA = ∂F /∂U is the Jacobian of the flux function. It is convenient to transform
the system to its primitive variables W = (ρ,u, P,B) (Roe and Balsara, 1996):

∂U

∂W

∂W

∂t
+ A

∂U

∂W

dW

dx
= 0, (28)

or equivalently:
∂W

∂t
+ Ā

dW

dx
= 0, (29)

where
Ā =

∂W

∂U
A
∂U

∂W
. (30)

The matrix Ā contains all the information concerning the spatial transport of the
primitive fluxes. Each eigenvalue provides information about any designated velocity
in the transport of the components of W . Since the set of MHD equations is
hyperbolic, the matrix Ā is diagonalizable and its seven eigenvalues are:

λ1,7 = u∓ c fa, (31)
λ3,5 = u∓ c sl, (32)
λ2,6 = u∓ vA, (33)
λ4 = u. (34)

These eigenvalues describe the propagation of plasma waves. λ4 corresponds to
an entropy wave that propagates with the mean gas velocity u. λ2,6 describe two
shear-Alfvén waves that propagate along the magnetic field at the Alfvén velocity
vA = B/

√
ρ, where B = |B|. λ3,5 and λ1,7 correspond to two slow and two fast

magneto-acoustic waves, respectively, and their velocities are given by (Sturrock,
1994):

c fa, sl =

γPth +B2 ±
√

(γPth +B2)2 − 4γthPthB2
x

2ρ

1/2

. (35)

It can be shown that c sl ≤ vA ≤ c fa, explaining the names of the slow and the fast
waves. For vanishing magnetic fields, the system reduces to a purely hydrodynamic
system. We then have c fa = cs and c sl = vA = 0, implying that the fast magneto-
sonic wave degenerates to an ordinary acoustic wave, and Alfvén and slow magneto-
sonic waves disappear.
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2.2 Shocks

Astrophysical shocks are a principal driver of CR acceleration. In this section, we
summarize the most important properties of shocks. Our discussion is based on
Pfrommer (2022a).

In general, a shock occurs when a perturbation (e.g. of the pressure) in a medium
propagates faster than the local sound speed cs, which defines the maximum speed
for the transport of information in the medium. Consequently, the unperturbed part
of the medium does not notice when the shock approaches, which causes a sudden
compression and thus a quasi discontinuous transition between the unperturbed and
the compressed regions. The width of this transition layer is defined by the mean free
path λmfp of the particles involved. In a collisional shock, λmfp is determined by the
time between binary collisions mediated by Coulomb-interactions. A shock is called
collisionless when the mean free path is reduced by many orders of magnitude com-
pared to the collisional case, making the transition layer quasi discontinuous. This
is when particles are affected by scattering from electromagnetic waves rather than
binary collisions because particle-wave interactions are mediated on much shorter
timescales.

Rankine-Hugoniot jump conditions The conservation laws derived in Sec. 2.1
are still valid at shocks. However, in the context of shocks, they can be expressed
more compactly. We neglect gravity (∇Φ = 0 in Eq. (11)), which is plausible
because it acts on much longer timescales than the transition times for shocks. We
assume steady-state (∂/∂t = 0) and a plane-parallel geometry. Applying the given
assumptions to the conservation laws for mass (Eq. (6)), momentum (Eq. (11)),
and energy (Eq. (18)), supplemented by the evolution equation of kinetic energy
(Eq. (19)) and assuming the magnetic field B = (B, 0, 0) is oriented parallel to the
normal of the infinitesimal thin shock surface, we find (Landau, 1987):

ρ1u1 = ρ2u2, (36)
ρ1u

2
1 + P1 = ρ2u

2
2 + P2, (37)

1

2
u2

1 + ε1 +
P1

ρ1

=
1

2
u2

2 + ε2 +
P2

ρ2

, (38)

B1 = B2, (39)

where ε denotes the specific energy of the gas. These are the Rankine-Hugoniot
jump conditions that describe the transition between the pre-shock (index 1) and
post-shock (index 2) quantities in the shock rest frame.

Contact discontinuity Equation (36) allows for two different types of solutions.
The first one is clearly u1 = u2 = 0 and is called tangential discontinuity. It is
characterized by a constant pressure across its interface, which follows from Eq. (37).
There is no mass flow through the interface because the normal component of the
velocity is constant. If additionally the tangential velocity component is constant,
the discontinuity is called contact discontinuity (CD). In general, such discontinuities
can result in an arbitrary jump in density that must be balanced by the same jump
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in temperature in the opposite direction to keep the pressure constant. The second
type of solution to Eq. (36) requires ρ1u1 6= 0. Hence, there is mass flow through
the interface, and we call this solution a shock.

Shock Mach number An important quantity to characterize a shock is the up-
stream shock Mach number, which is defined by the ratio of shock speed u1 to
upstream (i.e. the pre-shock region, indicated by the index ’1’) sound speed c1:

M1 =
u1

c1

=

√
mu2

1

γkBT1

. (40)

This definition implies that the shock Mach number can also be interpreted as the
ratio of kinetic to thermal energy. The Rankine-Hugoniot jump conditions can be
reformulated in terms ofM1 (Landau, 1987):

ρ2

ρ1

=
u1

u2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

M1�1−−−−→ γ + 1

γ − 1
, (41)

P2

P1

=
2γM2

1 − (γ − 1)

γ + 1

M1�1−−−−→ 2γM2
1

γ + 1
, (42)

T2

T1

=

(
c2

c1

)2

=
[(γ − 1)M2

1 + 2][2γM2
1 − (γ − 1)]

(γ + 1)2M2
1

M1�1−−−−→ 2γ(γ − 1)M2
1

(γ + 1)2
, (43)

where γ is the polytropic index of the gas, variables with index ’2’ denote the post-
shock quantities, and the last term in each equation denotes the limit for strong
shocks withM1 � 1. We define the downstream (i.e. the post-shock region) Mach
number in the same way and substitute the strong shock limit of Eqs. (41) and (43),
yielding:

M2 =
u2

c2

=
u1

c1

u2

u1

c1

c2

=

√
γ − 1

2γ
. (44)

This shows that, for γ > 1, a shock transforms a supersonic gas into a denser,
slower moving, higher pressure, subsonic gas. The shock converts kinetic energy
into thermal and non-thermal energy, the former increasing the entropy of the gas,
while the latter can, for example, accelerate CRs.

2.3 Cosmic rays

We use this section to introduce the fundamental aspects of CR physics. To start
with, we review some principal characteristics of CRs, drawing on the work of Zweibel
(2013, 2017).

CRs represent the high-energy, non-thermal particle population of an astrophysi-
cal plasma and are ubiquitous in the Milky Way and presumably in any other galaxy.
They amount to only 10−9 of the interstellar particles by number, but their total
energy density and pressure (see Sec. 2.3.1) is about the same as that of thermal
particles. CRs are collisionless and interact with the thermal plasma mostly through
particle-wave interactions by scattering off of self-generated magnetic perturbations,
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so-called Alfvén waves (see Sec. 2.3.2). They acquire their high energies through
several acceleration processes, some of which we will discuss in Sec. 2.3.3.

CR ions (protons and heavier nuclei) account for about 99 per cent of the total
CR number N and obey piece-wise power-law distributions N(E) ∝ E−α covering
many orders of magnitude in flux and energy, from the non-relativistic to the highly
relativistic regime. Figure 1 shows a synthesized CR spectrum obtained by many
experiments and contains several interesting features. The most prominent one is
the turnover at around 10 GeV. These lower-energy CRs are strongly confined to
the magnetic field of the solar wind which advects the CRs outwards, rendering their
flux highly uncertain. Up to energies of ≈ 3× 106 GeV, most CRs are protons with
a spectral index of α = 2.6. This energy range accounts for the largest fraction of
the total CR energy. At E ≈ 3 × 106 GeV, the spectrum steepens. This feature is
called the knee and is considered to be the result of a change in the acceleration or
confinement processes of CRs. Around 109 GeV, the spectrum flattens again, and we
call this feature the ankle. The gyro radii of these high-energy CRs are larger than
the size of the galaxy, making them unbound and thus presumably extra-galactic in
origin.

CR electrons are dynamically unimportant in most astrophysical systems because

Figure 1: CR energy flux measured in numerous experiments (legend on the RHS), separated into
particle species (Zweibel, 2013)
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of their negligible number (≈ 1 per cent) and mass compared to their hadronic
counterpart. However, because their cooling time (∼ Myr) is significantly shorter
than that of the ions (∼ Gyr), CR electrons are crucial for the direct measurement
of CRs in galaxies and galaxy clusters (see Sec. 2.3.4). In this work, we focus on the
dynamic effects of CRs and thus neglect the minor influence of CR electrons in the
following.

Although CRs do not behave like a fluid in the conventional sense, they can still
be described as a fluid similar to thermal gas in many situations. We discuss the
necessary conditions in Sec. 2.3.5 and conclude by deriving the CR-MHD equations
(see Sec. 2.3.6).

2.3.1 Basic CR variables

Here we introduce a selection of important quantities concerning CR physics which
we will refer to in the rest of the paper. The following definitions are based on
Pfrommer et al. (2006).

We assume that the differential momentum spectrum per volume element of CR
protons can be approximated by a single power law in momentum:

f(r,p) =
d6N

dp3 dr3
= Cp−αΘ(p− q), (45)

where p = Pp/mpc is the dimensionless CR momentum with Pp the proton mo-
mentum and mp the proton rest mass, C ≡ C(r, t) is a space and time dependent
normalization, Θ(x) denotes the Heaviside step function, and q ≡ q(r, t) is the
minimum momentum cut-off indicating the non-relativistic limit for q → 0 and the
ultra-relativistic limit for q →∞. We can then define the CR kinetic energy density
and pressure, respectively:

εcr =

∫ ∞
0

dp f(p)Ep(p) =
C mp c

2

α− 1

[
1

2
Bx (a, b) + qα−1(

√
1 + q2 − 1)

]
, (46)

Pcr =
mpc

2

3

∫ ∞
0

dp f(p) β p =
Cmpc

2

6
Bx (a, b) , (47)

where β = v/c is the dimensionless velocity of the CRs, Bx(a, b) denotes the in-
complete beta function with x = 1/(1 + q2), a = (α − 2)/2, b = (3 − α)/2, and
Ep(p) = (

√
1 + p2 − 1)mpc

2 is the kinetic energy of a proton.
Liouville’s theorem guarantees the constancy of phase-space density for adiabatic

compression and expansion. Thus, a change in gas density from ρ0 to ρ leads to a
momentum shift of p′ → p = p0(ρ/ρ0)1/3. We can replace the momentum cut-off q
and normalization C by adiabatically invariant variables:

q(ρ) = q0(ρ/ρ0)1/3, (48)

C(ρ) = C0(ρ/ρ0)(α+2)/3. (49)

The adiabatic index of a CR population is given by:

γcr =
d logPcr

d log ρ

∣∣∣∣
S

, (50)
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where ρ is the density of the ambient medium and the derivative has to be taken at
constant entropy S. Substituting Eqs. (47), (48), and (49), the CR adiabatic index
can be expressed as:

γcr =
α + 2

3
− 2

3
q2−αβ Bx (a, b)−1 , (51)

and we obtain its non-relativistic and ultra-relativistic limits by:

γcr
q→0−−−→ 5

3
; α > 3, (52)

γcr
q→∞−−−→ 4

3
; α > 2. (53)

Since we focus on ultra-relativistic CRs with v ≈ c in this work, we will exclusively
use γcr = 4/3 from now on.

2.3.2 Interaction with the thermal gas

CRs in astrophysical plasma environments are virtually collisionless in the sense that
their Coulomb and hadronic interactions with particles of the thermal gas do not
significantly affect the dynamics of the system. However, a particle-wave interaction
mechanism exists that allows energy transfer from the CRs to the thermal gas. We
briefly discuss this mechanism in the following (see e.g. Kulsrud and Pearce, 1969,
for further details).

In general, CRs orbit around the unperturbed magnetic field lines in the ISM due
to the acceleration caused by the Lorenz force (see Fig. 2, left). Their gyro-radius
is given by:

rg =
p⊥c

ZeB
, (54)

where p⊥ denotes the magnitude of the CR momentum perpendicular to the mean
magnetic field B with B = |B|, Ze is the particle’s charge with Z the atomic
number, and rg ∼ 1 AU in galaxies. In this scenario, a charged fluid (i.e. the CRs,
as we justify in Sec. 2.3.6) moves relative to a magnetic field, inducing an electric
current and thus an electromagnetic force that acts back on the motion of the CRs.
The kind of resonant MHD waves generated as a result of this interaction are called
Alfvén waves (Alfvén, 1942). Alfvén waves propagate along the magnetic field lines
with the local Alfvén velocity vA = B/

√
ρ relative to the thermal gas and oscillate

with frequency ω. CRs and Alfvén waves resonate when the Doppler-shifted wave
frequency perceived by the CRs is a multiple of the CR gyro-frequency Ω:

ω − k||v|| = nΩ. (55)

Here, k|| is the wave number of the Alfvén wave parallel to the magnetic field, and
v|| = vµ is the parallel velocity component of the CRs with µ = v ·B/(vB) the
cosine of the CR pitch angle, i.e. the angle between CR momentum and magnetic
field. n is an integer that defines the type of resonant interaction. This is referred
to as Landau resonance when n = 0, and gyro-resonance in the case of n 6= 0.

When a gyro-resonant CR particle propagates with v|| > vA, it experiences a
decelerating Lorenz force at each instant (cf. Fig. 2, middle). Since Alfvén waves
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Figure 2: Particle-wave interaction between CRs (red) and Alfvén waves (blue) triggering the
gyro-resonant instability (Jacob and Pfrommer, 2017a).

are purely magnetic phenomena, there is no electric field in their own reference
frame, and thus the kinetic energy of the CRs is preserved. Hence, only the CR
pitch angle is altered (cf. Fig. 2, right), which eventually results in a (partially)
isotropic distribution of the CR momentum. In the co-moving reference frame of
the CR particle, however, both electric and magnetic fields exist, causing energy
transfer from the CR to the self-generated Alfvén wave. This mechanism is called
the gyro-resonant instability (Kulsrud and Pearce, 1969).

