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ABSTRACT

Ground-based astronomy is set to employ next-generation telescopes with apertures
larger than 25 m in diameter before this decade is out. Such giant telescopes
observe their targets through a larger patch of turbulent atmosphere, demanding
that most of the instruments behind them must also grow larger to make full use
of the collected stellar flux. This linear scaling in size greatly complicates the
design of astronomical instrumentation, inflating their cost quadratically. Adaptive
optics (AO) is one approach to circumvent this scaling law, but it can only be done
to an extent before the cost of the corrective system itself overwhelms that of the
instrument or even that of the telescope. One promising technique for miniaturizing
the instruments and thus driving down their cost is to replace some, or all, of the
free space bulk optics in the optical train with integrated photonic components.

Photonic devices, however, do their work primarily in single-mode waveguides, and
the atmospherically-distorted starlight must first be efficiently coupled into them if
they are to outperform their bulk optic counterparts. This is doable by two means:
AO systems can again help control the angular size and motion of seeing disks
to the point where they will couple efficiently into astrophotonic components, but
this is only feasible for the brightest of objects and over limited fields of view.
Alternatively, tapered fiber devices known as photonic lanterns — with their ability
to convert multimode into single-mode optical fields — can be used to feed speckle
patterns into single-mode integrated optics. They, nonetheless, must conserve the
degrees of freedom, and the number of output waveguides will quickly grow out of
control for uncorrected large telescopes. An AO-assisted photonic lantern fed by
a partially corrected wavefront presents a compromise that can have a manageable
size if the trade-off between the two methods is chosen carefully. This requires
end-to-end simulations that take into account all the subsystems upstream of the
astrophotonic instrument, i.e., the atmospheric layers, the telescope, the AO system,
and the photonic lantern, before a decision can be made on sizing the multiplexed
integrated instrument.

The numerical models that simulate atmospheric turbulence and AO correction
are presented in this work. The physics and models for optical fibers, arrays of
waveguides, and photonic lanterns are also provided. The models are on their own
useful in understanding the behavior of the individual subsystems involved and are
also used together to compute the optimum sizing of photonic lanterns for feeding
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astrophotonic instruments. Additionally, since photonic lanterns are a relatively new
concept, two novel applications are discussed for them later in this thesis: the use of
mode-selective photonic lanterns (MSPLs) to reduce the multiplicity of multiplexed
integrated instruments and the combination of photonic lanterns with discrete beam
combiners (DBCs) to retrieve the modal content in an optical waveguide.
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ZUSAMMENFASSUNG

In der erdbasierten Astronomie sollen noch in diesem Jahrzehnt Teleskope der
nächsten Generation mit Öffnungen von mehr als 25 Metern in Betrieb genom-
men werden. Mit derart riesigen Aperturen werden die Zielobjekte durch einen
größeren Ausschnitt turbulenter Atmosphäre beobachtet, weswegen die meisten die
dahinterliegenden Instrumente entsprechend größer werden müssen, um die aufge-
fangene Strahlungsleistung vollständig nutzen zu können. Die lineare Skalierung
der Größe erschwert das Design astronomischer Instrumente erheblich und führt zu
einem quadratischen Anstieg der Kosten. Die adaptive Optik (AO) ist ein Ansatz,
diese Skalierung zu umgehen. Allerdings ist dies nur bis zu einem gewissen Grad
möglich, bevor die Kosten des Korrektursystems die des Instruments oder sogar
des Teleskopes übersteigen. Eine vielversprechende Methode, das Instrument zu
miniaturisieren und damit die Kosten zu reduzieren besteht darin, einige oder sogar
alle der voluminösen Freistrahloptiken im Strahlengang durch photonische Kompo-
nenten zu ersetzen.

Photonische Bauteile arbeiten jedoch in erster Linie mit Einzelmoden-Wellenleitern.
Damit sie eine bessere Leistung erbringen als die entsprechenden Freistrahloptiken
muss das durch die atmosphärischen Störungen verformte Sternenlicht zunächst ef-
fizient in die Wellenleiter eingekoppelt werden. Dies kann auf zwei Wegen erreicht
werden: AO Systeme können Winkelausdehnung und Bewegung der Bildunschärfe
der Sternscheibchen stark genug korrigieren, um diese effizient in astrophotonische
Komponenten einzukoppeln. Dies ist aber nur für die hellsten Objekte und über
ein begrenztes Sichtfeld möglich. Alternativ können photonische Laternen genutzt
werden, um Multimoden des optischen Feldes in Einzelmoden umzuwandeln und
somit die Specklemustern in die Einzelmoden-Wellenleiter der integrierten Optiken
zu injizieren. Da hierbei die Anzahl der Freiheitsgrade trotzdem erhalten bleiben
muss, wird die Zahl der Ausgangswellenleiter für nicht-korrigierte große Teleskope
schnell unkontrollierbar anwachsen. Durch sorgfältiges Abwägen kann ein Kom-
promiss zwischen diesen beiden Methoden gewählt werden, bei dem man eine AO-
assistierte photonische Laterne mit überschaubarer Größe erhält, in die eine partiell
korrigierte Wellenfront gespeist wird. Dieser Prozess erfordert durchgehende Simu-
lationen unter Einbeziehung aller Subsysteme vor dem astrophotonischen Instrument
-Atmosphäre, Teleskop, AO System und photonische Laterne- bevor eine Entschei-
dung über die Dimensionierung des integrierten Multiplex-Instruments getroffen
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werden kann.

Die numerischen Modelle, die die atmosphärischen Störungen und AO Korrekturen
simulieren, werden in dieser Arbeit präsentiert. Die Physik und Modelle für optische
Fasern, Wellenleiter-Arrays und photonische Laternen werden ebenfalls dargestellt.
Jedes Modell für sich ist nützlich, um die Auswirkung des jeweiligen Subsystems
nachzuvollziehen. In Kombination werden die Modelle verwendet, um die optimale
Konfiguration und Größe der photonischen Laterne für die Einspeisung astropho-
tonischer Instrumente zu berechnen. Da photonische Laternen ein relativ neues
Konzept sind, werden im weiteren Verlauf der Arbeit zusätzlich zwei neuartige An-
wendungen erörtert: der Einsatz modenselektiver photonischer Laternen (MSPLs)
zur Verringerung der Anzahl von Multiplex-Instrumenten sowie die Kombination
photonischer Laternen mit diskreten Strahlkombinierern („Discrete Beam Combin-
ers“: DBCs), um die Moden in einem Lichtwellenleiter zu erfassen.
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C h a p t e r 1

INTRODUCTION

1.1 Astrophysics and instrumentation

Astronomy concerns the investigation of celestial bodies and phenomena through
the analysis of the particles, the electromagnetic waves, and the gravitational waves
they give off. The vast majority of the objects of interest are faint and far away,
making astronomy a photon-starved business that requires the use of large optics to
collect as many photons as possible if any informative signals are to be detected.
In most scientific discoveries, an advancement in instrumentation was behind new
measurements that caused a paradigm shift in thinking, leading to new physics. It
was, after all, thanks to a new instrument at the time that Galileo could convert the
scientific community from Aristotelian cosmology to Copernicanism.

With the upcoming commissioning of three extremely large telescopes (ELTs), some
of the most interesting science goals can finally be addressed. Namely, the direct
detection of an Earth-like exoplanet around a nearby star with biosignatures in its
atmosphere and the detection of the earliest and most distant star-forming regions
from the reionization epoch (Bland-Hawthorn et al., 2009). Identifying an Earth-like
candidate has been the holy grail since the confirmed discovery of the first exoplanet
in 1992 (Mayor et al., 1995). One way this could be achieved is by tracking the
Doppler shift of the stellar spectrum caused by an orbiting companion which requires
high-resolution spectrographs with resolving powers in the� 105 range and a stable
calibration source to suppress systematic noise. Once identified, direct imaging of
the planet will require a diffraction-limited performance with a sub-milliarcsecond
resolution to resolve the highly contrasted faint companion (Labadie et al., 2016).
For a monolithic ELT, this is only possible with adaptive optics (AO) while for a
telescope array, single-mode long baselines are needed.

On the other hand, studying extragalactic objects requires high sensitivity and the
ability to simultaneously disperse light from many objects distributed across a wide
field of view. Thus, the distribution of matter within them could be mapped, and their
kinematics could be understood. In doing so, constraints on proposed cosmological
models can be properly placed.
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1.2 Photonics and integrated optics

With the invention of lasers in the 1960s came a source of high-intensity coherent
light. Soon after, integrated optics (IOs) emerged as means to process optical signals
in waveguides rather than in free space. After the introduction of low-loss optical
fibers, the CW laser diodes, and photolithography, the telecommunication industry
was fast to replace electrical currents and radio waves with light as a data carrier
(Hunsperger, 2009). In such optical networks, fibers connected the transmitter to
the receiver while photonic integrated circuits (PICs) processed the signals at both
ends. Compared to metallic wires, fibers are lighter, immune from EMI, made of
less expensive materials, and most importantly have a large bandwidth. PICs must
replace electrical integrated circuits once fibers are used as transmission media,
and they further offer additional advantages like lower power consumption and are
typically smaller in size.