Wave damping processes transfer energy from Alfvén waves to the thermal gas,
thus providing an indirect link between CRs and thermal gas. The most important
damping processes are ion neutral damping, non-linear Landau damping, turbulent
linear Landau damping and turbulent wave damping. For detailed information on
the individual processes, we refer the reader to the relevant literature, e.g. Kulsrud
and Pearce (1969), Volk and McKenzie (1981), and Farmer and Goldreich (2004).
The strength of the wave damping process determines the predominant transport
mechanism of CRs. Weak damping of the waves increases the scattering rate of CRs
so that they are tightly bound to the Alfvén waves and CR streaming becomes the
dominant process. Strong damping, on the other hand, reduces the amplitude of the
waves at which CRs can scatter, making the confinement incomplete and causing
diffusive motion of the CRs relative to the waves.

2.3.3 CR acceleration

CRs gain their high energy through various astrophysical acceleration processes. In
the following, we present the most important mechanisms of CR acceleration.

Adiabatic compression CRs do not move freely through the thermal plasma
but are strongly coupled to the magnetic field lines by the Lorenz force and by
interactions with Alfvén waves (see Sec. 2.3.2). Alfvén’s theorem states that, in a
fluid that is perfectly conducting, the magnetic field is flux-frozen into the fluid, i.e. it
moves along with the thermal gas (Alfvén, 1942). Consequently, CRs are largely tied
to the motion of the thermal plasma, leading to an increase in CR pressure and thus
CR energy when the plasma is adiabatically compressed.
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Fermi-I acceleration This process describes the acceleration of CR particles at
collisionless astrophysical shocks induced by SN remnants, active galactic nuclei,
galaxy mergers, or inside galaxy clusters (Blandford and Ostriker, 1978). In the
following, we discuss the underlying microscopic picture of this acceleration mech-
anism, exemplified with a plane-parallel shock geometry. We define the reference
frame of the shock as the frame in which the shock front is stationary at x = 0, and
the gas flows parallel to the x-axis with velocity u1 in the upstream and u2 < u1 in
the downstream. We denote µ the cosine of the CR pitch angle, and v|| = vµ is the
parallel component of the CR velocity with v ≈ c in the ultra-relativistic limit.

Consider a CR particle that crosses the shock from downstream to upstream. In
the rest frame of the upstream gas, the velocity of the shock is greater than the local
Alfvén speed (cf. Sec. 2.1.3), and thus the same applies to the velocity of the CR.
This causes the excitation of Alfvén waves. Gyro-resonant CRs scatter off of these
self-generated waves, which isotropizes the CR momentum distribution and reduces
the parallel CR velocity v|| to approximately the local Alfvén speed. As a result, the
shock will inevitably overtake the CR particle, causing it to cross the shock from
upstream back to downstream. Assuming the CR has upstream momentum p in
the local fluid frame, its momentum in the reference frame of the shock is given by
p(1 +µu1/c). This remains unchanged when traversing the shock because the shock
is collisionless. Thus, after passing the shock, the CR momentum relative to the
downstream gas is p(1 + µ(u1− u2)/c) with µ > 0 for a transition from upstream to
downstream.

We denote n the downstream number density of CR particles. The flux of CRs
escaping the shock downstream is given by fout = nu2, and the flux entering the
downstream region from upstream the shock is calculated as (Drury, 1983):

fin =

∫ 1

0

dµncµ/2 = nc/4, (56)

where we assumed a constant n, which follows from the diffusion equation, and an
isotropic CR distribution behind the shock with half of the CR particles propagating
to the left and right, respectively. The probability of never returning to the shock
is then given by the ratio of both fluxes:

Pesc = fout/fin ≈ 4u2/c. (57)

For non-relativistic shocks, the probability of CR particles escaping the shock down-
stream is therefore negligible, so that most CR particles re-cross the shock front
from downstream back to upstream. This purely statistical argument can be il-
lustrated by the presence of shock-induced magnetic turbulences ubiquitous in the
downstream gas. These turbulences mediate innumerable scatterings by which CRs
are reflected back to the upstream region (Bell, 1978). After passing the shock from
downstream to upstream, the CR momentum relative to the upstream gas is given
by p(1 + µ(u2 − u1)/c) with µ < 0.

Consequently, with each shock crossing, a CR particle perceives an approaching
magnetic mirror serving as a scattering agent. This interaction ultimately increases
the particle’s energy each time it passes through the shock front. Integrating over
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µ and neglecting the small change in pitch angle when crossing the shock in either
direction, we find for a shock transition from upstream to downstream (Drury, 1983):

δE

E
=
δp

p
=

∫ 1

0

µ
u1 − u2

c
2µ dµ =

2

3

u1 − u2

c
, (58)

where the additional factor of 2µ results from assuming isotropy, and in this case the
probability of crossing the shock at a certain angle +θ ∈ [0, π/2] or −θ ∈ [−π/2, 0] is
proportional to µ, respectively. We obtain an identical result for a shock transition
from downstream to upstream by exchanging u1 and u2 and reversing the sign of µ.

Because the energy gain in this process is linear in velocity, it is referred to as
first-order Fermi acceleration.

Fermi-II acceleration This is the process Enrico Fermi originally proposed to
explain the generation of CRs (Fermi, 1949). Unlike the Fermi-I process, where
CRs always see an approaching magnetic mirror, in this scenario the scattering off
of randomly moving turbulent magnetic mirrors drives the acceleration. CRs gain
energy if the magnetic mirror is approaching (head-on collisions), and they lose
energy when the mirror is receding (head-tail collisions). Fermi argued that head-on
collisions are more frequent than head-tail collisions because the relative velocity
between CR particles and electromagnetic waves is larger in the former case. These
particle-wave interactions can be illustrated as collisions against randomly placed,
reflecting obstacles with very large mass, moving in a disordered fashion and at much
lower velocities than the CR particles (Fermi, 1949). In this picture, the motion of
the CRs can be described statistically by a random walk, resulting in a net energy
gain per collision on the order of:

δE

E
≈
(u
c

)2

, (59)

where u is the mean velocity of the magnetic mirrors. However, this picture is incom-
plete since it involves complicated plasma processes that are not well understood.
There has not yet been a first-principle theory of second-order Fermi acceleration
suggested.

Because the energy gain in this process is quadratic in velocity, it is referred to as
second-order Fermi acceleration. This acceleration process is slow compared to the
Fermi-I mechanism, thus the CR particles need to have a sufficient amount of energy
to overcome the cooling losses (cf. Sec. 2.3.4), making the procedure inefficient for
heavier nuclei of the CR population.

2.3.4 CR cooling

In this subsection, we recap the major cooling processes of CR ions and electrons
and the types of emission spectra emerging from these processes. This extract is
based on Pfrommer (2022a).
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(a) Hadronic losses

Adiabatic expansion This is the same but opposite effect as described in Sec.
2.3.3. Adiabatic expansion of the thermal gas reduces the CR pressure and thus CR
energy.

Coulomb losses CR particles that propagate through the thermal plasma scatter
off of thermal electrons and protons, thereby transferring a fraction of their kinetic
energy to the plasma. The sum of both effects we refer to as Coulomb losses. The
loss rate of this process can be expressed as (Gould, 1972):(

dEp(p)

dt

)
C

= −4πe4ne

meβc

(
2mec

2βp

~ωpl
− β2

2

)
, (60)

where ωpl =
√

4πe2ne/me is the plasma frequency, me is the electron rest mass,
and ~ denotes Planck’s constant. Coulomb losses efficiently remove the low-energy
component of a CR population and redistribute it to the thermal plasma.

Catastrophic losses CR nuclei experience inelastic scattering with thermal ions,
atoms, and molecules. Provided that the (dimensionless) CR momentum exceeds the
required threshold of pthr ≈ 0.83, these interactions mostly result in the production
of neutral and charged pions. The neutral pions decay after a short mean lifetime
into γ-rays, and the charged pions decay into secondary CR electrons/positrons and
neutrinos:

π0 → 2γ,

π± → µ± + νµ/ν̄µ → e± + νe/ν̄e + νµ + ν̄µ.

The loss rate of this hadronic process for CR protons is given by (Pfrommer et al.,
2017): (

dEp(p)

dt

)
H

= −nNσppKpmpc
3(γ − 1)(p− pthr), (61)

where nN = ne/(1−XHe/2) is the target nucleon density in the ISM with a relative
primordial helium abundance of XHe = 0.24, σpp is the total pion cross-section, γ is
the usual Lorenz factor of the CR protons, and Kp ≈ 0.5 indicates the inelasticity
of the hadronic collisions (Mannheim and Schlickeiser, 1994).

While the γ-ray emission of the π0-decay is unique and can be used to identify the
presence of CRs, this is not the case for the radio-synchrotron emission (see below)
of the secondary electrons because their emission spectrum overlaps with that of any
other relativistic electron population.

(b) Leptonic losses

CR electrons lose most of their energy by radiation. We briefly discuss the most
important processes of radiative cooling only for completeness since we focus on CR
ions in this work.
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Radio-synchrotron emission Electrons moving in a magnetized plasma gyrate
around magnetic field lines, resulting in a permanent loss of energy due to the acceler-
ation caused by the Lorenz force. Depending on the momentum of the CR electrons,
this emission process takes place in the radio regime (low-energy relativistic CRs)
or in the X-ray regime (high-energy relativistic CRs).

Bremsstrahlung CR electrons moving through the electrostatic potential of a
charged nucleus are deflected and thus emit radiation. This loss process is negligible
in regions of low number densities ≤ 1cm−3 as well as for high-energy CR ions
because this effect is diminished by the electron-to-proton mass ratio squared.

Inverse-Compton scattering When low-energy photons, e.g. starlight or pho-
tons of the Cosmic Microwave Background, scatter off of high-energy CR electrons,
a small fraction of the CR energy is transferred to the photon.

2.3.5 CR transport

Understanding the transport mechanisms of CRs is essential to gain insight into
many astrophysical phenomena. Here we discuss the one-moment transport of CRs,
which considers only the isotropic part of the CR distribution, and the two-moment
transport, where additionally the anisotropic part of the CRs is included.

One-moment CR transport A mathematical determination of the individual
CR trajectories is not possible, so we describe the CRs statistically by their collective
effects. The evolution of the CR distribution in phase-space is governed by the Vlasov
equation:

∂f

∂t
+ v · ∇f + F · ∇p f = 0, (62)

where f ≡ f(x,p, t) is the phase-space distribution function of the CRs. Here, the
equation of motion:

F =
dp

dt
= Ze

[
(E + δE) +

v

c
× (δB + B)

]
(63)

denotes the Lorenz force, where Ze is the particle charge, v is the velocity of the CRs,
and δE � E and δB � B indicate electromagnetic small-scale fluctuations with
respect to the large-scale mean magnetic and electric fields B and E, respectively.
Inserting the equation of motion into the Vlasov equation (62) yields the effective
Boltzmann equation:

∂f

∂t
+ v · ∇f + Ze

(
E +

v

c
×B

)
· ∇p f =

∂f

∂p

∣∣∣∣
C

, (64)

where p denotes the CR momentum, and we collected the contributions of small-
scale fluctuations in the collision term on the RHS:

∂f

∂p

∣∣∣∣
c

= Ze
(
δE +

v

c
× δB

)
· ∇p f. (65)
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Solving the full effective Boltzmann equation (64) for general conditions is not pos-
sible since the gyro radii of CRs with energies in the GeV range are up to 10 orders
of magnitude smaller than the corresponding system size (e.g. a galaxy). Therefore,
intractably small time steps would be required to numerically capture the effects of
CRs at this scale (Zweibel, 2013). This problem can be largely circumvented if we
make some plausible assumptions.

CRs frequently scatter off of self-generated electromagnetic fluctuations, render-
ing the CR momentum distribution nearly isotropic and transferring energy from the
CR particle to the thermal gas. Because these fluctuations and thus the associated
energy transfer are small (δB � B, δE � E), individual CR scattering events do
not have a significant effect on the dynamics of the hydrodynamical system. We thus
assume that a CR particle propagates many gyro radii before it affects the system.
Consequently, the timescale on which the perturbations become important is much
larger than the typical gyro timescale of a CR particle. The hydrodynamic timescale,
which is the essential scale for describing the system, is even larger in comparison, so
we can average effects on timescales well below. Therefore, we average the effective
Boltzmann equation over a full CR gyro-orbit. This results in a Fokker-Planck equa-
tion for CR transport in the quasi-linear approximation (Skilling, 1975; Schlickeiser,
2002; Pfrommer et al., 2017):

∂f

∂t
+(u+vst)·∇f =∇·[κb (b · ∇f)]+

p

3

∂f

∂p
∇·(u + vst)+

1

p2

∂

∂p

[
p2K

∂f

∂p

]
+S, (66)

where f denotes the isotropic part of the three-dimensional (3D) CR distribution,
b = B/B is the direction of the mean magnetic field, κ is the spatial diffusion
coefficient, K is the momentum diffusion rate, and

vst = −vA sgn(B · ∇f) (67)

is the CR streaming velocity. Note that two different coordinate system are used in
this description: position x and time t are measured in the laboratory (lab) frame,
while p is defined in the reference frame of the streaming CRs that propagate with
velocity u + vst. The second term on the LHS of Eq. (66) describes the advection
of the CRs with the Alfvén waves relative to the lab frame. The terms on the RHS
account for (from left to right) diffusive transport along the mean magnetic field,
Fermi-I acceleration, Fermi-II acceleration, and S represents sources and sinks of
CRs.