The platform, i.e., the substrate material on which a PIC is fabricated, depends on the
functionality. A generic circuit would have a material of high refractive index, the
core, impeded in another of a slightly lower refractive index, the cladding, through
which light is guided from one point to another. Structures of varying refractive
indices and compositions manipulate the light en route through the waveguides. A
few examples of the materials considered for the platforms are silicon (Si), silicon
nitride (Si3N4), lithium niobate (LiNbO3), and silica (SiO2). Active materials
capable of emitting light have also been used to integrate laser diodes and amplifiers
in PICs.

In astronomical instruments, fused silica is by far the most used substrate when
operating at the visible or the near-IR. It has a low refractive index of 1.4 ensuring
low Fresnel losses at the free space interfaces, and it is highly stable chemically.
Fluoride glasses like ZBLAN and chalcogenide glasses like GLS can be used for
longer wavelengths, but unlike silica, the photonic functionalities possible with these
materials are limited by the immaturity of the technologies developed to fabricate
structures in them.

For the purposes of this work, a distinction is made between the terms: optics and
photonics. Optics is used to refer to bulk components, e.g., lenses, gratings, and
mirrors, that manipulate light by refracting or reflecting it at air-glass interfaces.
Photonics, on the other hand, is used for situations where the processing is done via
structures of contrasting refractive indices inside waveguides. Moreover, fibers are
distinguished from waveguides in general by their cylindrical geometry and their
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index profile of only two functional materials.

1.3 Astrophotonics

Applying photonic technologies to astronomical instrumentation that process starlight
is known as astrophotonics. This approach leads to various benefits. Photonic com-
ponents are significantly smaller than their bulk optic counterparts and can therefore
miniaturize the instruments they are employed in (Ellis et al., 2019). Smaller instru-
ments require a simpler vacuum and thermal control, directly cutting the cost. The
smaller footprint and the mass production capacity furthermore mean that astropho-
tonic devices are modular and can be easily multiplexed in an efficient manner.
Additionally, advantages like better detector utilization are also possible due to the
mechanical flexibility of photonic components (Leon-Saval et al., 2012). In the fu-
ture, space missions, be it telescopes or roving vehicles, could benefit from compact
components that are less sensitive to vibrations and harsh environmental conditions.

Astrophotonics emerged at the turn of the century when AO systems allowed for
efficient coupling of light into the narrow input waveguides of photonic devices.
This is in contrast to the large multimode fibers (MMFs) that have been in use since
the 1970s to deliver light from the focal plane of the telescope to spectrographs
(Parry, 1998) and interferometers (Coudé du Foresto, 1994) that are desired to be
kept motionless in a controlled environment away from the focus. MMFs as means
for light transport have also been used to maximize the utility of spectrographs and
detectors, allowing for spectra to be measured for each pixel of an extended object’s
image (Roth et al., 2005) and various objects spread across the field of view (FoV)
of a fiber unit (Roth et al., 2018) simultaneously.

Some of the most advanced photonic technologies proposed so far to perform a
variety of functionalities on starlight are photonic spectrographs, integrated beam
combiners, fiber Bragg grating (FBG)-based OH-suppression filters, and photonic
lanterns.

1.4 Synopsis

The introduction of astrophotonics given above alluded to the main reason their
application to astronomical instrumentation has been limited. Specifically, the need
to operate at the single-mode regime and the poor coupling via seeing-limited
telescopes into them. The foremost challenge for these technologies, therefore,
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remains the efficient coupling of starlight into single- and few-mode waveguides
over broader spectral ranges.

The theoretical maximum of the coupling efficiency with which starlight can be
coupled at the diffraction limit into a single-mode fiber (SMF) was first calculated
by Shaklan and Roddier (Shaklan et al., 1988) as 0.78. Seeing conditions can
obviously reduce this attainable efficiency severely. On-sky experiments at the 3.60-
m obscured telescope in La Silla measured an average of 0.05 coupling efficiency
without AO correction (Coudé du Foresto et al., 2000). Recently, ¡ 60% of the
light gathered by the 10-m Subaru telescope was coupled into an SMF, but this was
only possible thanks to the facility’s extreme adaptive optics (ExAO) system and
the use of a pupil apodizer to eliminate the effect of the central obscuration and the
spiders (Jovanovic, Cvetojevic, et al., 2017).

This work revisits the theory of starlight coupling through atmospheric turbulence
into optical waveguides and explores the application of AO systems, photonic
lanterns, and a combination thereof to enable the use of astrophotonic instrumenta-
tion in large astronomical telescopes.

The thesis is organized as follows: the next three chapters introduce the required
physics and mathematical background before presenting some numerical models,
while the three chapters afterward present the results and some novel concepts
examined with the developed numerical tools. Chapter 2 introduces the theory of
atmospheric turbulence and the basic principles of AO systems. Chapter 3 presents
aspects of the theory of optical waveguides relevant to astronomical instruments and
discusses how the coupling of starlight is affected by the atmosphere. In Ch. 4,
details are given on how the numerical models apply the theoretical concepts in Ch.
2 and 3 to simulate scenarios of coupling starlight into optical waveguides through
AO-corrected telescopes.

An experimental setup that was used to verify the constructed models is detailed in
Ch. 5, and both the theoretical and experimental results are given as a published
article in that chapter. Additionally, in the form of published articles, Ch. 6 and 7
present new concepts that use astrophotonic components to optimize coupling and
analyze optical modes, respectively.
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C h a p t e r 2

THEORY OF ATMOSPHERIC TURBULENCE AND ADAPTIVE
OPTICS

In ground-based astronomy, targets are always observed from behind a turbulent
layer of air, complicating the process in various manners. This chapter discusses
the theory of atmospheric turbulence with an introduction to AO systems. Section
2.1 presents the mathematical formulation of Kolmogorov’s theory of turbulence
and how it applies to optical wavefronts and stellar images. Section 2.2 explains the
concept of AO with a description of its basic elements.

2.1 Impact of Earth’s atmosphere on observations

Light waves carrying information from distant celestial objects travel unchanged
through the vastness of space only to get distorted during the last few kilometers
of their journey when they pass through Earth’s atmosphere. To the naked eye,
the effect of the atmosphere manifests itself by the colors of sunsets at day and the
twinkling of stars at night. For modern-day astronomical observatories, the images
formed by ground-based telescopes are blurred, setting a limit on the resolution that
can be achieved (see Fig. 2.1), complicating the design of spectrographs and similar
bulk optics instruments, and reducing the efficiency of astrophotonic devices. The
latter of these effects is the main concern of this work.

In 1609, Galileo was the first to use a telescope to observe a celestial object, but it
was not until Huygens around 1656 that the increase in size and quality of the optics
made it clear that the atmosphere was affecting the observations. In 1704, Newton
wrote in his Opticks (Newton, 1730)

. . . For the Air through which we look upon the Stars, is in a perpetual
Tremor; as may be seen by the tremulous Motion of Shadows cast from
high Towers, and by the twinkling of the fix’d Stars. . . .

. . . The only Remedy is a most serene and quiet Air, such as may
perhaps be found on the tops of the highest Mountains above the grosser
Clouds.
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Figure 2.1: Wavefronts arriving from celestial sources pass through turbulent layers
before they are collected by ground-based telescopes.

2.1.1 Refractive index fluctuations

The atmosphere is a dielectric medium that absorbs and re-emits when radiation
propagates through it. With a refractive index of about 𝑛 � 1.00029 at STP, it can
also refract light waves when fluctuations in the refractive index (a few parts in a
million for a vertical path) are encountered by the propagating waves. The strength
of this effect is not uniform at all altitudes. The part of the atmosphere closest to the
ground, i.e., the planetary boundary layer (PBL), is a turbulent layer a few hundred
meters thick. From there up, turbulence falls off exponentially with altitude in the
higher volume, known as the free atmosphere, with an exceptional local maximum
at the tropopause (see Fig. 2.4).

With a temperature gradient developing between the lower and upper parts of the
atmosphere, convective cells of air rise up. Wind shear caused by the velocity
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difference between the layers mixes the cells of different temperatures when the
Kelvin-Helmholtz instability sets in, and therefore temperature inhomogeneities
ensue. The refractivity of air, 𝑁 — defined as the departure from unity in parts
per million — depends linearly on the pressure, 𝑃, and temperature, 𝑇 . At optical
wavelengths, the following approximation holds (Hardy, 1998):

𝑁 � p𝑛 � 1q � 106 � 77.6
𝑃

𝑇
, (2.1)

where 𝑛 is air’s index of refraction. At 15�C and 1 bar, the dispersion is given by
the Cauchy formula

𝑛p𝜆q � 1�
�

272.6� 1.22
𝜆2



� 10�6. (2.2)

This weak wavelength, 𝜆, dependence of refractivity (Edlén, 1966) means that air
is practically achromatic in the visible and the near-infrared resulting in wavefronts
having the same shape across the two bands. An important property that AO systems
exploit, as seen later in Sec. 2.2.

Apart from the atmosphere, dome seeing — caused by heat sources inside the
telescope enclosure and the temperature gradient between the mirror and the air
above — is easily mitigated by air-conditioning the dome and wind-flushing the
mirror continuously.