Two-moment CR transport Sharma et al. (2009) showed that the numerical
evolution of the CR distribution subject to the CR streaming effect (Eq. (67)) is
plagued by a numerical instability which causes growing numerical errors on the
scales of the numerical grid. This is because of the erratic behaviour of the sgn
function in Eq. (67) in regions where B · ∇f ≈ 0. There, small fluctuations of
this quantity cause high-frequency changes in the streaming speed which leads to a
fluctuating transport direction of the CRs. Sharma et al. (2009) propose to smooth
the transition of the sgn function in Eq. (67) by replacing it with a regularized
counterpart such as the tanh function. An alternative and very effective solution to
circumvent this limitation is to introduce an additional equation that evolves the CR
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momentum density separately (Jiang and Oh, 2018; Thomas and Pfrommer, 2019,
2022; Thomas et al., 2020, 2021). In the following, we discuss the main arguments
of this methodology, mostly based on Thomas and Pfrommer (2019).

In contrast to the one-moment method, where only the isotropic part of the
CR distribution function is considered (Eq. (66)), here the CR transport equation
is decomposed into isotropic and anisotropic components. To proceed, we use the
Vlasov equation in the co-moving frame:

∂f

∂t
+ (u + v) · ∇f + F · ∇p f = 0, (68)

where the mean velocity of the thermal gas u and time t are measured in the lab
frame, and CR velocity v and momentum p are measured in the co-moving frame.
However, switching to the co-moving frame causes pseudo forces and thus a change
in the equation of motion:

F = −mdu

dt
− (p · ∇)u + Ze

[
δE +

v

c
× (δB + B)

]
, (69)

where d/dt = ∂/∂t + u · ∇ denotes the Lagrangian time derivative. The first term
on the RHS describes an additional pseudo force due to an acceleration of the gas
frame because a CR at rest in the lab frame appears accelerated to a co-moving
observer. The second term on the RHS arises when spatial inhomogeneities of the
reference velocity u are present. Then, a change of a CR particle’s position in the lab
frame also changes the reference velocity that links the lab and co-moving frames.
For relativistic CRs, the former pseudo force is reduced by a factor of order u/c
compared to the latter. We thus we neglect its contribution in the following. The
gyro-averaged CR transport equation in the reference frame of the gas is then given
by (Zank, 2014):

∂f

∂t
+ (u + µvb) · ∇f +

[
1− 3µ2

2
(b · ∇u · b)− 1− µ2

2
∇ · u

]
p
∂f

∂p

+

[
v∇ · b + µ∇ · u− 3µ(b · ∇u · b)

1− µ2

2

]
∂f

∂µ
=
∂f

∂t

∣∣∣∣
C

, (70)

where µ denotes the cosine of the CR pitch angle. The complexity of this equation
can be reduced by borrowing an idea from radiation transport physics. Assuming
that the scattering by gyro-resonant Alfvén waves is frequent, the CR distribution
f will be nearly isotropic. In a similar case, when the scattering of radiation is
frequent, the Eddington-approximation can be applied to the radiation field in order
to describe its deviations from isotropy. Translating this idea to the CRs, we can
expand the CR transport equation in moments of µ, using Legendre polynomials as
basis functions (see e.g. Klimas and Sandri, 1971; Zank et al., 2000; Rodrigues et al.,
2019). This results in:

f = f0 + 3µf1, (71)

where the monopole moment f0 describes the isotropic part of the CR distribu-
tion, the dipole moment f1 accounts for the anisotropic part, and we assume that
any moment higher than the second has no significant contribution. Inserting the
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approximation from Eq. (71) into the transport equation (70) and taking the pitch-
angle average and the µ-moment gives, respectively (Thomas and Pfrommer, 2019):

∂f0

∂t
+ u · ∇f0 +∇ · (vbf1)− (∇ · u)

p

3

∂f0

∂p
=
∂f0

∂t

∣∣∣∣
C

, (72)

∂f1

∂t
+
v

3
b · ∇f0 + u · ∇f1 +

[
−2

5
(b · ∇u · b)− 1

5
∇ · u

]
p
∂f1

∂p

+

[
1

5
∇ · u− 3

5
(b · ∇u · b)

]
f1 =

∂f1

∂t

∣∣∣∣
C

. (73)

2.3.6 CRs as a fluid

From the respective CR transport equations in Sec. 2.3.5, we are now able to derive
fluid equations describing the evolution of the CR quantities defined in Sec. 2.3.1.
We present the results for both the one-moment and the two-moment approach
(Pfrommer et al., 2017; Thomas and Pfrommer, 2019).

One-moment approach We multiply Eq. (66) by the proton energy Ep(p) and
integrate the resulting equation over the entire momentum space, yielding (Pfrommer
et al., 2017):

∂εcr

∂t
+∇ · [(u + vst)(Pcr + εcr)− κεb(b · ∇εcr)]

= (u + vst) · ∇Pcr + Γacc + Λcr + Γcr. (74)

Here, κε denotes the kinetic-energy-weighted spatial diffusion coefficient, Γacc is the
net energy-gain rate due to Fermi-II acceleration, and Γcr and Λcr account for several
gain and loss processes of CRs, respectively. The second term on the LHS describes
the advective transport of CR pressure and CR energy density with the total velocity
u + vst as well as the anisotropic diffusion of CR energy density along the mean
magnetic field relative to the advection. The remaining term on the RHS accounts
for volume work done by the CR pressure on the thermal gas (u · ∇Pcr) and for
the generation of Alfvén waves (vst · ∇Pcr). The latter is always a loss term, which
results from the following consideration (Pfrommer et al., 2017):

vst · ∇Pcr = − B√
ρ

B · ∇Pcr

|B · ∇Pcr|
· ∇Pcr = − 1√

ρ

(B · ∇Pcr)
2

|B · ∇Pcr|
< 0. (75)

We can gain further insight into Eq. (74) by substituting the identity:

Pcr∇ · (u + vst) =∇ · [(u + vst)Pcr]− (u + vst) · ∇Pcr, (76)

which yields:

∂εcr

∂t
+∇· [εcr(u + vst)− κεb(b · ∇εcr)] = −Pcr∇· (u+vst) +Γacc +Λcr +Γcr. (77)
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In this representation, we see that the spatial transport of CR energy density is a
superposition of advection with the reference frame moving at velocity u + vst and
anisotropic diffusion along the mean magnetic field relative to this reference frame.

The first term on the RHS describes the change of the CR energy density caused
by compressive motions in the fluid and by interactions with gyro-resonant Alfvén
waves. The signs of ∇ · u and ∇ · vst control whether the CRs gain or lose energy
by these processes. Consequently, Eq. (18) describing the total MHD energy density
must be extended to include a coupling term to the CR energy density that accounts
for these gain and loss processes, thus ensuring energy conservation (cf. Eq. (89)).

Two-moment approach In addition to the CR quantities defined in Sec. 2.3.1,
we introduced the CR energy flux density along the mean magnetic field:

fcr = b · fcr =

∫ ∞
0

dp 4πp2E(p)vf1(p), (78)

and the anisotropic CR pressure flux along the mean magnetic field:

Kcr = b ·Kcr =

∫ ∞
0

dp 4π
pv

3
vf1(p), (79)

which are related by an EOS:

Kcr = (γ − 1)fcr. (80)

To derive the evolution equation for the CR energy density in the two-moment
approach, we use the same procedure as we did in the one-momentum approach and
multiply Eq. (72) with the proton energy Ep(p) and integrate over momentum space.
This results in (Thomas and Pfrommer, 2019):

∂εcr

∂t
+∇ · [u(εcr + Pcr) + bfcr] = u · ∇Pcr +

∂εcr

∂t

∣∣∣∣
C

. (81)

The interpretation is analogous to Eq. (74): fcr is the CR energy flux density along
the magnetic field, the CR energy density is advected with the thermal gas velocity
u and is affected by adiabatic changes (first term on the RHS).

The evolution equation of the CR energy flux can be derived by calculating the
Ep(p) v moment of Eq. (72), which yields (Thomas and Pfrommer, 2019):

∂fcr

∂t
+∇ · (ufcr) +

c2

3
b · ∇εcr = −(b · ∇u) · (bfcr) +

∂fcr

∂t

∣∣∣∣
C

. (82)

The third term on the LHS is a source term of CR energy density flux because the
presence of an energy density gradient results in additional flux. The first term on
the RHS represents a pseudo force.

For a detailed determination and interpretation of the various collision terms
appearing in the two-momentum derivations, we refer the reader to Thomas and
Pfrommer (2019), as this is beyond the scope of this work. Here, we only focus on
the effects of implementing CR energy or entropy density as the evolving quantity,
neglecting CR transport mechanisms like diffusion and streaming. Therefore, apply-
ing the two-moment method, which is much more computationally expensive, is not
beneficial and may unnecessarily complicate our discussions.
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2.4 One-moment CR-MHD

Here we introduce the full set of one-moment CR-MHD equations we employ in this
work, and we specify associated thermal and non-thermal source terms. Further, we
discuss the competing energy and entropy formulations for CR transport and how
they are coupled to the MHD equations. Additionally, we present the extension of the
existing energy-conserving numerical scheme to the entropy-conserving formulation
of the CR transport equations.

In general, various CR transport phenomena influence how CRs are distributed in
space once they leave their sources. This includes (but is not limited to) CR stream-
ing or diffusion along magnetic field lines (Skilling, 1971; Zweibel, 2013), transport
induced by magnetic field line wandering (Jokipii, 1966; Shalchi and Kourakis, 2007),
CR interactions with turbulence (Shalchi, 2009; Yan and Lazarian, 2011), and guid-
ing centre drifts (Gombosi, 2004; Schlickeiser and Jenko, 2010). In one of the com-
mon approximations, CRs are assumed to be co-moving with the bulk flow of the
thermal particles and all additional transport process along or across the magnetic
field are neglected, i.e. vst = 0, κε = 0 and Γacc = 0 in Eq. (77). In this case, the
evolution equation for the CR energy density reads as:

∂εcr

∂t
+∇ · (εcru) = −Pcr∇ · u + Γcr + Λcr, (83)

where u is the mean velocity of the thermal gas, Pcr is the CR pressure linked to
the CR energy density εcr by an EOS:

Pcr = (γcr − 1)εcr, (84)

γcr = 4/3 is the adiabatic index of the CRs, and non-adiabatic gain and loss processes
of CR energy are represented by Γcr and Λcr, respectively. The term ∇ · (εcru)
describes the advection of CR energy with the gas flow, while the term Pcr∇ · u on
the RHS of Eq. (83) states that CR energy density is subject to adiabatic changes.
This adiabaticity of the CRs suggests the definition of a proxy for the CR entropy
given by (cf. Eq. (24))

Kcr = Pcr/ρ
γcr , (85)

where ρ is the gas mass density. We call Kcr the specific CR entropy, or CR entropy
for short. The evolution equation for Kcr is:

∂(ρKcr)

∂t
+∇ · (ρKcru) =

γcr − 1

ργcr−1
(Γcr + Λcr), (86)

and it states that CR entropy is solely advected with the gas-flow and is a conserved
quantity in the absence of any explicit gains or losses of CR energy. The CR energy
density does not have this favourable property and is a non-conserved quantity
because of the adiabatic term which cannot be cast into a total-flux divergence form.
This difference between the energy and entropy formulations for CR transport also
influences the design of numerical schemes that implement these equations. While
standard finite-volume schemes can be readily applied to the entropy equation (86),
these schemes cannot be directly applied to the adiabatic term of the CR energy
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equation (83) and other discretizations need to be made (Kudoh and Hanawa, 2016;
Gupta et al., 2021).

CR exert forces on the thermal particles and are thus represented through their
pressure in the momentum and energy equations in the MHD system of equations
(see Sec. 2.1) that neglect gravity:

∂ρ

∂t
+∇ · (ρu) = 0, (87)

∂(ρu)

∂t
+∇ · (ρuu + Ptot1 + BB) = 0, (88)

∂ε

∂t
+∇ · [(ε+ Ptot)u + B(u ·B)] = Pcr∇ · u + Γth + Λth, (89)

∂B

∂t
+∇ · (Bu + uB) = 0, (90)

where B is the magnetic field, Γth and Λth are heating and cooling terms affecting
the thermal energy density εth, ε is the total MHD energy density given by :

ε =
ρ

2
u2 + εth +

B2

2
, (91)

and Ptot is the total pressure of the composite fluid of CRs, thermal gas, and magnetic
field and is given by:

Ptot = Pth + Pcr +
B2

2
. (92)

Similar to the CRs, thermal energy density and thermal pressure are linked by an
EOS:

Pth = (γth − 1)εth, where γth = 5/3. (93)

In this work, we explicitly determine the CR loss term Λcr composed of Coulomb
and hadronic losses from Eqs. (60) and (61) assuming equilibrium between injected
and cooled CR energy. This results in (see Enßlin et al., 2007; Pfrommer et al., 2017,
for a detailed derivation):

Λcr = Λcr,C + Λcr,H = −λcrneεcr, (94)

where λcr = 1.022×10−15 cm3 s−1 is the rate coefficient for collisional CR energy loss.
We approximate the rate of CR energy gain Γcr through acceleration in core-collapse
SNe by:

Γcr = ζSN εSN ṁ∗, (95)

where ζSN is the fraction of SN energy that gets converted to CR energy, ṁ∗ is the
star-formation rate (SFR), and εSN = 1049 erg M�

−1 denotes the SN energy per solar
mass. To determine the latter, we assume a Kroupa (Kroupa, 2001) initial mass
function and that stars above 8 M� explode as SNe, injecting an energy of 1051 erg.

Provided that Λcr,C is fully thermalized and approximately 1/6 of the hadronic
collisions of CR ions result in secondary electrons, a large fraction of which in turn
cool completely by Coulomb losses that again heat the surrounding plasma, the
heating rate of the thermal gas is:

Γth = −Λcr,C − Λcr,H/6 = λthneεcr, (96)
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where λth = 4.02× 10−16 cm3 s−1 is the rate coefficient for collisional heating of the
thermal gas by CRs. Finally, the radiative-cooling term Λth is modelled following
the approach of Springel and Hernquist (2003).

Note that the total energy is conserved in the combined set of MHD equations
together with the CR energy equation (83) in the absence of explicit sources or sinks
of CR or thermal energy. This cannot be guaranteed if the CR entropy equation (86)
is used, and thus energy errors will inevitably build up in simulations that employ
this formulation for CR transport. Hence, the decision between the CR energy and
entropy formulations is also a decision which conservation property is regarded to
be more valuable. A priori, neither of them is more favourable.
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3 Numerics of CR-MHD

The numerical treatment of CR-MHD requires the numerical solution of the associ-
ated system of coupled hyperbolic partial differential equations (PDEs). In Sec. 3.1,
we first consider the so-called finite-volume method (FVM), which is particularly
useful to solve hyperbolic PDEs. Riemann solvers form an intrinsic component of
this solution procedure, and we introduce their basic structure in Sec. 3.2. In Sec. 3.3,
we describe some key points of the Arepo code providing the numerical framework
we employ and extend in this work to perform our simulations. Finally, we brief
our implementation of CR physics into the existing MHD framework of Arepo in
Sec. 3.4.

3.1 Finite-Volume Method

To solve the set of ideal MHD equations, we employ a FVM as part of the Arepo
code. Here, the computational domain is divided into a finite number of disjoint
numerical cells and the physical quantities associated with a given numerical cell are
modified by fluxes into and out of this cell. For now, we consider only the equations
of ideal MHD, and in Sec. 3.4.1 we extend the methods described here to include
CR physics. Neglecting gravity, we can re-write the set of ideal MHD equations in
the more compact form:

∂

∂t
U +∇ · F = 0, (97)

where U ≡ U(r, t) is the state vector of the fluid’s conserved quantities, F (U) ≡
F (U(r, t)) is a function describing the spatial flux:

U =


ρ
ρu
ε
B

, F =


ρu

ρuu + P1 + BB
(ε+ P )u + B(u ·B)

Bu + uB

 , (98)

and all symbols retain their meaning from the definitions in Sec. 2.1.2. The basic
idea of the FVM is then to describe the state vector U as a finite set of cell-averaged
quantities at discrete time steps rather than using continuous functions. For the
sake of clarity, we focus on the 1D case in the following.

We define a (numerical) cell i as the interval [xi−1/2, xi+1/2] with centre xi and
extent ∆xi = xi+1/2 − xi−1/2. Moreover, we define a time step as ∆t = tn+1 − tn

where n denotes a discrete instant in time. The cell average of the state vector U
at time tn is defined as:

Un
i =

1

∆xi

∫ xi+1/2

xi−1/2

Udx. (99)

We integrate Eq. (97) over the extent of cell i and for a single time step and insert
Eq. (99), yielding an explicit update scheme for the state vector (Toro, 2009):

Un+1
i = Un

i −
∆t

∆x

(
Fi+1/2 − Fi−1/2

)
, (100)
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Figure 3: Wave fan of the solution to the Riemann problem. The central contact wave separates
the original fluid phases. On the left and the right, there is either a shock or a rarefaction wave
(Pfrommer, 2022b).

where we have defined the temporal integral average of the fluxes (Toro, 2009):

Fi+1/2 =
1

∆t

∫ tn+1

tn
dtF (U(xi+1/2, t)). (101)

Fi−1/2 describes the flux that enters cell i at the left interface, and Fi+1/2 is the flux
leaving the cell to the right.

We cannot calculate the averaged state vector Un+1
i for the next time step since

we do not know the exact value of U(xi+1/2, t) and therefore cannot calculate the
occurring averages. However, an approximate solution to Eq. (101) can be obtained
by so-called Riemann solvers, which we discuss next. The idea of using the solution
of the Riemann problem at this point dates back to Godunov and Bohachevsky
(1959), which is why this method is also referred to as Godunov’s method.

3.2 Riemann solvers

In general, a Riemann solver is a numerical method for solving the Riemann prob-
lem, which is an initial value problem for a set of conservation laws such as the
(homogeneous) equations of MHD:

∂

∂t
U +

∂

∂x
F = 0, (102)

subject to the discontinuous initial conditions:

U(x, 0) = U 0(x) =

{
UL, x < 0

UR, x > 0 .
(103)

Here, the indices L and R indicate the left and right sides of the discontinuity,
respectively, which are assumed to be infinite half-spaces in which the respective
constant initial conditions hold everywhere. This setup is a slight generalization of
the shock-tube problem we describe and extensively simulate in Sec. 4.2.

Riemann solvers calculate or approximate the fluxes across this discontinuity.
The resulting fluxes are then used in Eq. (100) to advance the state vector in time.
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These fluxes are calculated at every cell interface in the computational domain by
invoking the Riemann solver at each individual cell interface with different values for
UL and UR. To reduce the complexity of our discussion, we focus in the following
on a single Riemann problem for the application of the Riemann solver on a single
cell interface.

The solution of the Riemann problem is composed of multiple (shock) waves
which form a wave pattern whose complexity depends on the underlying physics.
Figure 3 outlines the solution to an idealized and purely hydrodynamic Riemann
problem which, in this particular case, consists of three separated waves, the so-called
Riemann fan: a shock that propagates to the right, a rarefaction wave propagating
to the left, and a CD (see Sec. 2.2) that separates the original fluid phases.

While no analytical but iteratively exact solutions exist for the idealized hydro-
dynamic Riemann problem (see e.g. Godunov et al., 1976; Chorin, 1976; van Leer,
1979), the situation is even more complex for problems arising in the realm of MHD.
There, finding exact or iterative solutions to the Riemann problem is computation-
ally expensive because of the significantly higher number of coupled PDEs. Riemann
solvers based on this idea are rarely used in practice, although they are described
in the literature (see e.g. Torrilhon et al., 2002; Takahashi et al., 2014). Instead,
non-iterative approximate Riemann solvers were developed.

Essentially, there are two ways to gain approximate solutions to the Riemann
problem: to approximate the states and the corresponding fluxes in the wave pattern
or to approximate the numerical flux directly (Toro, 2009). Pioneering work has
been done in this context by Harten, Lax and van Leer (Harten et al., 1983) who
developed the HLL Riemann solver named after them. They assumed a two-wave
configuration that separates three constant regions in the computational domain, and
the entire Riemann fan is represented by a single averaged state. Their approach
yields an approximate, but closed-form solution to the Riemann problem. This
assumption only accounts for two waves in the wave pattern and is, consequently,
only a correct representation of the solution to the Riemann problem for hyperbolic
systems consisting of two evolution equations. For hyperbolic systems with more
than two waves in the wave pattern (cf. Sec. 2.1.3), some waves are unaccounted
for, which ultimately results in an increased numerical diffusivity (Toro, 2009).

Based on the HLL concept, further numerical methods were developed which
improved the accuracy and robustness of the approximation, e.g. the HLLE and
HLLEM schemes (Einfeldt, 1988; Einfeldt et al., 1991), which additionally estimate
the speed of the different waves. Toro et al. (1994) introduced the HLLC Riemann
solver which assumes a Riemann fan consisting of two intermediate states emerg-
ing from a three-wave model (see Fig. 4, left). The additional wave is a contact
wave, indicated by the C in HLLC. For purely hydrodynamic systems covered by
three equations (like the Euler equations), this solver is a complete Riemann solver
because the wave pattern of the Riemann fan contains all characteristics of the ex-
act Riemann problem. For systems with more than three distinct characteristics
(like the ideal MHD equations), however, the solver becomes incomplete, resulting
in weak resolution of the intermediate wave and thus worse approximations (Toro,
2009).

Miyoshi and Kusano (2005) further enhanced the HLL concept and developed
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Figure 4: Riemann-fan structure of the HLLC Riemann solver (left) and the HLLD Riemann solver
(right) (Miyoshi and Kusano, 2005).

a method that provides excellent results especially in the context of MHD. Since
their solver exactly resolves isolated discontinuities in MHD systems, it was named
HLLD Riemann solver, and we use this approach as part of the Arepo code in this
work. It extends the HLLC Riemann solver by accounting for two additional states
in the wave pattern. These states and the corresponding waves in the wave pattern
represent Alfvén waves (while the slow magneto-sonic waves remain unconsidered,
cf. Sec. 2.1.3). Thus, the HLLD approach considers a division of the Riemann fan
into four intermediate states which are separated by three waves represented by
their respective speed S in Fig. 4: two Alfvén waves propagating to the left (S∗L)
and to the right (S∗R), respectively, and a contact wave SM. The outermost waves SL

and SR, which represent a shock and/or a rarefaction wave, remain their meaning.
From the given initial conditions UL and UR, the algorithm first calculates the state
vectors of the intermediate states U ∗L, U ∗∗L , U ∗R, and U ∗∗R (see Miyoshi and Kusano,
2005, for all details of the algorithm). The fluxes through the respective interfaces
can then be calculated explicitly for k ∈ {L,R} by:

F ∗k = Fk + Sk(U
∗
k −Uk), (104)

F ∗∗k = F ∗k + S∗k(U
∗∗
k −U ∗k ). (105)

Drawing on the results in Sec. (2.1.3), we find the respective speeds of the Alfvén
modes for k ∈ {L,R}:

S∗k = SM ∓
Bx√
ρ∗k
, (106)

and the average normal velocity across the Riemann fan is given by (Miyoshi and
Kusano, 2005):

SM =
(SR − uR)ρRuR − (SL − uL)ρLuL − PR + PL

(SR − uR)ρR − (SL − uL)ρL

. (107)

We estimate the velocities of the enclosing waves by:

SL = min [uL − cf,L, uR − cf,R], (108)
SR = max [uL + cf,L, uR + cf,R], (109)

and we have thus found an approximate solution for the fluxes in Eq. (100), which
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can be expressed as:

F HLLD(UL,UR) =



FL, SL > 0

F ∗L , SL ≤ 0 ≤ S∗L
F ∗∗L , S∗L ≤ 0 ≤ SM

F ∗∗R , SM ≤ 0 ≤ S∗R
F ∗R, S∗R ≤ 0 ≤ SR

FR, SR < 0 .

(110)

3.3 Numerical framework: Arepo

We employ the massively parallel adaptive moving-mesh code Arepo to perform the
various simulations in this work. We use this section to summarize some relevant
algorithms and key feature of this code. Our discussion is based on Springel (2010),
Pakmor and Springel (2013), and Weinberger et al. (2020).

3.3.1 Code features

Spatial discretization Arepo is a mesh code that discretizes the computational
domain using a so-called Voronoi tessellation, which consists of distinct Voronoi cells
(VCs). A VC is constructed around a mesh-generating point (MGP) and contains
those spatial points that are closer to a given MGP than to any other MGP. Con-
sequently, any connecting line between the MGPs of adjacent VCs is normal to the
interface of the corresponding VCs. This property simplifies the exchange of fluxes
between neighbouring cells because only its normal component has to be considered.

The set of exactly these connecting lines forms a so-called Delaunay triangulation.
Mathematically, such a triangulation is defined by the fact that the circumcircles (or
circumspheres in 3D) of these triangles (or tetrahedra in 3D) do not contain any other
MGP except those by which they are defined. This property uniquely determines
the triangulation of the computational domain, irrespective of the order the MGPs
are evaluated for mesh generation.

Figure 5 shows an example of a 2D Voronoi tessellation and corresponding De-
launay triangulation. Clearly, the number of MGPs determines the resolution of a
simulation.

Moving mesh A special feature of Arepo is the employment of the moving-
mesh approach. Here, the MGPs are advected with the bulk velocity u of the
hydrodynamical flow inside the associated computational cell, which leads to an
approximate equal-mass discretization of the system. This method is implemented
in Arepo using a semi-Lagrangian approach because exchange of mass between
computational cells is still possible while the mesh is moving with the flow. This is
in contrast to Eulerian codes where the computational grid is fixed. In comparison
to fully-Lagrangian flows, slight deviations of the velocity of the MGPs from the
bulk velocity u are allowed. This property is used in Arepo to steer the motion of
the VCs such that the VCs attain certain desired properties. For example, Springel
(2010) presents an algorithm to adjust the mesh motion in order to form rounder
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Figure 5: Exemplary 2D Voronoi tessellation (black lines) and corresponding Delaunay triangula-
tion (blue lines) of the computational domain. Mesh-generating points are shown as black dots.

VCs and to reduce the probability of ill-formed or numerically precarious VCs in the
simulation. Lagrangian codes provide the tremendous advantage of being Galilean
invariant, which is especially important for simulations of astrophysical flows where
supersonic velocities are frequently encountered.

The finite-volume algorithm needs to be adapted to account for the moving mesh.
Reynolds transport theorem states that we need to account for an additional geo-
metrical flux in the finite-volume algorithm which originates from the mesh motion
itself: consider a standing fluid parcel which is discretized by a moving mesh. In
this situation, physical quantities are still exchanged over mesh interfaces solely due
to the mesh motion. The resulting total flux is a superposition of the physical flux
from Eq. (98) and the geometrical flux from Reynolds transport theorem:

Fm = Fs −Uw. (111)

The most straightforward approach to solve the Riemann problem in the frame of
the static mesh and subsequently advect the solution with the moving mesh proves
to be problematic for the HLLD Riemann solver. The MGPs of the cells are advected
with the gas flow inside a cell, and thus the relative velocity of flux and interface is
w−u ≈ 0, resulting in very little flux across the interface. The HLLD solver provides
only an approximation of the flux, and its output is subject to additional numerical
diffusivity when calculating the flux in the static reference frame. Consequently,
the error of the flux approximation can be larger than the actual flux, which in
turn can lead to an unphysical inversion of the flux at the interface and destroy the
upwind property of the algorithm (Pakmor et al., 2011). We can avoid this issue
considering the flux across an interface in the reference frame of the mesh, thus
reducing numerical diffusivity. Therefore, we first transform the system into the
mesh frame:

U ′ =


ρ

ρ(u−w)
ε′

B

, F ′(U ′) =


ρ(u−w)

ρ(u−w)(u−w) + P1 + BB
(ε′ + P )u + B [(u−w) ·B]

B(u−w) + (u−w)B

 , (112)
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where ε′ = ε − ρu2/2 + ρ(u −w)2/2. We apply the HLLD Riemann solver in this
moving frame and transform the obtained fluxes back to the reference frame of the
mesh:

Fm(Um) = F ′(U ′)+


0

ρw(u−w)
ρuw(u−w)− 1

2
ρw2(u−w) + Pw −B(w ·B)
−wB

. (113)

This procedure always maintains the upwind property of the algorithm and improves
its general stability and accuracy (Pakmor et al., 2011).