2.1.2 Turbulence mechanics

An agreed-upon definition of turbulence does not exist but comparing it to laminar
flow and listing some of its features help identify it. In a laminar flow, the individual
layers of the fluid flow parallel to each other without any mixing between the parts
of each layer and its neighbors. In turbulent flow, different parts of the fluid move
in vortices in directions away from, even opposite to, the overall flow direction of
the fluid. This mixing causes the good diffusivity of turbulent flow that works on
homogenizing the fluid properties, and it leads the kinetic energy of the large-scale
vortices of the turbulent fluid to dissipate at the molecular level as heat by viscous
friction.

The problem of describing the mechanics of airflow in space and time above a
telescope aperture is a complex one. The flow of incompressible fluids is governed
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by Navier-Stokes equations, but their applicability to turbulent flow is limited. These
partial differential equations are notoriously computationally expensive at the length
scales involved in a turbulent flow. They are not yet proven to have a well-behaved
solution, either. Moreover, turbulent flow is chaotic, meaning that a small change to
the initial conditions results in a large deviation in the final state. This again limits
the usefulness and applicability of deterministic models to real-world problems.

A statistical treatment of this random phenomenon is, however, still possible.
Richardson, Stokes, and others gave a qualitative description. They noticed that
the vortices in a turbulent flow have a maximum large scale, i.e., the outer scale
(L0), when the energy is supplied to the fluid, be it by heating or stirring, which
then break down into ever smaller-scale motions down to a minimum spatial scale,
i.e., the inner scale (𝑙0). At that scale, the viscosity of the fluid prevents further
cascading. Richardson summarized this process in the verse (Richardson, 1922)

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity.

Reynolds experimentally identified the fluid properties that cause turbulence to kick
in. The dimensionless Reynolds number

Re � 𝐿0𝑣0
𝜈
, (2.3)

gauges turbulence, where 𝐿0 is the characteristic scale of the problem, say the pipe
diameter or the layer thickness, 𝑣0 is the characteristic velocity at that scale, and 𝜈
is the kinematic viscosity of the fluid.1 The flow is turbulent when Re exceeds a
critical value. Air, with its low viscosity at 𝜈 � 1.5 � 10�6 m2s�1, flows in a fully
developed turbulent regime when driven with wind speeds as slow as a few ms�1 at
scales of only several meters (Glindemann, 1997).

Kolmogorov’s theory of turbulence

Next comes Andrey Kolmogorov, who worked out how to quantify the distribution
of kinetic energy in Richardson’s whirls within the inertial range between the inner

1Notice that the English letter 𝑣 is used for velocity, while the Greek letter nu (𝜈) is used for the
kinematic viscosity.
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and outer scales (Kolmogorov, 1991). He suggested that the kinetic energy of the
largest vortices gets redistributed continuously to smaller and smaller vortices under
the assumption that the motions are isotropic and homogeneous. Conservation of
energy hence demands that for this stationary process, the energy input rate per
unit mass, 𝜀, at the outer scale must equal the dissipation rate of energy as heat.
With this restriction and the postulate that the inner scale vortices are statistically
isotropic, dimensional analysis is possible to derive the power law governing the
spectral distribution of energy. In the reciprocal space, i.e., 𝑘-space, the energy, 𝔈,
cascades from low spatial frequencies to high spatial frequencies.

The energy injection rate per unit mass is by definition (Frisch, 1995; Glindemann,
1997)

𝜀 � 𝔈pL0q
𝑚𝑡pL0q �

𝔈p𝑙0q
𝑚𝑡p𝑙0q �

𝑣2

2𝑡p𝑙q � const., (2.4)

where 𝑚 is the mass, 𝑡 is the vortex turnover time, and 𝑣 is the velocity.2 The kinetic
energy transfer time through a vortex of size 𝑙 is 𝑙{𝑣 which yields

𝜀9𝑣
3

𝑙
Ñ 𝑣9p𝜀𝑙q1{3. (2.5)

Since the energy is proportional to 𝑣2, one gets

𝔈p𝑙q9p𝜀𝑙q2{3. (2.6)

In reciprocal space, the energy spectrum Φp𝑘q in the spatial frequency range r𝑘, 𝑘�
d𝑘s

Φp𝑘qd𝑘9𝑘�2{3, (2.7)

with 𝑘 � 2𝜋{𝑙 the angular spatial frequency. The energy is only governed by the
scale size 𝑘 and the injection rate 𝜀 in the inertial range. Integrating Eq. (2.7) and
using Eq. (2.6) gives

Φp𝑘q9𝜀2{3𝑘�5{3. (2.8)
2The velocity 𝑣 is not the total velocity of the vortex which is mainly driven by advection, but it

is rather the velocity difference across the distance 𝑙 (Frisch, 1980).
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Which is Kolmogorov’s 5{3 law that is valid within the inertial range, L0 ! 𝑙 ! 𝑙0.
This is true for the modes in one dimension. Tatarski (Tatarski, 2016) applied
Kolmogorov’s work on velocity fields to refractive index fluctuations and extended
this power spectrum into three dimensions. To get the three-dimensional spectrum,
one needs to integrate over the unit sphere. The relation

Φp®𝑘q � �dΦ{d𝑘
2𝜋𝑘

, (2.9)

holds. This gives

Φp𝑘q � 4𝜋𝑘2Φp®𝑘q, (2.10)

which, together with Eq. (2.8), leads to

Φp®𝑘q9𝑘�11{3. (2.11)

Again, this power spectrum of refractive index variations is only valid within the
inertial range L0

�1 ! 𝑘 ! 𝑙0
�1. The bounds of the inertial range vary with altitude

and from site to site. The inner scale at which dissipation starts lays between 1 mm
near the ground and 1 cm at the tropopause (F. Roddier, 1981). The outer scale
varies over a larger range, between a few meters close to the ground and the thickness
of the entire turbulent layer in the free atmosphere, which can reach a few hundred
meters (Colavita, 1990). For large telescopes and long-baseline interferometers,
the outer scale quantifies the magnitude of tip/tilt in the distorted wavefront, which
means that the actual overall tilt is smaller than that predicted by Kolmogorov’s
spectrum. To account for this finite outer scale, von Kármán proposed the following
modification to Kolmogorov’s spectrum (Welsh, 1997)

Φp®𝑘q9
�
|®𝑘 |2 � 1

L02


�11{6
. (2.12)

One step further is to incorporate the inner scale, hence the modified von Kármán
spectrum (Hardy, 1998)

Φp®𝑘q9
�
|®𝑘 |2 � 1

L02


�11{6
𝑒�|®𝑘 |2{|®𝑘 𝑖 |2 , (2.13)
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Figure 2.2: Log-log plots of Kolmogorov, von Kármán, and modified von Kármán
spectra. Vertical lines on the left indicate the outer scales, while the vertical line on
the right indicates the inner scale for the modified von Kármán spectrum. Here, the
spectra are functions of the linear, 𝑓 , rather than the angular, 𝑘 , spatial frequency.

where ®𝑘 𝑖 � 5.92{𝑙0. Figure 2.2 shows Kolmogorov and von Kármán spectra for
varying outer scales.3

A mathematical tool introduced by Kolmogorov to describe the spatial structure
of a random process is the structure function that measures the expectation of the
difference of the values of a random variable at two points in space (or time). For a
random variable 𝑥, the structure function measured at positions ®𝑟1 and ®𝑟2 is defined
as

𝐷𝑥p®𝑟1, ®𝑟2q � x|𝑥p®𝑟1q � 𝑥p®𝑟2q|2y. (2.14)

The x�y represents an ensemble average. The structure function for isotropic ho-
mogeneous turbulence (and all higher statistical moments) must depend on the
separation between the two points, 𝑟12 � | ®𝑟2 � ®𝑟1 | rather than their absolute loca-
tions. Since energy per unit mass (𝑣2{2) has a 2{3 power-law dependence on the

3An alternative derivation of Kolmogorov’s law based on a units-matching argument is given in
App. A.
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spatial scale (Eq. (2.6)), the structure function of the velocity field (also 9𝑣2) must
follow the same, i.e.,

𝐷®𝑣p𝑟12q � x|®𝑣p®𝑟q � ®𝑣p®𝑟 � 𝑟12q|2y � 𝐶2
𝑣 𝑟12

2{3. (2.15)

The velocity structure constant 𝐶2
𝑣 determines the turbulence strength. Specifically,

how well correlated the velocities between two points separated by 𝑟12 are. The
variations in the velocity field, however, do not produce optical aberrations on
their own. It is because the stirring of air involves mixing pockets from layers of
different altitudes, ergo layers with temperature inhomogeneities, that the wavefronts
get distorted. At a pressure equilibrium, the different temperatures translate into
different densities and eventually different indices of refraction (see Eq. (2.1)).
Since the mechanical turbulence drives the variations in temperature and refractive
index, they also follow Kolmogorov’s law for the velocity field, albeit with a different
proportionality constant. The temperature structure function is, therefore,

𝐷𝑇p𝑟12q � x|𝑇p®𝑟q � 𝑇p®𝑟 � 𝑟12q|2y � 𝐶2
𝑇𝑟12

2{3. (2.16)

With the refractivity dependence on temperature as given by Eq. (2.1), the structure
function of the refractive index is

𝐷𝑛p𝑟12q � 𝐷𝑁p𝑟12q � x|𝑁p®𝑟q � 𝑁p®𝑟 � 𝑟12q|2y � 𝐶2
𝑁𝑟12

2{3. (2.17)