Mesh refinement The mesh deforms steadily and adapts its topology as a con-
sequence of the moving MGPs without causing undesirable effects such as mesh
tangling due to the mathematical properties of the Voronoi tessellation described
previously (Springel, 2010). However, over many simulation time steps, the cells
may deviate from their intended mass content or size. To address this, Arepo pro-
vides the mechanism of local mesh refinement and de-refinement without triggering
any global adaptions of the mesh. If this option is enabled, Arepo checks various
refinement criteria for each active cell in the simulation. One important criteria
checks whether the volume of neighbouring cells differs by more than a user-defined
factor. If this is the case, the affected cells are split into a pair of nearly identical
cells, adding a mesh generating point without influencing the geometry of other ad-
jacent cells. This method can be used to increase the resolution of the mesh around
regions of interest, such as shocks. Because this refinement increases the numerical
resolution only locally, the overall increase in computation cost of the simulation is
reduced in comparison to a global refinement of all computational cells. We make
use of this refinement feature in Sec. 4.4.2.

Magnetic-divergence cleaning While the analytic MHD equations automati-
cally obey the divergence constraint for the magnetic field, ∇ · B = 0, numerical
errors originating from the discretization of the MHD equation can introduce lo-
cal violations of this condition in a simulation. In order to prevent a catastrophic
build-up of these errors, Arepo uses the divergence-cleaning method introduced by
Powell et al. (1999) and implemented by Pakmor and Springel (2013). The basic
idea of this method is to drop the constraint of vanishing divergence of the magnetic
field in the derivation of the ideal MHD equations and collect the terms containing
∇·B in additional source terms in the momentum, energy, and induction equations:

∂(ρu)

∂t
+∇ · (ρuu + Ptot1−BB) = − (∇ ·B)B, (114)

∂ε

∂t
+∇ · [(ε+ P )u−B(u ·B)] = − (∇ ·B) (u ·B) , (115)

∂B

∂t
+∇ · (Bu− uB) = − (∇ ·B)u . (116)

These equations in combination with the continuity equation (6) yield an evolution
equation for the divergence of the magnetic field (Powell et al., 1999):

d

dt
(∇ ·B) = −(∇ ·B)(∇ · u), (117)
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which is identical with the statement that ∇ · B/ρ is a passively advected scalar
and thus stays constant along particle trajectories. If one can ensure in the initial
conditions ∇ ·B = 0, this remains true for any other time. In practice, numerical
inaccuracies prevent these initial conditions from being met exactly. For smooth
flows where ∇·u ≈ 0, the magnetic divergence stays roughly constant in time, and
the advective nature of Eq. (117) prevents local magnetic divergence from further
growing. In regions where ∇ · u ≈ const. 6= 0, we find using the method of lines:

∇ ·B = (∇ ·B0) exp [−(∇ · u)t] . (118)

Hence, diverging flows exponentially suppress the growth of magnetic divergence,
while in converging flows, e.g. in shocks, ∇ ·B increases exponentially.

The magnetic divergence in the additional source terms is then calculated for
each cell i by:

∇ ·Bi =
1

Vi

∑
j

B · nAij , (119)

where the sum extends over all adjacent cells j, Vi is the volume of cell i, Aij is the
area of the interface of cells i and j, n is the normal vector to this interface, and
B ·n = (Bn,L +Bn,R)/2 is the average of the normal magnetic-field components left
and right of the interface to cell j.

3.3.2 Treatment of source terms

Gravity sources So far, we did not specify how to treat the gravity source terms
in the momentum equation (8) and the energy equation (18). The HLLD Riemann
solver only gives a solution to the homogeneous set of MHD equations. Hence, we
add these sources separately following the so-called operator-split method. We first
apply the sources for half a time step at the beginning of the step. Subsequently, we
solve the ideal MHD equations in its homogeneous form and advance the system in
time for a full step. Finally, the gravity terms are applied for another one-half time
step. This procedure represents a second-order accurate leap-frog scheme (see e.g.
Pfrommer, 2022b, for details).

Determining the gravitational potential Φ by direct summation, where each par-
ticle in the simulation directly contributes to the gravitational potential of every
other particle, is computationally intractable for high-resolution simulations. The
computational cost for this summation technique scales as N2 where N is the num-
ber of particles in the simulation. While direct summation results in highly accurate
values for the potential, the costs become unbearable once N > 106 because of this
scaling. To circumvent this limitation, Arepo employs the so-called tree-particle-
mesh approach, a dual method composed of a tree algorithm and a particle-mesh
algorithm.

In general, tree algorithms group distant particles into nodes and calculate their
contribution to the gravitational force as the collective effect of their centre of mass.
Consequently, tree algorithms can cover a wide dynamicalrange, but are compara-
tively slow due to the fact that they consider every particle in the simulation and
that the tree must be re-generated at each time step.
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Particle-mesh algorithms transform the Poisson equation into Fourier space:

−k2Φ = 4πGρ, (120)

solve the algebraic equation for the gravitational potential, and use an inverse Fourier
transform to obtain the potential field. This method is simple and very fast, but
restricted to a uniform Cartesian mesh, limiting its dynamic range dramatically.

Arepo combines the advantages of both methods to overcome the shortcomings
of the other. Gravitational forces are split into long-range and short-range contri-
butions computed with the particle-mesh and the tree approach, respectively. The
tree algorithm simply ignores contributions of nodes or particles that are far away,
which speeds up the procedure significantly. The neglected force contribution is then
provided by a particle-mesh algorithm.

Radiative cooling The explicit cooling Λth in Eq. (89) describes radiative cooling
of the thermal gas and is determined by an iterative root-finding algorithm applied
to the implicit equation (Weinberger et al., 2020):

u′ − un −∆t Λ(u′)

ρ
= 0, (121)

where Λ is the cooling function introduced by Springel and Hernquist (2003), and
un and u′ denote the specific internal energy of the thermal gas at the beginning and
the end of the step, respectively.

3.3.3 Gradient estimation

Each cell in the computational domain is characterized by the primitive variables
W = (ρ,u, Pth,B)T, which can be considered as volume-averaged values or (in a
seconder-order accurate scheme) the values of the underlying fields as evaluated at
the cell’s centre of mass (COM). The conserved variables U are calculated straight-
forwardly from the primitive variables:

U =


W1

W1W2

W1W
2
2 /2 +W3/(γth − 1) +W 2

4 /2
W4

 . (122)

Consequently, it suffices to specify W in the initial conditions of a simulation, and
Arepo computes the conserved quantities after the initial mesh generation when
the cell volumes are known.

We use the primitive variables as inputs to the HLLD Riemann solver to obtain
approximate solutions to the local Riemann problems at each interface of a cell.
Therefore, we need a suitable extrapolation of the primitives from the centre of
cell i to the geometric centre fij of the interface of cell i and j. We denote the
vector containing these extrapolated values as Wij. In the following, we present the
method for gradient estimation developed and implemented in Arepo by Pakmor
et al. (2016b).
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Figure 6: Examples of fluid-state reconstructions inside a numerical cell. The left plot shows a
piece-wise constant reconstruction, the right plot a piece-wise linear reconstruction (Pfrommer,
2022b).

Unlike the original approach by Godunov, we use a piece-wise linear reconstruc-
tion of the quantities inside a cell (see Fig. 6, right). We approximate the quantity
q(r) for an arbitrary point r within the cell by:

q(r) = q(si) + (r − si) (∇q)i , (123)

where si is the COM of cell i. To estimate the occurring gradient, we require that
the linear extrapolation of the respective quantity in cell i to the COM of cell j
agrees with the actual value found at q(sj):

q(sj) = q(si) + (sj − si) (∇q)i . (124)

This is an over-determined problem if the number of neighbouring cells exceeds
three, which is the case for most mesh configurations (even in the 2D scenario, cf.
Fig. 5). To determine a unique solution, we employ the least squares approach that
minimizes the accumulated deviations Stot of the final gradient to all adjacent cells
j:

Stot =
∑
j

gj ((qj − qi)− (∇q)i (sj − si))
2 . (125)

Here, gj = Aij/(sj − si)
2 denotes a relative weight for cell j which emphasizes

neighbouring cells that share a large common interface or whose COMs have a small
distances between them. We use the resulting gradient (∇q)i to perform the spatial
extrapolation of q from the cell’s COM si to the geometric centre fij of the respective
interface:

(q)f = q + (fij − si) (∇q)i . (126)

3.3.4 Time integration

Arepo employs a second-order accurate scheme to update the physical values inside
a cell at each time step. This method relies on a procedure similar to Heun’s method
and was introduced by Pakmor et al. (2016b). We explain the individual steps of
this numerical procedure below.

First, we calculate the primitive variables from the conserved variables at the
beginning of the current time step to obtain W n

i at the centre of cell i. We then
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reconstruct the gradient of each quantity q ∈W n
i and extrapolate the central value

to the interface of cells i and j (Iij in the following) as described in Sec. 3.3.3:

W n
ij = W n

i + (fij − si)(∇W )i . (127)

We pass the resulting values of W n
ij to the HLLD Riemann solver, obtain the

fluxes F̂ n
ij through Iij at the current time step, and apply these fluxes for half a time

step to cell i. To simplify numerical calculations, the volume-integrated quantities
are used instead of the volume-averaged quantities and Gauss’s divergence theorem
is applied to the flux-divergence term:

∂

∂t

∫
V

U dV +

∫
V

∇ · F dV = 0 ⇐⇒ ∂

∂t
Q +

∫
A

F · n dA = 0, (128)

or as explicit update scheme:

Q′i = Qn
i −

∆t

2

∑
j

AijF̂
n
ij

(
W n

ij ,W
n
ji

)
. (129)

The sum extends over all adjacent cells j, and Aij denotes the oriented area of Iij.
Next, Arepo determines the vertex velocities w of the MGPs, moves the MGPs to
their new positions according to:

r′ = rn +∆twn , (130)

and constructs the new mesh based on the updated positions r′ of the MGPs. The
resulting mesh represents the updated spatial discretization of the system at time
tn+1. We therefore need to repeat the spatial extrapolation of the primitive variables,
complemented by advancing W by a full time step:

W
′

ij = W n
i + (f ′ij − s′i)(∇W )i +∆t

∂W

∂t
, (131)

where primed variables are time-extrapolated quantities calculated based on the new
mesh at the end of a time step. Instead of determining the time derivative of the
primitive variables directly, we use the ideal MHD equations to express the temporal
in terms of spatial derivatives. Neglecting source terms, we find (cf. Eqs. (6), (13),
(20), and (15)):

∂ρ

∂t
= −ρ∇ · u− u · ∇ρ, (132)

∂u

∂t
= −∇P

ρ
− (u · ∇)u +

∇ ·BB

ρ
, (133)

∂Pth

∂t
= −γthPth∇ · u− u · ∇Pth, (134)

∂B

∂t
= −∇ · (Bu + uB) , (135)

where P = Pth + B2/2 is the total MHD pressure. We pass the primitive values of
W ′

ij to the HLLD Riemann solver and obtain the current fluxes F ′ij associated with
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the new mesh at tn+1. Finally, we apply these fluxes for another one-half time step:

Qn+1
i = Q′i −

∆t

2

∑
j

An+1
ij F̂ ′ij

(
W ′

ij,W
′
ji

)
. (136)

Note that the calculation of the intermediate state in Eq. (131) requires the calcula-
tion of the fluxes twice and therefore also the solution of the Riemann problem twice.
Although this is an undesirable computational overhead, the additional expense is
not significant compared to generating the moving mesh in Arepo (Pakmor et al.,
2016b), and the benefit of second-order accuracy outweighs this issue.

3.3.5 Evolution of conserved scalar quantities

Arepo provides particular routines for the integration and evolution of conserved
scalar quantities s that are passively advected with the mass flow. The evolution
equation of such quantities reads as:

∂

∂t

(
ρ
s

ρ

)
+∇ ·

[(
ρ
s

ρ

)
u

]
= 0. (137)

Combining this equation with the continuity equation (6) provides a universal rela-
tion between the temporal and spatial derivatives of s:

∂

∂t

(
s

ρ

)
= −u · ∇

(
s

ρ

)
, (138)

representing the primitive formulation of Eq. (137). We employ Eq. (138) during
the temporal extrapolation step described in Sec. 3.3.4.

Passive scalars are integrated using the same finite-volume algorithm as the MHD
equations. To calculate the fluxes at cell interfaces, the approximate solution to the
Riemann problem provided by the HLLD Riemann solver is extended to incorporate
these passive scalars. Because passive scalars are advected with the mass flow, the
flux of the passive scalar is calculated by upwinding this quantity at the cell interface
using:

Fq = Fρ,HLLD×
{
sL/ρL, SM > 0

sR/ρR, SM < 0 ,
(139)

where Fρ,HLLD is the result of the mass flux ρu from the HLLD Riemann solver at
the same interface. No additional changes to the Riemann solver are needed because
passive scalars are assumed to be truly passive and not to influence the dynamics
of the MHD fluid. Although this property does not hold for the CRs energy and
entropy, experience and the presented numerical test show that this algorithm can
be applied to these quantities as well.

3.4 Implementation of CR physics

In this section, we present our implementation of CR physics into the existing MHD
framework of Arepo. We first describe the required modifications to the MHD
module and how we solve the additional equation for CR energy and entropy, re-
spectively. Subsequently, we explain the algorithm for shock detection and how the
CR acceleration process at shocks is realized numerically.
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3.4.1 Customizations of the MHD module

The full set of CR-MHD equations can be written in compact form as:

∂

∂t
U +∇ · F = S. (140)

Here, applying the energy-based method, the state vector U contains an additional
value describing CR energy density εcr, F accounts for the additional flux εcru,
and the vector S contains source terms describing explicit gains and losses of CRs
(Γcr, Λcr) and thermal gas (Γth, Λth) as well as terms accounting for the adiabatic
changes of the CR fluid (Pcr∇ · u):

U =


ρ
ρu
ε
εcr

B

, F =


ρu

ρuu+ Ptot1+BB
(ε+ Ptot)u+B(u ·B)

εcru
Bu+ uB

, S =


0
0

Pcr∇ · u+ Γth + Λth

−Pcr∇ · u+ Γcr + Λcr

0

 .

(141)
Using the entropy-conserving scheme, the CR energy density equation is replaced
by the CR entropy density equation, and explicit CR energy gains and losses are
converted to explicit CR entropy gains and losses:

U =


ρ
ρu
ε

ρKcr

B

, F =


ρu

ρuu+ Ptot1+BB
(ε+ Ptot)u+B(u ·B)

ρKcru
Bu+ uB

, S =


0
0

Pcr∇ · u+ Γth + Λth
γcr−1
ργcr−1 (Γcr + Λcr)

0

 .

(142)
In the following, we explain how these additional CR quantities are incorporated
into the previously described algorithms.

Evolution of CR energy/entropy Because the evolution equation for CR en-
tropy in Eq. (142) resembles the evolution equation of a scalar quantity when neglect-
ing explicit gains and losses, we use the routines explained in Sec. 3.3.5 to implement
the evolution equation of CR entropy. CR energy, however, is not conserved due to
the adiabatic compression or expansion of the thermal gas to which the CRs are cou-
pled (Eq. (141)). The corresponding adiabatic source terms extend the otherwise
homogeneous CR energy equation. These terms are implemented using the method
presented by Pfrommer et al. (2017). Here, they used Gauss’ divergence theorem to
calculate the change of CR energy due to these sources:

∂Ecr

∂t

∣∣∣∣
adiab

=

∫
V

Pcr∇ · u dV ≈
∫
V

∇ · (Pcru) dV =

∫
A

Pcru · n dA, (143)

where Ecr =
∫
V
εcrdV and the approximation in the second step assumes a constant

CR pressure (∇Pcr = 0) across the cell. The occurring surface integral can be
converted into a discrete sum over all cell interfaces of a given VC. The pressure
and the normal velocity in the surface integral need to be evaluated in order to
calculate the integral. To this end, we use the normal velocity as calculated by
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the HLLD Riemann solver and choose the cell-centred value of Pcr. Although this
choice may appear arbitrary, this results in a stable integration scheme, which we
will demonstrate using our test problems. The adiabatic source term appears in
the energy equation with the opposite sign, which states that adiabatic processes
conserve the total energy in the system. To account for this on a numerical level,
the same amount of energy calculated by the surface integral is added to the thermal
energy of a cell, but with the opposite sign.

We account for non-adiabatic source terms of CR energy in an operator-split
fashion after evolving the implicit CR-MHD system by a full time step. In the
process, we first apply gains of CR energy due to CR injection in SNe remnants (Γcr,
cf. Eq. (95)) and CR acceleration at resolved shocks (see Sec. 3.4.2), followed by CR
cooling due to Coulomb and hadronic interactions (Λcr, cf. Eq. (94)). This general
procedure is used for the energy-based and entropy-conserving schemes. While the
default implementation of these source terms in Arepo is based on the energy
formulation, all occurring numerical terms in the code are translated to use the CR
entropy as the defining CR quantity once the code is set up for simulation with the
entropy-conserving scheme.

CR pressure We account for the additional pressure exerted by the CRs adding
this pressure onto the thermal pressure during the time extrapolation step of the
MHD equations in each cell. Furthermore, the CR pressure is an additional prim-
itive variable inside the hyperbolic equation system. We calculate its value from
CR energy density (Pcr = (γcr − 1)εcr) or CR entropy density (Pcr = ρKcr ρ

γcr−1),
depending on the scheme in use. The CR pressure, as a primitive variable, is used by
the Riemann solver to calculate fluxes. As other MHD quantities sharing the same
property, this quantity is extrapolated in space and time during the finite volume
step of Arepo. We extrapolate the CR pressure from the COM si of cell i to the
geometric centre f ij of an interface according to Eqs. (127) and (131), replacing the
time derivative of the CR pressure using:

∂Pcr

∂t
= −Pcr(∇ · u)i − u · (∇Pcr)i . (144)

We obtain this relation combining the CR energy equation (83) with the EOS (84)
of CRs and neglecting source terms. In Sec. 3.3.3, we describe how we estimate the
velocity divergence, and we employ the same method to find a suitable estimate for
the CR pressure gradient.

Modifications to the HLLD solver The HLLD Riemann solver is designed to
solve the ideal MHD equations and is not intended to consider an additional CR fluid.
In order not to change its original scope, we account separately for the evolution of
the CR variables and the source terms that arise in the process. However, CRs affect
the total pressure of the system, and the effective adiabatic index of a two-component
fluid differs from that of an ideal thermal gas:

γeff = (γthPth + γcrPcr) /(Pth + Pcr). (145)
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Consequently, we modify the speed of the slow and fast magneto-acoustic waves as
follows (Pfrommer et al., 2017):

c fa,sl =

γeffPt +B2 ±
√

(γeffPt +B2)2 − 4γeffPtB2
x

2ρ

1/2

, (146)

where Pt = Pth + Pcr is the total pressure of the CRs and the thermal fluid. This
total pressure is also used as a replacement for the thermal pressure whenever its
quantity is used inside the Riemann solver when the origin of the corresponding
terms is the pressure term of the momentum equation. These modifications are
independent of whether we use the CR energy or entropy scheme. Note that the
Alfvén waves generally remain unaffected by the additional CR pressure.

3.4.2 CR acceleration at resolved shocks

Shock detection To model the injection of freshly accelerated CRs at shock
fronts, we employ the shock finding method developed by Schaal and Springel (2015)
and extended by Pfrommer et al. (2017). We summarize the main points of this al-
gorithm for completeness here. The shock finding algorithm identifies a shock zone
by applying the following local cell-based criteria:

(i) ∇ · u < 0,

(ii) ∇T̃ ·∇ρ > 0,

(iii) M̃ > M̃min,

where M̃ is the (numerically stabilized) shock Mach number, and T̃ is the pseudo
temperature of the composite gas, defined via:

kBT̃ =
P

n
=
µmp(Pth + Pcr)

ρ
, (147)

where n is the gas number density, mp is the proton rest mass, and µ denotes
the mean molecular weight. Criterion (i) identifies converging flows, which is the
essential condition for the presence of a shock. To filter spurious shocks such as
tangential or contact discontinuities, criterion (ii) is applied. These discontinuities
are characterized by having a constant pressure across their surfaces, implying that
the temperature and density change in opposite directions and therefore the corre-
sponding gradients have opposite signs. Criterion (iii) gives a minimum threshold
for the Mach number to distinguish numerical noise from physical shocks, which we
choose to be M̃min = 1.3 in this work (Pfrommer et al., 2017).

Modelling CR acceleration Kinetic gas energy is dissipated into thermal and
non-thermal energy at a shock. For a composite fluid of thermal gas and CRs, the
dissipated energy at the shock is given by the difference between the total post-
shock energy (index ’2’) and the adiabatically compressed pre-shock energy (index
’1’) (Pfrommer et al., 2017):

εdiss = εth,2 + εcr,2 − (εth,1 x
γth
s + εcr,1 x

γcr
s ) , (148)
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where xs = ρ2/ρ1 is the shock compression ratio. The dissipated energy is advected
with the post-shock velocity u2, resulting in a flux:

fdiss = εdissu2 = εdiss
M1c1

xs

, (149)

with M1 the pre-shock Mach number and c1 the pre-shock sound speed. We thus
obtain the rate of energy dissipation at a shock with surface As by:

dEdiss

dt
= fdissAs. (150)

Diffusive shock acceleration and other plasma-physical processes can convert a frac-
tion of the dissipated energy into energy contained in CRs, which we model by the
factor ζcr:

∆Ecr = ζcr
dEdiss

dt
∆t = ζcrEdiss . (151)

Generally, ζcr may depend on Mach number M1, magnetic obliquity θ, i.e. the
angle between shock normal and the magnetic field, and the plasma beta parameter
β = Pth/Pmag (Pfrommer et al., 2017). In this work, however, we follow the results
reported by Caprioli and Spitkovsky (2014) for quasi-parallel shocks (θ . 45◦) with
M1 > 3 and choose ζcr = 0.1.

We model the conversion of dissipated energy to CR energy for each cell that
is part of the shock with the following procedure. First, we compute the total
dissipated energy as the energy difference between shocked and pre-shock region:

∆Etot =
∑
j

[(Etot)j − Etot,1] , (152)

where the sum extends over all cells j the shock finder recognizes as involved in the
shock, i.e. the shock surface and the post-shock zone. We then distribute the total
dissipated energy among the detected cells according to their relative contribution
to that energy:

(∆Ecr)i = ζcrEdiss
(Etot)i − Etot,1

Etot

. (153)

This existing injection algorithm is extended to be applicable with the CR entropy
formalism. We first calculate the pre-existing CR energy from the current value of
the CR entropy, add the injected CR energy, and then recalculate the CR entropy
from the updated value of the CR energy. This ensures energy conservation of
dissipated energy during the injection procedure.

We execute the shock finder at the end of each hydro-step and apply the resulting
source term of CR energy or entropy for a full time step. It should be noted that
we neglect the effect of adiabatic compression of the thermal gas and CRs when
calculating the total dissipated energy in Eq. (152). Pfrommer et al. (2017) argue
that this contribution is negligible for strong shocks and the presented algorithm
proves to be stable in many applications.
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4 Numerical tests

In this section, we perform a suite of test problems to compare the performance of
the energy-based and entropy-conserving methods described in Sec. 2.4. By default,
all simulations in this section are performed with the moving-mesh setup of Arepo
using standard parameters for mesh regularization (Vogelsberger et al., 2012; Pakmor
et al., 2016b; Weinberger et al., 2020) and a grid that is initially equally spaced.

4.1 Pressure balance

In this first test, we set up a contact discontinuity characterized by a uniform density,
a uniform total pressure but jumping CR and thermal pressures over the discontinu-
ity. The gas is initially moving with a constant velocity inside a periodic simulation
domain. Because the total pressure is constant, these initial conditions are dynam-
ically stable in the sense that the CR and thermal pressure jumps at the contact
discontinuity should not introduce any additional motions. The resulting profiles for
the gas density, velocity, thermal, and CR pressure should coincide with their respec-
tive initial values after each periodic crossing of the contact discontinuity through
the simulation domain. This pressure balance test offers a simple way to test the
basic stability of a numerical method in hydrodynamics. If a method fails this test,
it is likely to fail even in more complex simulations. We use the same setup of Gupta
et al. (2021). The contact discontinuity is set up at x = 0.5 inside a periodic simu-
lation domain of length L = 1. The initial conditions for the left and the right state
are defined as {ρ, u, Pth, Pcr}L = {1, 1, 0.1, 0.9} and {ρ, u, Pth, Pcr}R = {1, 1, 0.9, 0.1}.
We use a resolution of N = 1000 mesh cells and the moving-mesh setup of Arepo.

Figure 7 shows the simulation results of the pressure balance test at t = 1,
i.e. after one box-crossing time. Note that the limits of the respective y-axis in
the top row are set to ∆y . 5 × 10−12. Minor blips form in the density, velocity,
and pressure profiles using either CR formulation. Because the blips have a low
amplitude, they do not influence the overall dynamics. Gupta et al. (2021) performed
the same test, employing both the energy and entropy formalism for CR transport
in the PLUTO code. They found that their numerical scheme produces deviations
in the percentage regime for the simulation with the entropy formalism, and that
truncation errors in simulations with the energy formalism depended on details of
the numerical algorithm they chose.

4.2 1D shock tubes

For our next test, we perform a sequence of one-dimensional (1D) shock-tube simu-
lations with various Mach numbersM = ush/cs, pre, where ush is the shock velocity
in the lab frame and cs, pre is the pre-shock sound speed. We vary M from 1.5 to
100 and use several resolutions ranging from N = 30 to 104 mesh cells. The general
setup to this problem is identical to the one presented by Pfrommer et al. (2017).
We set up a box of length L = 10 containing a discontinuity at x = 5. Gas in
the left half-space (x < 5) has a density of ρ = 1 and a relative CR pressure of
Xcr = Pcr/Pth = 2. We vary the thermal pressure and the CR pressure between dif-



52 4 NUMERICAL TESTS

−5

0

5

×1
0−

12

∆ρ ∆u ∆Ptot

0.2 0.4 0.6 0.8
x

0.1

0.5

0.9
Pth

0.2 0.4 0.6 0.8
x

Pcr

energy-based
entropy-conserving
expected

0.2 0.4 0.6 0.8
x

Kcr = Pcr/ρ
γcr

Figure 7: Results of the pressure balance test with periodic boundary conditions at t = 1.0, i.e. after
one box crossing time. In the top row, we plot the deviations of the simulation results from the
expected values, i.e. ∆ρ, ∆ux and ∆Ptot. Note that the limits of the respective y-axis are set
to ∆y . 5 × 10−12 (where y ∈ {ρ, u, Ptot}). The bottom row shows quantities that are initially
discontinuous across x = 0.5, i.e. Pth, Pcr, and Kcr.

ferent simulations in this region to achieve the desired Mach numbers of the shock
while keeping the pressure ratio Xcr constant. A shock tube forms because this
half-space is initially over-pressurised with respect to the right half-space (x > 5)
that contains gas at a low density of ρ = 0.125. The thermal and CR pressures in
this region are the same for all simulations and are set to Pth = Pcr = 0.05. The
fluid is initially at rest, ux = 0, and we use reflective boundary conditions. We refer
to Table 1 for the exact initial values. We perform two sets of simulations: one
that only considers adiabatic changes of CRs (discussed in Sec. 4.2.1) and one that
additionally accounts for non-adiabatic changes in the form of CR acceleration at
the shock (discussed in Sec. 4.2.2).