This is Obukhov’s law (Hardy, 1998). Of interest here are the statistics of the phase,
𝜙p𝑥, 𝑦q, rather than the refractive index fluctuations. For a monochromatic plane
wave traveling downward from a star at zenith through a turbulent layer of thickness
𝛿ℎ with the telescope at height ℎ, the phase shift introduced by the refractive index
field 𝑛p𝑥, 𝑦q into the plane wave is

𝜙p®𝑟𝑇q � 𝑘

» ℎ�𝛿ℎ

ℎ

d𝑧𝑛p®𝑟𝑇 , 𝑧q, (2.18)

where 𝑘 � 2𝜋{𝜆 is the wavenumber, and ®𝑟𝑇 � p𝑥, 𝑦q is the position vector in the
transverse plane. The turbulence layer is assumed to be thin enough for diffraction
effects to take place but at the same time larger than the correlation length of
the refractive index distortions. The auto-correlation function of the wavefront
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𝜓p®𝑟q � expr𝑖𝜙p®𝑟qs, known as the coherence function (a measure of how well related
is the field at one position to its value at neighboring positions), is given by

𝐵𝜓p®𝑟𝑇q � x𝜓p®𝑟 � ®𝑟𝑇q𝜓�p®𝑟qy, (2.19)

where � indicates a complex conjugate. When the turbulence layers are much thicker
than the vortices (the Markov approximation), independent variables from different
altitudes through the layer contribute to the phase shift of the emerging wavefront.
This allows the use of the central limit theorem to deduce that the phase has Gaussian
statistics. With 𝜓�p®𝑟q � exp r�𝑖𝜙p®𝑟qs,

𝐵𝜓p®𝑟𝑇q � xexp r𝑖 p𝜙 p®𝑟q � 𝜙 p®𝑟 � ®𝑟𝑇qqsy

� exp
�
�1

2

A��𝜙p®𝑟q � 𝜙p®𝑟 � ®𝑟𝑇q
��2E� , (2.20)

where the fact that the expectation value of a Gaussian signal is also a Gaussian,
i.e., xexpp𝑖𝑎𝑥qy � exp

��𝑎2x𝑥2y{2�, was used. The term in the argument of the
exponential in Eq. (2.20) is recognized as the structure function of the phase 𝐷𝜙p®𝑟q
which yields

𝐵𝜓p®𝑟𝑇q � exp
�
�1

2
𝐷𝜙p®𝑟𝑇q

�
. (2.21)

In general, a structure function of any variable 𝑥 can be expressed in terms of the
coherence function by expanding the square in the structure function definition (Eq.
(2.14)). For a real function 𝜙p®𝑟q,

𝐷𝜙p®𝑟q � 2r𝐵𝜙p0q � 𝐵𝜙p®𝑟qs. (2.22)

The auto-correlation of the phase is

𝐵𝜙p®𝑟𝑇q � x𝜙p®𝑟q𝜙p®𝑟 � ®𝑟𝑇qy

� 𝑘2
» ℎ�𝛿ℎ

ℎ

» ℎ�𝛿ℎ

ℎ

d𝑧
1

d𝑧
2x𝑛p®𝑟, 𝑧1q𝑛p®𝑟 � ®𝑟𝑇 , 𝑧

2qy

� 𝑘2
» ℎ�𝛿ℎ

ℎ

d𝑧
1

» ℎ�𝛿ℎ�𝑧1

ℎ�𝑧1
d𝑧𝐵𝑁p®𝑟𝑇 , 𝑧q, (2.23)
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where the dummy integration variable 𝑧2 was substituted by 𝑧 � 𝑧
1 to introduce the

refractive index auto-correlation function 𝐵𝑁p®𝑟𝑇 , 𝑧q � x𝑛p®𝑟, 𝑧1q𝑛p®𝑟 � ®𝑟𝑇 , 𝑧 � 𝑧
1qy.

The first integral amounts to the thickness of the layer and again making use of the
fact that the turbulence layer thickness 𝛿ℎ is much larger than the correlation scale
(the Markov approximation), the integration can be taken over all of space to get

𝐵𝜙p®𝑟𝑇q � 𝑘2𝛿ℎ

» 8

�8
d𝑧𝐵𝑁p®𝑟𝑇 , 𝑧q. (2.24)

Back to Eq. (2.22) with a substitution

𝐷𝜙p®𝑟𝑇q � 2
�
𝐵𝜙p®0q � 𝐵𝜙p®𝑟𝑇q

�
� 2𝑘2𝛿ℎ

» 8

�8
d𝑧

�
𝐵𝑁p®0, 𝑧q � 𝐵𝑁p®𝑟𝑇 , 𝑧q

�

� 2𝑘2𝛿ℎ

» 8

�8
d𝑧

��
𝐵𝑁p®0, ®0q � 𝐵𝑁 p®𝑟𝑇 , 𝑧q

	
�
�
𝐵𝑁p®0, ®0q � 𝐵𝑁p®0, 𝑧q

	�

� 𝑘2𝛿ℎ

» 8

�8
d𝑧

��
𝐷𝑁p®𝑟𝑇 , 𝑧q � 𝐷𝑁p®0, 𝑧q

	�
. (2.25)

But from Obukhov’s law 𝐷𝑁p𝑟12, 𝑧q � 𝐶2
𝑁
|®𝑟𝑇 |2{3 � 𝐶2

𝑁
p𝑟12

2 � 𝑧2q1{3, where 𝑟12 �
|®𝑟𝑇 |. This reads

𝐷𝜙p𝑟12q � 𝑘2𝛿ℎ𝐶2
𝑁

» 8

�8
d𝑧

�
p𝑟12

2 � 𝑧2q1{3 � |𝑧 |2{3
�

� 2
5
Γ
�1

2
�
Γ
�1

6
�

Γ
�2

3
� 𝑘2𝛿ℎ𝐶2

𝑁𝑟12
5{3

� 2.914𝑘2𝛿ℎ𝐶2
𝑁𝑟12

5{3, (2.26)

where Γp�q is the gamma function. Substituting for the phase structure function
𝐷𝜙p𝑟12q in Eq. (2.22), one gets the wavefront coherence function as

𝐵𝜓p𝑟12q � exp
�
�1

2

�
2.914𝑘2𝛿ℎ𝐶2

𝑁𝑟12
5{3

	�
. (2.27)

This is the wavefront coherence function for an infinitesimal layer of thickness
𝛿ℎ. An integration is in order to get the coherence function over the whole of the
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atmosphere. With the refractive index structure constant, 𝐶2
𝑁
� 𝐶2

𝑁
p𝑧q, dependant

on position along the propagation path in general,

𝐵𝜓p𝑟12q � exp
�
�1

2

�
2.914𝑘2𝑟12

5{3
»

d𝑧𝐶2
𝑁 p𝑧q


�
, (2.28)

where the integral is along the line of sight. Making use of the fact that the
atmosphere is generally stratified in parallel horizontal layers, 𝐶2

𝑁
is only dependent

on altitude ℎ and does not vary horizontally (F. Roddier, 1999). This yields

𝐵𝜓p𝑟12q � exp
�
�1

2

�
2.914𝑘2𝑟12

5{3 sec 𝛾
»

dℎ𝐶2
𝑁 pℎq


�
, (2.29)

where 𝛾 is the zenith angle of the source and therefore sec 𝛾 accounts for the airmass,
i.e., the apparent increased thickness of the layers.

The next development is due to Fried (Fried, 1966), who studied the effect of
turbulence on the structure of the images formed by telescopes. The factor in the
exponent in Eq. (2.29)

𝑟0 �
�
0.423𝑘2 sec 𝛾

»
dℎ𝐶2

𝑁pℎq
��3{5

, (2.30)

is defined as Fried’s parameter. It sums up the strength of the turbulence along the
layer, accounting for the airmass and the wavelength. The phase structure function
and the wavefront coherence function can be then simply expressed in terms of 𝑟0

as

𝐷𝜙p𝑟12q � 6.88
�
𝑟12
𝑟0


5{3
, (2.31)

𝐵𝜓 p𝑟12q � exp

�
�3.44

�
𝑟12
𝑟0


5{3�
. (2.32)

Fried chose the proportion factor in Eq. (2.30) such that a telescope of diameter
𝐷 � 𝑟0 will have an equal contribution from atmospheric seeing and diffraction to
the image resolution as explained later in Sec. 2.1.3. The near-Gaussian form of
the wavefront coherence function means that the seeing-limited PSF, i.e., the seeing
disk, is also nearly Gaussian in shape since the PSF is the Fourier transform of the
coherence function as shown later in Sec. 2.1.3.
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At this point, the formulation is mature enough to set the proportion factors of
the Kolmogorov (Eq. (2.11)) and von Kármán (Eq. (2.12)) spectra. The refractive
index fluctuations are driven by kinetic energy and, therefore, follow the same spatial
frequency statistics. For Kolmogorov’s spectrum

Φ𝑁p®𝑘q � 0.033𝐶2
𝑁 𝑘

�11{3, (2.33)

and in terms of Fried’s parameter

Φ𝑁p®𝑘q � 0.023𝑟0
�5{3𝑘�11{3. (2.34)

The von Kármán spectrum becomes

Φ𝑁p®𝑘q � 0.033𝐶2
𝑁

�
|®𝑘 |2 � 1

L02


�11{6
. (2.35)

Temporal correlation of the refractive index inhomogeneities

The treatment so far has concerned the spatial distribution of the refractive index
inhomogeneities at a fixed time. The index is, nevertheless, also changing with time,
𝑡, and a temporal structure function can be used to describe the temporal evolution
of such fluctuations. At a fixed point in space ®𝑟, over a time period 𝜏

𝐷𝑁p𝜏q �
A��𝑛p®𝑟, 𝑡q � 𝑛p®𝑟, 𝑡 � 𝜏q��2E . (2.36)

An approximation attributed to Taylor (Taylor, 1938), known as the frozen flow
hypothesis, states that the lifetimes of the intrinsic changes in the temperature inho-
mogeneities are much longer than the time it takes the wind to carry the turbulence
pattern downstream over the aperture, i.e.,

𝑛p®𝑟, 𝑡 � 𝜏q � 𝑛p®𝑟 � ®𝑣𝜏, 𝑡q. (2.37)

This is to say that the refractive index at a given point ®𝑟 , a time 𝜏 later is related
to the index at the current time, at a point ®𝑣𝜏 away where ®𝑣 is the wind velocity.
Therefore, the temporal evolution is directly related to the spatial fluctuations and
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the statistics developed so far holds with a simple substitution of 𝑟12 by |®𝑣𝜏 |. The
temporal structure function for refractivity becomes

𝐷𝑁p𝜏q �
A��𝑛p®𝑟, 𝑡q � 𝑛p®𝑟 � ®𝑣𝜏, 𝑡q��2E � 𝐶2

𝑁 |®𝑣𝜏 |2{3. (2.38)

Similar to Eq. (2.26), the temporal phase structure function is

𝐷𝜙p𝜏q � 2.914𝑘2 sec 𝛾𝜏5{3
» 8

0
dℎ𝐶2

𝑁𝑣
5{3, (2.39)

where 𝑣 is the modulus of the mean propagation velocity. In terms of 𝑟0,

𝐷𝜙p𝜏q � 6.88
�
𝑣𝜏

𝑟0


5{3
�
�
𝜏

𝜏0


5{3
, (2.40)

where 𝜏0 � 0.314𝑟0{𝑣 is the atmospheric coherence timescale. This sets the
most stringent limitation on any system that attempts to correct for atmospheric
turbulence, as seen later in Sec. 2.2.3. A characteristics bandwidth of an AO system
was defined by Greenwood as the frequency at which the residual phase variance
equals 1 rad2 (Greenwood, 1977) and he calculated it as

𝑓𝐺 �
�
0.102𝑘2 sec 𝛾

» 8

0
dℎ𝐶2

𝑁pℎq𝑣5{3pℎq
�3{5

. (2.41)

For a single layer or a constant velocity profile, i.e., 𝑣pℎq � 𝑣, Greenwood’s fre-
quency can be given in terms of 𝑟0 (Eq. 2.30) as

𝑓𝐺 � 0.426
𝑣

𝑟0
. (2.42)

Scintillation

So far the focus has been on phase fluctuations but the size of the refractive index
inhomogeneities involved and the distances traversed by wavefronts between the
atmospheric layers and the telescope inevitably give rise to amplitude distortions as
well.

For planar waves, the amplitude of the field is uniform all over the wavefront, and the
local energy flow is in the direction perpendicular to the wavefront, i.e., the direction
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of the rays. Atmospheric distortion leads to a redistribution of energy, which means
that the amplitude will vary from one position to another on the wavefront. Once
the intensity fluctuations set in the wavefront, they will keep growing with distance
even after passing the turbulence layer, and therefore the greatest contribution to the
effect is due to the higher layers. The stochastic temporal variation of the intensity
of a point source as seen by an observer behind a turbulence layer is the cause of the
familiar phenomenon of stars twinkling and changing color, known in the literature
as scintillation.

Both phase and amplitude variations of the wavefront contribute to the degradation
of the image quality and coupling, but the fluctuations in amplitude contribute much
less to that degradation. The loss in Strehl ratio due to amplitude variations is only
a few percent in the infrared (F. Roddier et al., 1986). The effect is clearly reduced
when the telescope is close to the turbulence layers. Moreover, apertures larger
than the Fresnel radius average the inhomogeneities out over multiple uncorrelated
patches, further reducing the impact of scintillation in an effect known as aperture
averaging. Figure 2.3 shows the scintillation resulting from phase fluctuations
propagating to a distant aperture. Only turbulence layers 10 km or higher would
have an appreciable scintillation effect when a large 𝑟0 is present, and a large aperture
is used.

Scintillation is therefore only relevant to high-performance ExAO systems used for
direct detection of exoplanets and is therefore incorporated in the numerical models
of Ch. 4 but omitted in the results of Ch. 5. Including the effect would lead
to high computational costs without a discernible impact on the results. When
high-precision photometry is being considered, the effect needs to be included as
the change of 0.01 to 1.0 percent in intensity due to scintillation might limit the
sensitivity of a transit detection instrument (Osborn, 2015).

Structure constant profile

Several groups have modeled the nighttime profile 𝐶2
𝑁

as a function of height ℎ.
One is the modified Hufnagel-Valley (Roggemann et al., 2018; Valley, 1980)

𝐶2
𝑁pℎq � 8.16� 10�54ℎ10𝑒�ℎ{1000 � 3.02� 10�17𝑒�ℎ{1500 � 1.90� 10�15𝑒�ℎ{100.

(2.43)
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Figure 2.3: Simulated scintillation (intensity fluctuations) in arbitrary units at 𝜆 �
1550 nm due to an atmospheric layer (a) 1, (b) 5, (c) 10, and (d) 20 km above the
aperture. The simulated phase screen is 10� 10 m2 with 𝑟0 � 0.2 m.

A generalized model with free parameters in place of the constants in Eq. (2.43)
can be adjusted to match measured 𝐶2

𝑁
values at specific sites (Hardy, 1998).The

model’s main features are the two distinct maxima at two turbulence layers, one
near the ground and the other at about 10 km in the tropopause, as shown in Fig.
2.4. Observatories at high altitudes on narrow summits, e.g., Mauna Kea, have to
deal with the weaker tropopause as the dominant layer while lower telescopes, e.g.,
Calar Alto, need to contend with both the PBL and the higher layer. For a site above
sea level that has little relief from surrounding terrain, the profile would have an
extended tail for the PBL caused by the topography.

2.1.3 Image formation through turbulence

Coupling into waveguides, similar to imaging, requires having the point source
forming as small as possible an image in terms of angular size at the focal plane.
The argument and mathematical formulation established in this section for image
formation, therefore, hold for coupling correspondingly.

While the functions in Eq. (2.31) and (2.40) give statistical insight into the impact
of 𝑟0 on the phase at the aperture of a telescope, imaging and coupling occur at the
focal plane. Waves passing through apertures get diffracted and form patterns that
deviate from the geometric shadow of that aperture at the far-field.

Diffraction theory

Huygens’ principle states that each point in the aperture opening acts as a source
of spherical wavelets that mutually interfere while propagating to the observation
plane. The resulting pattern is therefore simply given by the superposition of those
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Figure 2.4: The modified Hufnagel-Valley profile of 𝐶2
𝑁

plotted in semi-log scale.
The altitudes and the relative strength of the two dominant layers are evident by the
local maxima in the curve at the PBL and the tropopause. This profile results in an
𝑟0 � 17.8 cm at 𝜆 � 500 nm.

wavelets. Although an approximation of the phenomenon, the principle works very
well in predicting images formed by apertures of much larger dimensions than the
wavelength. The Fraunhofer diffraction formula goes further and takes advantage
of the fact that the spherical wavelets are effectively plane waves in the far-field and
at the focal plane of a converging optic to express the complex amplitude, i.e., the
time-independent part of the wave function, at the focal plane as a Fourier transform
of any fully transmissive aperture function. Appendix B lays out the derivation
of the Fraunhofer diffraction formula, the Fourier transform relation between the
aperture and the focal fields, and the diffraction pattern of circular apertures.