4.2.1 Adiabatic CRs

Figure 8 shows the results of the 1D shock-tube test with M = 10 and only ac-
counting for adiabatic changes of the CRs. The left-hand panel shows the results
using the energy-based method, the right-hand panel shows the outcome using the
entropy-conserving scheme. We perform both runs with identical initial conditions
(see Table 1) and a spatial resolution of N = 100 mesh cells. The simulation results
resemble the well-known Sod-shock tube: a rarefaction develops to the left, while
a contact discontinuity and a shock form to the right of the initial discontinuity.
Because the CRs evolve only adiabatically, the CR entropy is expected to be almost
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Table 1: Initial conditions for the shock-tube tests with various Mach numbersM. The indices L
and R denote values of the left and right half-space, respectively.

M ux ρL Pth,L Xcr,L ρR Pth,R Xcr,R

Without CR shock acceleration:
1.5 0 1 0.24263 2 0.125 0.05 1
2 0 1 0.54795 2 0.125 0.05 1
3 0 1 1.4182 2 0.125 0.05 1
5 0 1 4.1911 2 0.125 0.05 1
10 0 1 17.172 2 0.125 0.05 1
15 0 1 38.804 2 0.125 0.05 1
30 0 1 155.61 2 0.125 0.05 1
60 0 1 622.84 2 0.125 0.05 1
100 0 1 1730.4 2 0.125 0.05 1

With CR shock acceleration:
9.56 0 1 17.172 2 0.125 0.05 1

featureless. The only discontinuity in this profile should coincide with the contact
discontinuity and separate the high CR-entropy gas from the low CR-entropy gas.

As shown in Fig. 8, both methods yield nearly identical results and are in very
good agreement with the analytic solutions (solid lines in semi-transparent colour;
values adopted from Pfrommer et al. 2006) for density ρ, thermal pressure Pth, CR
pressure Pcr, velocity ux, and CR and thermal entropy, Kcr and Kth = Pth/ρ

γth ,
where γth = 5/3. To give a more detailed view, we zoom into the post-shock regime
of the pressure and entropy plots, as indicated by the inset panels in the second
and bottom row. The magnified boxes show the post-shock region around at the
analytical solution. We note that even at this magnification Pth and Pcr are still in
good agreement with the analytical solution and deviate only about 1 per cent for
both numerical schemes. A similar result is obtained for entropy K. The entropy-
conserving scheme does an excellent job of adiabatically compressing the CRs at the
shock while keeping the CR entropy density constant across the shock. The energy-
based method generates an artificial amount of CR entropy at the shock with a
deviation from the analytic solution in the 2 per cent regime using our moving-mesh
setup.

We analyse how this spurious entropy generation at the shock depends on the
mesh resolution. To this end, we perform a sequence of test runs varying the num-
ber of mesh cells in the range of N = 30 to 104 while keeping the Mach number
constant atM = 10. We run each simulation with both a moving mesh and a fixed
mesh to compare the two approaches. In order to quantify the deviation from the
analytic solution, we evaluate the post-shock regime and determine the median of
the absolute difference between the numerical and analytic solution within that re-
gion. We choose to calculate the median difference because the large entropy jump
between the contact discontinuity and post-shock region would lead to misleading
results when calculating the mean deviation in low-resolution simulations.

In Fig. 9, we show the median differences of the thermal and CR pressures and
entropy densities for varying resolutions from N = 30 to 104 on the LHS and display
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Figure 8: Shock-tube test for a composite of CRs and thermal gas while omitting CR acceleration
at the shock. The left column displays the results using the energy-based method and the right
column those of the entropy-conserving scheme. Shown are 1D simulations with a resolution of
N = 100 mesh cells andM = 10 at t = 0.37. We plot from top to bottom: mass density ρ, pressure
P , velocity ux and entropy Pi/ργi , where i ∈ {cr, th}. Analytic solutions are shown as solid lines
in semi-transparent colours and simulation results as dots. The inset panels in the second and
bottom row show magnifications of the corresponding post-shock regime, indicated by the dashed
rectangles.

the pressure and entropy density profiles near the shock for N = 100 on the RHS.
Results obtained with the moving-mesh method are grouped together in the top row,
while the result obtained with the static-mesh method can be found in the bottom
row.
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Figure 9: Shock-tube test withM = 10 and various resolutions ranging from N = 30 to 104 mesh
cells without accounting for CR acceleration at the shock. The top row displays the results of
the moving-mesh approach, the bottom row shows the results using a static-mesh setup. In the
left-hand panels, we plot the median of the absolute deviations in the post-shock region from the
analytic solution of Pth, Pcr, Kth, and Kcr at t = 0.37. Filled circles indicate the results using
the energy-based method, open circles indicate results of the entropy-conserving scheme. In each
panel, we plot the relative error of P in the top row, the relative error of K in the bottom row.
For a resolution of N = 100 mesh cells, the corresponding post-shock region is depicted in the
panels on the RHS, wherein the left column shows the results for the energy-based method and
the right column for the entropy-conserving scheme. The static-mesh method yields significantly
worse results due to its inherently higher numerical diffusivity.

In the static-mesh setup, the error in Kcr diverges towards lower mesh resolu-
tions for both the entropy- and energy-conserving numerical schemes, which can be
attributed to the higher numerical diffusivity of this approach. Only for a resolution
of N = 200 cells, the deviations start to fall below 10 per cent and stabilizes to-
wards higher resolutions or nearly vanishes for the entropy-conserving scheme. The
behaviour of Pcr is similar: while the error diverges in the poorly resolved runs for
both methods, it stabilizes at around 7 per cent for the energy-based method and in
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the 1 per cent regime for the entropy-conserving scheme. The deviation of the ther-
mal pressure Pth is moderate for low resolutions and converges for higher resolutions
to around 2 per cent for the entropy-conserving scheme and to negligible values for
the energy-based method.

The moving-mesh approach consistently gives significantly better results. Even
for very low resolutions, the deviation of Kcr and Pcr is clearly below 10 per cent
for both energy- and entropy-conserving methods. In the high-resolution runs, these
errors converge to around 2 per cent using the energy-based method and nearly
vanish when we apply the entropy-conserving scheme. The error in Kth behaves
nearly identical for both numerical schemes, with values around 8 per cent for very
low resolutions and negligible deviations for the high resolution runs. We find similar
trends for Pth but notice deviations in the 2 per cent regime for the lowest resolutions
and negligible errors for an increasing number of mesh cells.

We continue by investigating the dependency of spurious entropy generation at
shocks on the Mach numberM. Again, we perform a suite of shock-tube simulations
but fix the resolution at N = 100 mesh cells and vary the Mach number in the range
of M = 1.5 to 100 this time. Shocks with lower Mach numbers require more time
to fully develop. Hence, in each simulation, we evaluate the post-shock region once
the shock has crossed x = 9, which corresponds to the theoretical shock position
at t = 0.37 for M = 10 employed in the previous setup. Since we have already
demonstrated that the moving-mesh setup gives much better results, we stick to
this approach in the following.

Figure 10 shows the results of the different runs. Again, the entropy-conserving
scheme performs very good in adiabatically compressing the CRs at the shock with
almost vanishing deviation in Kcr, independent of Mach number. The relative errors
in Pth and Pcr slightly vary in the regime of 1 per cent and remain small for higher
Mach numbers. The energy-based method shows very similar results, except for the
deviation of Kcr, which slightly increases up to a Mach number of 10 and stabilizes
at very small values of about 2 per cent for largerM. Overall, both methods give
very good results and do not show a severe dependence on Mach number. Semenov
et al. (2021) also performed the same test employing both the energy and entropy
formalism for CR transport with the ART code. Using their implementation for the
energy-based formulation of CR transport, they find a strong dependence of the CR
entropy error on the Mach number, with errors reaching . 20 per cent forM≥ 9.

4.2.2 CR acceleration at the shock

Figure 11 shows the results of the 1D shock-tube test withM = 9.56 including CR
acceleration at the shock. The left-hand panel displays the results that we obtained
with the energy-based method, and the right-hand panel shows the results using
the entropy-conserving scheme. Again, we perform each run with identical initial
conditions (cf. Table 1) and a spatial resolution of N = 100 mesh cells.

The results obtained with energy-based method agree with the exact solution up
to minor deviations. The most pronounced differences are the relatively high blips
in density, pressure, and entropy in the first two cells past the contact discontinuity.
This comes about because in the first few time steps after the start of the simulation,
when the shock has not yet fully developed and the post-shock regime is about to
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Figure 10: Shock-tube test with N = 100 mesh cells and various Mach numbers ranging from
M = 1.5 to 100. We use our moving-mesh setup without accounting for CR acceleration. We plot
the median of the absolute deviations of Pth, Kth, and Kcr from the analytic solution in the post-
shock regime. In each case, we evaluate the post-shock region once the shock has (theoretically)
crossed x = 9. Filled circles indicate the results of the energy-based method, open circles those of
the entropy-conserving scheme. Shown are the relative error in P in the top row and the relative
error in K in the bottom row.

form, our algorithm injects too much CR energy because the estimated pressure jump
is initially too large. While this causes an increased compressibility in comparison to
the exact solution, the algorithm recovers as soon as the shock and post-shock regime
have formed and then performs correctly. This behaviour was already mentioned by
Pfrommer et al. (2017). Zooming into the post-shock regime, we find that Kcr and
Pcr are subject to a ∼ 6 per cent error, while Pth deviates by 3 per cent.

The entropy scheme, however, performs worse in this setup. Again, we notice the
blips in density and entropy, but in the opposite direction. Unlike the energy-based
method, these blips do not settle down when the post-shock zone has developed, but
form oscillations with fairly large amplitudes that pervade half of the post-shock
region. This is because CR entropy is injected at the shock and therefore CRs are
not adiabatically compressed, making entropy conservation no longer valid and the
algorithm has problems to adjust to the sudden change of the initially conserved
quantity. Most importantly, the shock propagates too fast in comparison to the
analytical solution in the entropy-based scheme. This is a consequence of mass
conservation: because the density is too low in the left-hand part of the post-shock
zone, the total post-shock zone needs to be broader and the shock advances faster.

To quantify this behaviour, we evaluate the ratio of the simulated-to-theoretical
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Figure 11: Same setup as in Fig. 8, but now taking into account CR acceleration at the shock with
N = 100,M = 9.56 and the snapshot taken at t = 0.39.

shock velocity χ = ush, sim/ush, theo by averaging 10 snapshots in the period from
t = 0.31 to t = 0.4. In Fig. 12, we plot the result as a function of resolution. Here,
we use the moving-mesh setup, a fixed Mach number of M = 9.56, and we vary
the resolution in the range of N = 30 to 104. The energy-based method simulates
the shock position very accurately even for the lowest-resolution run, amounting to
a deviation from the theoretical value of . 3 per cent. The error quickly reaches
negligible values for higher resolutions. Using the entropy-conserving scheme, the
simulated shock position is significantly less accurate in comparison to the energy
method, particularly for low resolutions, where the deviation is & 10 per cent, more
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Figure 12: Ratio of simulated-to-theoretical shock velocity χ = ush, sim/ush, theo (top panel) and
the χ-ratio of both numerical schemes (bottom panel) as a function of resolution N , respectively.
We use the moving-mesh setup of Arepo with a fixed Mach number of M = 9.56 and account
for CR acceleration at the shock. Results obtained with the energy-based method (index ε) are
coloured blue, those obtained with the entropy-conserving scheme (index K) red.

than four times worse in comparison to the energy-based method. Only for a reso-
lution of N & 500, the entropy scheme approaches the accuracy of the energy-based
method and the oscillations described earlier also vanish.

We investigate the dependence of the error on the number of mesh cells N for
our current setup that includes CR acceleration. Therefore, we fix the Mach number
atM = 9.56 and vary the resolution in the range of N = 30 to 104. Figure 13 shows
the results of our test runs. As expected, the inclusion of CR acceleration worsens
the numerical solution so that truncation errors at high resolution amount to about
6 per cent for Pcr and 4 per cent for Kcr (energy-based method) and approximately
half of that for the entropy-conserving scheme. At low resolution, the errors increase
to values exceeding 10 per cent, with the errors in the entropy-conserving scheme
to rise above those in the energy-based method. Note that we identify the error
with the median of the absolute deviation between simulation and theory so that
the error is not sensitive to (even significant) post-shock oscillations as long as they
do not accumulate to more than half of the mesh cells within the post-shock region.
Because the oscillations are confined to only a few cells, the median error is hence
only slightly affected by this feature, while we identified it to have a significant
impact on the shock propagation at resolutions N . 500 (see Fig. 12).