Turbulence effects on imaging

Eq. (B.16) may be used to calculate the structure of the image at the focal plane
given the optical field at the aperture plane but to gain insight into the statistics of
how turbulence degrades the images, the concept of transfer functions is now in
order. If 𝑇aperp ®𝑟𝑛q is the aperture function and 𝜓p ®𝑟𝑛q is the incident wavefront, then
𝑇aperp ®𝑟𝑛q𝜓p ®𝑟𝑛q is the field at the pupil. For a clear aperture, 𝑇aperp ®𝑟𝑛q is unity inside
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the pupil and zero everywhere else. The coordinate ®𝑟𝑛 � ®𝑟𝑇{𝜆 is the normalized
spatial coordinate in the aperture plane. The intensity on the focal plane as given by
Eq. (B.9) is

𝐼p ®𝑓 q9 ��F �
𝜓p ®𝑟𝑛q𝑇aperp ®𝑟𝑛q

���2 � F
�»

d ®𝑟𝑛𝜓p ®𝑟𝑛q𝜓�p ®𝑟𝑛 � ®𝑓 q𝑇aperp ®𝑟𝑛q𝑇aper
�p ®𝑟𝑛 � ®𝑓 q

�
,

(2.44)

where the Wiener-Khinchin-Einstein theorem was utilized to express the power
spectrum of the pupil optical field as the Fourier transform of the autocorrelation
function of the same field and 𝑓 is the spatial frequency. The spatial frequency
composition of a long exposure image is calculated by taking the expectation value
over many realizations of the atmosphere

x𝐼p ®𝑓 qy �
B»

d ®𝑟𝑛𝜓p ®𝑟𝑛q𝜓�p ®𝑟𝑛 � ®𝑓 q𝑇aperp ®𝑟𝑛q𝑇aper
�p ®𝑟𝑛 � ®𝑓 q

F

�
»

d ®𝑟𝑛x𝜓p ®𝑟𝑛q𝜓�p ®𝑟𝑛 � ®𝑓 qy𝑇aperp ®𝑟𝑛q𝑇aper
�p ®𝑟𝑛 � ®𝑓 q � 𝐵𝜓p ®𝑓 q𝑇telep ®𝑓 q, (2.45)

where 𝐵𝜓p ®𝑓 q is recognized as the coherence function of the atmosphere in Eq. (2.32)
evaluated at ®𝑟 � ®𝑓 𝜆 and since it is independent of the spatial coordinate as argued
in Sec. 2.1.2, it could be taken out of the integral and serves as the atmospheric
transfer function. The telescope transfer function 𝑇telep ®𝑓 q was introduced as the
autocorrelation of the pupil function. Equation (2.45) is the optical transfer function
(OTF) for long exposure images and can therefore be used to gain some insight into
the anatomy of such images.

A more general definition of the resolving power of an optical system, such as the
atmosphere-telescope system under study here, is given by (Fried, 1966)

R �
»

d ®𝑓 𝐵𝜓p ®𝑓 q𝑇telep ®𝑓 q. (2.46)

At the diffraction limit, the wavefront is well correlated and 𝐵𝜓p ®𝑓 q � 1. The
resolving power is

R �
»

d ®𝑓 𝑇telep ®𝑓 q � 𝜋

4

�
𝐷

𝜆


2
, (2.47)
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where 𝐷 is the aperture diameter. In the limit of strong turbulence, i.e., a large
aperture, 𝑇telep ®𝑓 q � 1 whereas 𝐵𝜓p ®𝑓 q is non-zero

R �
»

d ®𝑓 𝐵𝜓p ®𝑓 q �
»

d ®𝑓 exp

�
��3.44

�
𝜆 ®𝑓
𝑟0

�5{3��

� 6𝜋
5
Γ

�
6
5


�
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�
𝜆

𝑟0
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�
𝑟0
𝜆

	2
. (2.48)

where one arrives at the fact that the two transfer functions, the atmosphere’s and
the telescope’s, become equal when 𝐷 � 𝑟0. Not a coincidence since this is by
definition what Fried’s parameter is. The factor 0.423 in the definition of 𝑟0 in Eq.
(2.30) was chosen by Fried for this equality to hold.

Therefore, the structure of the image formed is dependent on both, the diameter
of the telescope 𝐷 and 𝑟0. The ratio 𝐷{𝑟0, known as the turbulence strength,
determines what one sees at the focal plane. For small telescopes with 𝐷{𝑟0   1,
the Airy disc � 𝜆{𝐷 is larger than the seeing disc � 𝜆{𝑟0 and the broadening
caused by turbulence is not seen because the wavefront is fairly correlated within
the aperture. An overall tilt, however, still exists which can shift the centroid of
the PSF randomly by � 𝜆{𝑟0 over time scales longer than the coherence time, 𝜏0.
This is known as image motion, and it causes images taken over exposure times
longer than 𝜏0 to be smeared over an area of a diameter of � 𝜆{𝑟0. For 𝐷{𝑟0   0.5
this would still be smaller than the Airy disk, and no correction is necessary, but
when 0.5   𝐷{𝑟0   3, a simple tip/tilt correction of the wavefront can stabilize the
long exposure images. This is particularly important for coupling into waveguides.
As turbulence strength increases, the wavefront within the aperture is stitched from
uncorrelated patches of diameter 𝑟0 that interfere to form a diffraction pattern at the
focal plane composed of speckles spread over a distance of � 𝜆{𝑟0 and each having
an angular size � 𝜆{𝐷. Figure 2.5 shows the short and long exposure PSFs for
different scenarios of turbulence strength.

Since energy is conserved, smearing the image over a larger seeing disc will nec-
essarily reduce the peak value of the PSF. A useful measure to quantify the image
quality is the Strehl ratio. It is defined as the ratio of the on-axis intensity of the
seeing-limited PSF to that of a hypothetical diffraction-limited PSF. It could be
defined for either on-axis or peak intensity values, but both definitions yield the
same result for tip/tilt corrected wavefronts.



23

Figure 2.5: Wavefronts and PSFs at increasing 𝐷{𝑟0. Left panels are the wavefronts,
middle panels show the short exposure (𝑡   𝜏0) image, and right panels show the
normalized long exposure (𝑡 " 𝜏0) images.
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To derive the formula for the Strehl ratio, the Fresnel-Kirchhoff diffraction integral
is required (Born et al., 2013), and the derivation is given in App. B. When the
phase is random, and only its statistics are known, the following approximation

SR � 𝑒
�𝜎2

𝜙 , (2.49)

known as the extended Maréchal approximation (Maréchal, 1947) holds for rms
phase errors 𝜎𝜙 � xp𝜙 � 𝜙q2y   2 rad. The phase rms, 𝜎𝜙, is related to the rms
OPD error by 𝜎𝜙 � 𝑘𝜎𝜓 . The Strehl ratio, therefore, takes values SR P r0, 1s. For
a plane wavefront with 𝜙 � const., SR � 1. Equation 2.49 shows how the image
quality degrades exponentially with the mean square error of the phase.

2.1.4 Wavefront representation

With full knowledge of a distorted wavefront, one has a choice on how to represent
it mathematically for further processing. A zonal representation presents the local
gradient values on a discrete grid, while modal representations decompose the
wavefront into a sum of familiar basis functions over the aperture. For low-order
distortions, modal representations are more accurate in describing the wavefront
when an equivalent number of free parameters is considered for both approaches.

Because of the energy cascade of Kolmogorov’s spectrum, the distorted wavefronts
are smoothly varying within the inertial range. This allows their expansion in a
series of orthogonal basis functions. Physicists and optical engineers use Zernike
polynomials (Zernike et al., 1934) to decompose complex wavefronts since they are
orthogonal on a unit disk and the lowest order polynomials of that family correspond
to the common optical aberrations.

Noll presented a normalization that made the polynomials suitable for representing
atmospheric turbulence (Noll, 1976). In an unobscured circular aperture, the Zernike
modes are

𝑍𝑚𝑛 p𝜌, 𝜃q �
d

2p𝑛 � 1q
1� 𝛿𝑚0

𝑅𝑚𝑛 p𝜌q
$&
%cosp𝑚𝜃q,

sinp𝑚𝜃q,
(2.50)

where
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Figure 2.6: The first ten Zernike modes, arranged in groups according to their
common radial and azimuthal orders. The indices follow Noll’s single indices
convention. The optical aberrations associated with the polynomials, in order, are
piston, tip, tilt, defocus, oblique astigmatism, vertical astigmatism, vertical coma,
horizontal coma, vertical trefoil, and oblique trefoil.

𝑅𝑚𝑛 p𝜌q �
p𝑛�𝑚q{2¸
𝑠�0

p�1q𝑠p𝑛 � 𝑠q!𝜌𝑛�2𝑠

𝑠!
�
𝑛�𝑚

2 � 𝑠
�
!
�
𝑛�𝑚

2 � 𝑠
�
!
, (2.51)

and 𝛿𝑚0 is the Kronecker delta. Any arbitrary phase distortion 𝜙p𝜌, 𝜃q over a unit
disk can be decomposed as a series of Zernike modes

𝜙p𝜌, 𝜃q �
8̧

𝑗�0
𝑎 𝑗𝑍 𝑗p𝜌, 𝜃q. (2.52)

Given the orthogonality property, the coefficients t𝑎 𝑗u are given by

𝑎 𝑗 �
¼

𝜌d𝜌d𝜃𝜙p𝜌, 𝜃q𝑍 𝑗p𝜌, 𝜃q. (2.53)

The normalization under the square root in Eq. (2.50) is such that the rms value is
unity over the unit disk. The integer index 𝑛 is the radial order that determines the
degree of the radial polynomial 𝑅𝑚𝑛 , while 𝑚 determines the azimuthal frequency.
The effect of a central obscuration on the accuracy of the representations is negligi-
ble, making it more suitable for representing aberrations in astronomical telescopes.
Figure 2.6 shows the first ten Zernike polynomials.

Zernike polynomials are, however, not strictly statistically independent. A set that
has statistically independent coefficients is the Karhunen-Loéve expansion. For low-
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order terms, the difference is small, and the simplicity of the Zernike polynomials
outweighs the accuracy and the economy of the Karhunen-Loéve functions. They
are therefore used for the numerical models in Sec. 4.5.

2.2 Adaptive optics (AO)

Modern-day ground-based astronomy is dominated by large and very large tele-
scopes that are affected by the properties of the atmosphere. Systematic properties
like refraction and dispersion can be easily counteracted through the careful opti-
cal design of the telescope itself and additional corrective static optics behind it.
Dynamic random distortions due to turbulence, however, require real-time compen-
sation by an optomechanical system that adapts to the ever-changing state of the
atmosphere.

2.2.1 Historical context and state of the art of AO systems

Babcock was the first to propose using adaptive control to correct images degraded
by atmospheric turbulence. He proposed a system that employs an active optical
element that corrects phase distortions based on signals received from a wavefront
sensing device (Babcock, 1953). The cost of implementing his suggestion prevented
its adoption at the time until the defense agencies got interested in using segmented
mirrors for pre-correcting laser beams to focus them on far targets and image the
newly launched artificial satellites during the space race. In 1972, Hardy and his
colleagues at Itek Optical Systems, commissioned by ARPA, started building the first
AO system (Hardy, 1998). The real-time atmospheric compensator (RTAC) had a 21
actuators deformable mirror, a shearing interferometer as a wavefront sensor, and an
analog computer to reconstruct the wavefront. Upon declassification, astronomers
started looking into applying AO to astronomy where the fainter targets presented a
challenge for the wavefront sensors. ESO and NOAO led the efforts of developing
low-order, more sensitive AO systems suitable for IR astronomy where ESO’s effort
culminated with the prototype instrument ’COME-ON’ (Rigaut et al., 1991) on the
3.6 m telescope at La Silla while NOAO’s first prototype was successfully tested at
the CFHT in 1993.

To overcome the limitation on the degrees of freedom set by the brightness of the
reference star, laser guide stars (LGSs) were proposed (Foy et al., 1985) to create
artificial light sources anywhere in the telescope’s FoV. Thus opening the sky to AO
systems.
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Figure 2.7: Elements of a basic AO system configured in a closed loop.

2.2.2 Elements of an AO system

The simplest AO system consists of a wavefront corrector, usually a deformable
mirror (DM), a wavefront sensor (WFS), and a control system, as depicted in Fig.
2.7. The light from a reference star, known as the guide star, reflects off the DM
and is directed towards the WFS which measures the wavefront error. The control
system uses the WFS measurements to generate the commands that are actively sent
to the DM with the target of minimizing the error. The DM compensates for the
error by introducing equal but opposite path lengths to the wavefront. When the
loop has closed, the images of the guide start, and all the objects whose light has
traversed the same turbulence volume are corrected. Being a point source, the guide
star is spatially coherent but not necessarily temporally coherent. However, sending
a narrow band only towards the WFS is still possible since air’s dispersion is too
weak to cause a difference between the OPD and the phase across different bands
(see Eq. (2.2)).

The classical AO system is known as single-conjugate adaptive optics (SCAO) since
it uses a single DM and a single guide star to correct for one layer. Other more
involved configurations of AO systems have been proposed to overcome some of the
limitations of SCAO. Multi-conjugate adaptive optics (MCAO) systems (Beckers,
1988) help to expand the FoV beyond the isoplanatic angle. They do so using
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multiple DMs and multiple WFSs. One DM/WFS pair is optically conjugated to
the ground turbulence layer, while the extra pairs are conjugated to high-altitude
layers, thereby expanding the size of the isoplanatic patch. Multiple LGSs are almost
always required to place more than one reference around the target.

Multi-object adaptive optics (MOAO) uses multiple DMs and WFSs, each pair for a
separate target, with each WFS tracking a guide star near its designated object. The
corrected FoV is, therefore, composed of small patches centered on the guide stars
rather than a single large patch like in MCAO.

Ground layer adaptive optics (GLAO) (Hubin et al., 2005) has a single DM conju-
gated to the ground layer but several WFSs and guide stars from which a combined
correction signal is computed for the DM. Lastly, Laser tomography adaptive optics
(LTAO) (Tallon et al., 1990) also uses one DM and multiple laser guide stars to
evade the cone effect caused by the finite altitude of LGSs.

Wavefront sensing

Wavefront sensors that measure the phase distortion across the wavefront predate
AO systems. Characterizing optical aberrations in the lab requires WFSs with a high
spatial resolution. However, no particular demand is placed on the sensitivity of the
detector since illumination is provided by coherent laser sources that can be made
brighter, and each measurement can be done over relatively long exposures. AO
systems have to work with faint sources and need to perform the measurements within
times comparable to the coherence times of the atmosphere. The measurement’s
spatial resolution, and in turn the degrees of freedom of the AO system, are therefore
limited by the brightness of the guide star and the available coherence time. These
two limitations are nowadays alleviated, to some degree, by using detectors with a
high quantum efficiency (QE) and low noise.

Unlike radio, optical waves have fields that oscillate at fast temporal frequencies,
and there are not yet detectors that can respond at such a pace. There are, however,
photodetectors, which are square-law devices, that respond to the intensity instead
of the field, and any information about the phase has to be indirectly inferred from
intensity measurements.

One is interested in the phase at the entrance pupil of the telescope, but given the
Fourier transform relation between the field at the focal plane, i.e., the PSF, and the
field at the pupil plane, i.e., the OTF (cf. Eq. (B.9)), phase retrieval is possible from
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the intensity at the focal plane. Since both the phase and the sign of the field are lost
at the focal detector, the problem is underdetermined, and multiple solutions for the
pupil field can produce the same intensity pattern. With an a priori assumption that
the amplitude is constant at the pupil plane, an iterative algorithm can be used to
find a unique solution. One example of such an algorithm is the Gerchberg-Saxton
algorithm (Fienup, 1982; Maeda et al., 1981). The need for the focal images to be
monochromatic and the computation time required to reach convergence, however,
prevent the use of such methods in astronomy.

The techniques used mainly in astronomy are the lateral shearing interferometer, the
curvature sensor, the pyramid sensor, and the Shack-Hartmann WFS. The latter is the
most common and the one used in the experimental part of this work, and therefore,
further considerations focus mainly on its working principle and modeling.

At the pupil plane of a Shack-Hartmann WFS, conjugated to the turbulence layer
being sensed, is an array of positive lenslets, known as the microlens array (MLA).
The array samples the wavefront spatially and an image of the guide star is formed
behind each of the lenslets. With a planar wave, the images formed at the detector
are all on the optical axes of their respective subapertures, as shown in Fig. 2.8b.
If each subaperture is smaller than 𝑟0 of the distorted wavefront, then each lenslet
receives a planar segment of that wavefront but at a tilt angle. The images in the
grid are no longer aligned on the optical axes of the lenslets but rather shifted by
an amount proportional to the slope of the wavefront over that subaperture (see
Fig. 2.8c). Measurements of the average local slopes are also possible when the
subapertures are larger than 𝑟0 by evaluating the center of gravity (CoG), i.e., the
weighted centroid, of the images and even though one four-quadrant detector (4QD)
per subaperture is enough to estimate the displacements in the spots, high-resolution
CCDs are used nowadays since CoG estimates get better with increased resolution.

The lenslets are usually square in shape to capture all the light incident on the
subapertures. The PSF of such geometry of side length 𝑑 at focal length 𝑓 is (Born
et al., 2013)

𝐼p𝑥, 𝑦q � 𝐼0

�
sinp𝜋𝑑𝑥{𝜆 𝑓 q
𝜋𝑑𝑥{𝜆 𝑓


2 �sinp𝜋𝑑𝑦{𝜆 𝑓 q
𝜋𝑑𝑦{𝜆 𝑓


2
. (2.54)

The width of the central lobe of this pattern (shown in Fig. 2.8a) is 2𝜆 𝑓 {𝑑. The size
of this spot together with the geometry of the CCD array determines the sensitivity
and dynamic range of the WFS. Furthermore, detectors are never free of noise and
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Figure 2.8: (a) PSF of a square subaperture. (b) SH spots pattern corresponding to
a planar wavefront. (c) SH spots pattern measured for a 𝐷{𝑟0 � 8 wavefront.

thus the number of photons reaching each pixel within the exposure time needs to
exceed a certain threshold to avoid noise corrupting the measurements. A trade-
off, therefore, exists between the resolution of the measurement determined by the
number of subapertures (and/or the detector pixels) and the brightness of the guide
star that can still deliver enough flux to each subaperture before noise dominates.

The first moment, i.e., the CoG, of the intensity pattern 𝐼p𝑥, 𝑦q with respect to the
transverse directions determines the slope of the wavefront at the pupil according to
(Gross et al., 2012)

𝑐𝑥 �
´
𝑅

d𝑥d𝑦𝑥𝐼p𝑥, 𝑦q´
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𝑐𝑦 �
´
𝑅

d𝑥d𝑦𝑦𝐼p𝑥, 𝑦q´
𝑅

d𝑥d𝑦𝐼p𝑥, 𝑦q � 𝜆 𝑓

2𝜋

¼
𝐴
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where the integration domains, 𝑅 and 𝐴, are the subaperture areas at the focal plane
and the MLA, respectively.

Higher spatial resolution at the detector with further processing of the image’s
shape, e.g., ellipticity due to astigmatism and broadening due to defocus, allows
higher moments to be sensed, but this path is not pursued in Ch. 3.

Wavefront reconstruction and control

Since WFSs only measure the local gradient of the wavefront, the absolute phase
value is lost, and a reconstruction computation is necessary before the commands for
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the DM can be generated. Assuming that the local gradients of the wavefront within
the subapertures are corrected, disregarding the relative phase relation between
them, the wavelets from the subapertures would add incoherently, and a speckle
pattern will form at the focal plane.