4.3 3D shock tubes

The 1D shock-tube test, described in Sec. 4.2, is a useful tool for evaluating the
general performance of a numerical method in an idealized environment. Here,
we analyse the differences of the energy-based method and the entropy-conserving
scheme in the more challenging 3D shock-tube setup. To address this, we set up a
box of size (Lx, Ly, Lz) = (10, 1, 1) and use an irregular glass-like distribution of the
particles as initial conditions (see Schaal and Springel, 2015, for details). Like in the
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Figure 13: Shock-tube test with Mach number M = 9.56 and various resolutions ranging from
N = 30 to 104. We use our moving-mesh setup and account for CR acceleration at shocks. We
plot the median of the absolute deviations of Pth, Pcr, Kth and Kcr from the analytic solution in
the post-shock regime at t = 0.39. Filled circles indicate the results of the energy-based method,
open circles those of the entropy-conserving scheme. We show the relative error of P in the top
row and the relative error of K in the bottom row.

1D case, we fix the Mach number atM = 10 and omit CR acceleration at the shock.
We vary the number of mesh cells along the x axis in Nx = {30, 50, 70, 100, 200}
and choose the number of mesh-generating points in the y and z direction to be
Ny = Nz = Nx/10.

In Fig. 14, we plot the median absolute deviation of the simulation result from
the analytic solution. The trend of these errors is similar to the one obtained in 1D
and shows that deviations get smaller for increased resolutions until they saturate at
the 3-percent level. Interestingly, the pressure deviations do not differ significantly
between the simulations employing the energy- or entropy-conserving scheme. How-
ever, the errors calculated for the 3D simulations are larger if we directly compare
them to those obtained from the corresponding 1D shock tube at the same resolution.

4.4 Simulations of isolated galaxy formation

In this section, we continue our comparison of the energy-based method and the
entropy-conserving scheme in a more realistic astrophysical application. We simulate
the formation of three different isolated galaxies inside halo masses of 1010, 1011 and
1012 M�.
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Figure 14: Same representation as in the upper left panel in Fig. 9, but with a 3D setup. Nx
denotes the number of mesh cells along the x-axis, and the y and z resolutions are chosen to be
Ny = Nz = Nx/10, respectively.

4.4.1 Simulation setup

We model the ISM by an effective pressurized EOS and follow radiative cooling
and star formation using the approach by Springel and Hernquist (2003). In ad-
dition to the composite thermal and CR fluid, we evolve the magnetic field using
the Powell et al. (1999) scheme for divergence control as implemented in Arepo
(Pakmor and Springel, 2013). The magnetic field is initialized with a low-amplitude
uniform seed magnetic field with a strength of B = 10−10 G. The general setup
is identical to the one employed by Pfrommer et al. (2017). We adopt Navarro-
Frenk-White (NFW) profiles for the dark matter component (Navarro et al., 1997),
which are characterized by the concentration parameter c200 = r200/rs, where r200

denotes the radius that encloses 200 times the critical density of the universe and
rs is the characteristic radius of the NFW profile. We choose the values for c200

following the results presented by Macciò et al. (2008). We adopt a hydrostatic gas
distribution that is initially in equilibrium within the halo. We assume that the halo
carries a small amount of angular momentum, parametrized by a spin parameter
λ = J |E|1/2G−1M

−5/2
200 , where J is the angular momentum, |E| is the total halo

energy, G is the gravitational constant and M200 denotes the mass within r200. For
each run we choose λ = 0.3 and a baryon mass fraction of Ωb/Ωm = 0.155.

In the initial conditions of our high-resolution simulations, we have N = 107 gas
cells inside the virial radius. Each gas cell has a mass of 155M� ×M200/(1010M�),
which also corresponds to the target mass of the cells throughout the simulation. We
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Table 2: Parameters of the isolated galaxy simulations. Columns from left to right label (1)
virial mass M200, (2) concentration parameter of the NFW profile, (3) initial gas fraction, (4)
dimensionless spin parameter, (5) CR acceleration efficiency at SNe, (6) initial number of resolution
elements N within the virial radius, and (7) MVD of adjacent VCs.

M200 c200 Ωb/Ωm λ ζSN N MVD
1010 M� 11 0.155 0.3 0.1 107 5, 10
1011 M� 8.5 0.155 0.3 0.1 107 10
1012 M� 7 0.155 0.3 0.1 107 5, 10
1012 M� 7 0.155 0.3 0.1 106 10
1012 M� 7 0.155 0.3 0.1 105 10

enforce that the mass of all cells is within a factor of 2 of the target mass by explicitly
refining and de-refining the mesh cells that violate these criteria. We additionally
require that adjacent cells adhere a maximum volume difference (MVD) of 10 and
refine the larger cell if this condition is violated. Furthermore, we adopt a threshold
for the star-forming density of ρsf = 5.98× 10−3 M� pc−3. We account for CR injec-
tion at SNe with a CR energy injection efficiency of ζSN = 0.1, indicating the fraction
of SN energy that is converted into CRs. The CR injection at SNe is performed with
a sub-resolution model and not with our explicit shock finding method and associ-
ated CR acceleration. For a detailed description of the sub-resolution model, we
refer to Sec. 3.2 of Pfrommer et al. (2017). We assume advective CR transport and
account for adiabatic changes of the CR energy as well as Coulomb and hadronic
CR cooling, while neglecting active CR transport in the form of anisotropic diffusion
and streaming. A summary of the simulation parameters is listed in Table 2.

4.4.2 Results

In Fig. 15, we plot the SFR (left-hand panel) and the instantaneous CR energy (right-
hand panel) as a function of time for our three different haloes (shown with different
line styles). Results using the energy-based method are coloured blue, those of the
entropy-conserving scheme are shown with red. The 1010 M� halo shows a slightly
but systematically lower SFR using the entropy-conserving scheme, which can be
explained by the minor increase in the corresponding CR energy. In comparison to
the energy-based method, the higher pressure induced by CRs causes the thermal gas
to cool more slowly, which in turn leads to a decrease in the SFR. This effect declines
with increasing halo mass, as already reported by Pfrommer et al. (2017). Hence,
the same but opposite behaviour can be analogously explained for our 1012 M� halo,
where the total CR energy is reduced by about 30 per cent using the entropy-
conserving scheme. This leads to a small increase in SFR in the period between 0.5
and 1.2 Gyr. The halo with 1011 M� shows no differences at all, neither in SFR nor
in CR energy.

We explain the behaviour for the various haloes as follows. Because the entropy-
conserving scheme does not explicitly conserve CR energy, this scheme introduces in-
trinsic differences in the CR energy when we compare it to the energy-based method.
Thus, the temporal evolution of the CR energy for both schemes inevitable deviates.
This leads to discrepancies in the SFR, which in turn change the amount of CRs
injected. Thus, a cycle of altered CR energy is created in which the injection and
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Figure 15: SFR (left-hand panel) and instantaneous CR energy (right-hand panel) as a function of
time for our various haloes. Profiles for these quantities are depicted using dotted, dashed and solid
lines for the haloes of mass 1010, 1011 and 1012 M�, respectively. Results using the energy-based
method are coloured blue, those of the entropy-conserving scheme red.

non-conservation of CR energy influence each other through their effects on the SFR.
Another point that should not be ignored is the fact that the gain and loss terms
in Eqs. (83) and (86) describe variations in energy, not entropy. While the algebraic
conversion of this is straightforward, the underlying physics may not be so easily
transferable and should therefore be used with caution.

In Fig. 16, we show a gallery of slices that display the gas density ρ, CR energy
density εcr, and SFR for the 1012 M� halo after 1 Gyr of evolution. The top six
panels depict the results using the energy-based method, the bottom six panels
the results from the entropy-conserving scheme. Both numerical methods produce
very similar results. At this stage of evolution, gas has rapidly accumulated in the
centre of the galaxy, which leads to an increased gas density and SFR there. Most
CRs are injected in this area, as confirmed by the centrally enhanced CR energy
density (panels in the middle row). While the distribution of the gas density in both
haloes looks almost identical, the edge-on views of εcr (bottom panels in the middle
row) show a slightly more extended distribution of CR energy when the energy-
based method is used. This is due to the increased CR pressure (or CR energy,
cf. right panel in Fig. 15) providing additional pressure support. Furthermore, we
notice a minor increase in SFR within a ring at about 14 to 16 kpc from the centre
when using the entropy-conserving scheme. This is in agreement with a moderately
reduced εcr in this region in comparison to the energy-based method, as discussed
in the previous paragraph. However, we note that the differences are minuscule
and that the overall morphological appearances of both galaxies are nearly identical,
especially considering the larger astrophysical uncertainties of the adopted model
parameters.

Note that recent galaxy simulations by Semenov et al. (2021) find larger differ-
ences between the entropy-conserving and energy-based methods. The main differ-
ences in comparison to our approach is their employed hydrodynamical method (a
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Figure 16: Slices showing the gas density ρ, CR energy density εcr and SFR (from left to right)
for the galaxy situated in the 1012 M� halo after 1 Gyr of evolution. The top six panels show
results obtained with the energy-based method, and the bottom six panels show the results of the
simulation that employs the entropy-conserving scheme. For each quantity, we show slices through
the mid-plane of the disc (face-on views) and vertical slices through the centre (edge-on views).

spatially fixed, adaptively refined mesh) and their explicitly modelled multiphase
ISM, while we adopt an effective EOS that results in a smoother ISM. Semenov
et al. (2021) follow the radiative cooling down to temperatures of 40 K so that en-
ergy deposition into the cooling phase by SNe result in more compressible, radiative
shocks. Studying CR acceleration at radiative shocks is beyond the scope of this
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Figure 17: SFR (left panel) and instantaneous CR energy within the simulation (right panel) as
a function of time for our halo with 1012 M�, plotted with a linear scaling. Results using the
energy-based method are coloured blue, those of the entropy-conserving scheme are shown in red.
The solid lines show the results when neighbouring cells differ in volume by a maximum factor of
10, and the dotted lines show the results for an MVD of 5.

work and will be postponed to future work.

Adapting the refinement criterion As stated in Sec. 4.4.1, we limit adjacent
cells to differ in volume at most by a factor of 10 in our simulations of isolated
galaxies. Here, we analyse a setup where this MVD is restricted to a factor of 5,
which has the effect of resolving regions of high density even more accurately. This
is of particular interest in terms of star formation and CR injection.

In Fig. 17, we plot the SFR (left-hand panel) and instantaneous CR energy
(right-hand panel) of the 1012 M� halo and compare simulations with the fiducial
and the more restrictive value for the MVD. Results using the energy-based method
are coloured blue, those of the entropy-conserving scheme are shown in red. Solid
(dotted) lines indicate the previous results using an MVD of 10 (5). Both methods
yield a very similar SFR. The instantaneous CR energy echoes this finding, with
the more restrictive MVD simulations to differ at most by less than 20 percent.
Analogously, we adapt the refinement criterion for the 1010 M� halo, but notice no
change from our fiducial case with an MVD of 10.

Convergence behaviour of numerical schemes Here we analyse the conver-
gence behaviour of the energy-based and entropy-conserving methods as a function
of resolution. To this end, we show the total CR energy of our 1012 M� halo in
Fig. 18 and plot the results for initial resolutions of 105, 106, and 107 grid cells as
dotted, dashed, and solid lines, respectively. Results using the energy-based method
are coloured blue, results of the entropy-conserving scheme with red. We use an
MVD of 10 in each case. Either method converges with an increasing number of
mesh cells, albeit to different values, with the discrepancy between the two schemes
decreasing with increasing resolution.
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isolated galaxy simulations. Results using the energy-based method are coloured blue, outcomes of
the entropy-conserving scheme red. Results of the runs with a resolution of 105, 106 and 107 mesh
cells are shown as dotted, dashed and solid lines, respectively.
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5 Conclusions

Here, we study various approaches to integrate CRs into MHD simulations, namely
the energy-based method and the entropy-conserving scheme, in the context of the
moving-mesh code Arepo. To this end, we perform a sequence of 1D shock-tube
tests, with and without accounting for CR acceleration at shocks, as well as using
a static-mesh and a moving-mesh setup. This allows us to analyse the idealized
behaviour of CRs under the influence of adiabatic and non-adiabatic changes using
different numerical schemes, in addition to comparing the performance of the two
mesh approaches. Moreover, we use both numerical methods to simulate the influ-
ence of CRs on the formation of several isolated galaxies in haloes of mass 1010, 1011

and 1012 M� including advective CR transport and feedback in terms of CR injection
by SNe. We find that:

• The moving-mesh approach performs significantly better than the static-mesh
setup, which is due to the comparably high numerical diffusivity of the latter.
This is true regardless of the method used to integrate the CRs (see Fig. 9).

• At very high resolution, the entropy-conserving scheme has a lower error in
CR energy by a factor of 10 when omitting CR acceleration (cf. top row in
Fig. 9) and by a factor of 2 when accounting for CR acceleration at shocks
(see Fig. 13). However, the overall error remains small (less than 2 per cent
and 6 per cent, respectively) for the energy-based method and hence far below
astrophysical uncertainties.

• At low resolution, which is more typical for astrophysical large-scale simula-
tions, both numerical schemes perform almost identical in terms of CR and
thermal energy in a setup without CR acceleration (see Fig. 9). When con-
sidering CR acceleration at the shock, the energy-based method proves to be
numerically much more stable (see Fig. 11) and thus shows significantly lower
deviations from the analytic solutions, particularly in CR entropy (see Fig. 13).

• The shock velocity is determined significantly more accurately using the energy-
based method when CR acceleration at the shock is considered, particularly
at low and intermediate resolutions where deviations are reduced by a factor
of 5 to 6 in comparison to the entropy-conserving scheme (see Fig. 12).

• The simulations of isolated galaxies yield almost identical results using either
numerical method (see Fig. 16). The small variations in SFR and instantaneous
CR energy (see Fig. 15) can be explained by the intrinsic behaviour of the
entropy-conserving scheme, where energy is not explicitly conserved.

In this work, we have demonstrated that the integration of CRs into MHD sim-
ulations using a moving-mesh approach can be properly achieved with either the
energy-based method or the entropy-conserving scheme, as long as active CR ac-
celeration at shocks is omitted. When the latter is considered, the energy-based
method is the preferred choice, in particular for poorly resolved simulations.
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