If the WFS is noise-free, the gradients can be summed over a spatial integration
path to produce a smoothly varying surface. In a two-dimensional wavefront, all
integration paths would give the same output. The phase at a point 𝑝 is (Herrmann,
1980)

𝜙p𝑝q �
»
𝐶

∇𝜙 � d𝑆 � 𝜙p𝑝0q, (2.56)

where the phase at a reference point 𝑝0 is given and 𝐶 is any path connecting the
points 𝑝 and 𝑝0. Since noise in the detector used by the WFS is inevitable, the
reconstruction process is dependent on the choice of the integration path. A method
of minimizing the mean-square error between the reconstructed wavefront and the
gradient measurements is thus needed. This is not trivial. After the exposure time
required to integrate enough photons from the guide star, the processing time to
reconstruct the wavefront is the second most stringent bottleneck in the control loop.

Two approaches have been used for estimating the wavefront from the gradient
measurements, the zonal and the modal methods. In the zonal methods, the phase
is evaluated on a network of nodes that may or may not be similar to the geometric
configuration of the DM actuators. Modal methods, on the other hand, (Southwell,
1980) define the wavefront in terms of modes, e.g., Zernike modes, over the entire
aperture (see Eq. (2.50)). The weights of the basis functions are to be determined
and are dependent on the WFS measurements.

In the modal method, the wavefront as a superposition of 𝑁 basis functions is

𝜙p𝑥, 𝑦q �
𝑁̧

𝑘�1
𝑎𝑘𝑍𝑘p𝑥, 𝑦q, (2.57)

and the measured wavefront gradients in both dimensions are
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𝑔𝑥𝑖 � B𝑥𝜙p𝑥, 𝑦q �
𝑁̧

𝑘�1
𝑎𝑘B𝑥𝑍𝑘𝑖, (2.58a)

𝑔
𝑦

𝑖
� B𝑦𝜙p𝑥, 𝑦q �

𝑁̧

𝑘�1
𝑎𝑘B𝑦𝑍𝑘𝑖 . (2.58b)

Collapsing the equations system (2.58) into a matrix form with D containing both
the derivatives of the Zernike functions in 𝑥- and in 𝑦-directions concatenated into
one matrix yields

®𝑔 � D®𝑎. (2.59)

With a multiplication of both sides from the left by D�1

®𝑎 � D�1®𝑔, (2.60)

the coefficients t𝑎𝑘u are obtained. Slope measurements are performed inside sub-
apertures that are not necessarily aligned with the DM actuators. In a Fried geometry
(Hardy, 1998), the corners of the subapertures coincide with the actuators. This ge-
ometry is insensitive to the piston mode, like the others, and additionally insensitive
to the waffle mode (checkerboard-like pattern) (Gavel, 2003). A fact that can be
utilized to align the system. Once aligned by having the WFS generating no signal
when a waffle command is sent to the DM, the influence matrix can be experimen-
tally measured. A command of unit amplitude is applied to each actuator one by
one, and the slopes 𝑆𝑥 and 𝑆𝑦 of the WFS are registered. Practical considerations to
solving the system in Eq. (2.60) are discussed in Sec. 4.5.1.

Wavefront corrector

With the knowledge acquired from the wavefront reconstruction process, the proper
shape of the mirror to counteract the distortion in the wavefront can be determined.
Therefore, the arrangement of the actuators behind the DM’s facesheet and the shapes
that the DM can take need to be considered. The DM introduces a temporally and
spatially varying optical path difference 𝛿p𝑥, 𝑦; 𝑡q to the wavefront which results in
a phase shift
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𝜙p𝑥, 𝑦; 𝑡q � 𝑘𝛿p𝑥, 𝑦; 𝑡q � 2𝜋
𝜆
𝑛𝑑p𝑥, 𝑦; 𝑡q, (2.61)

where 𝑑 is the physical path difference. Introducing an optical path difference by
varying the refractive index is possible with birefringent electro-optical materials,
but inertial devices that change shape, e.g., mechanical DMs, have been the method
of choice in astronomy given their fast response times and wide spectral bands.
The number of needed actuators grows as the square of the turbulence strength
� p𝐷{𝑟0q2, which is a function of the wavelength itself, but the stroke required is
wavelength-independent thanks to the inverse dependence of phase on wavelength
as seen in Eq. (2.61). This required stroke is usually reduced by first correcting the
overall tip/tilt in the wavefront by means of a fast steering tip/tilt mirror.

In nature, several effects have been discovered that can transform an electrical
voltage into a displacement (F. Roddier, 1999). The ferroelectric effect occurs in
permanently polarized piezoelectric ceramics like PZT that generate mechanical
strain when an electric field is applied. This was one of the earliest methods used.
The electrostriction effect, on the other hand, occurs in all dielectrics where in non-
piezoelectric materials, e.g., PMN, the displacement is proportional to the square
of the applied field. Magnetostriction is the magnetic analog in ferromagnetic
materials where the shape changes in response to a magnetic field. Microelectro-
mechanical systems (MEMS) fabricated in Si by lithographic masks can also be
used to make DMs with a high density of actuators. A segmented mirror with
independent segments, each actuated by three actuators for tip/tilt and piston is used
for large DMs that are meant to move fast. Non-ferroelectric actuators can also be
used where voice coils produce a magnetic field that displaces electrodes in contact
with a facesheet continuous reflective membrane. This is the technology behind the
DM used for the experiments in Sec.5.1.1.

To model a DM, its influence functions are needed. The influence functions are the
spatial distributions 𝐷𝑖p𝑥, 𝑦q of the deformation due to one actuator being poked to
one unit of stroke at a time. Assuming linearity and minimum coupling between the
actuators, the shape a DM with 𝑀 actuators activated takes is

𝐷p𝑥, 𝑦q �
𝑀̧

𝑖�1
𝑎𝑖𝐷𝑖p𝑥, 𝑦q, (2.62)
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where 𝑎𝑖 is the command sent to actuator 𝑖. Once the number of usable subapertures
of the WFS, 𝑁 , is set depending on the brightness of available guide stars, the
number of degrees of freedom of the DM, 𝑀 , needs to be chosen such that 𝑀 ¥ 𝑁

to make use of all the information acquired by the sensor.

Worth mentioning is that, even with a high actuator count, facesheet mirrors have
eigenmodes different from those of a turbulent wavefront, i.e., Karhunen-Loéve
polynomials (see Sec. 2.1.4). The mismatch will cause a fitting error that depends
on the modes of the mirror.

2.2.3 Performance metrics and low-order adaptive optics (LOAO)

Given the turbulence strength 𝐷{𝑟0, two parameters dictate the specifications of the
AO system to be used. Namely, the coherence time 𝜏0 and the isoplanatic angle 𝜃0.

An AO system is limited by the number of subapertures it can correct for and its
sky coverage. While the limit on the degrees of freedom was set in the past by the
computational power accessible to the controller and the wavefront reconstructor,
it is now the brightness of the guide star available near targets of interest that
determines how much correction is attainable. Laser guide stars can help overcome
the isoplanatism limit when the demanded FoV is small enough, but the cone effect
restricts a full correction unless multiple stars are used. ExAO systems are therefore
limited to observing narrow fields like circumstellar discs with bright enough host
stars to guide the correction. The correction possible with an SCAO system is
consequently, most of the time, only partial. With only tip and tilt corrected, the
residual mean square error in the corrected wavefront is (Noll, 1976; N. A. Roddier,
1990)

𝜎2
3 � 0.134

�
𝐷

𝑟0


5{3
. (2.63)

With the first 𝑁 Zernike modes corrected, the error is

𝜎2
𝑁 � 0.2944𝑁�

?
3{2

�
𝐷

𝑟0


5{3
, (2.64)

for large 𝑁 , where the index 𝑁 follows Noll’s convention. The rms residual error,
therefore, becomes negligible (𝜎   1 rad) when the number of corrected modes
𝑁 ¥ p𝐷{𝑟0q2.
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Essentially, the control loop rejects the low temporal frequency fluctuations where
the frequency 𝑓𝐶 at which this rejection reaches one-half of its maximum power is
defined as the loop’s bandwidth. The temporal error due to this limited bandwidth
is a function of the ratio of 𝑓𝐺 to that bandwidth

𝜎2
𝜏 � 𝛼

�
𝑓𝐺

𝑓𝐶


5{3
, (2.65)

where the constant 𝛼 depends on the design of the control loop. It has a value 𝛼 � 1
for a simple RC circuit and 𝛼 � 0.191 for an ideal filter with a sharp cutoff.

Available nowadays are general-purpose AO systems that are pre-engineered with
generic control software and can operate with real time computers (RTCs) running at
5 kHz speed. Such low-cost LOAO systems make it possible for mid-size telescopes
to become partially adaptive (𝜎 � 2 rad after correction) and thus host astrophotonic
instruments where the bridging from the few-mode to the single-mode regime can
be achieved with a reasonably sized photonic lantern as further discussed in the next
chapters.
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C h a p t e r 3

THEORY OF WAVEGUIDES, INTEGRATED OPTICS AND
COUPLING

As introduced in Sec. 1.3, astrophotonics concerns instruments that manipulate
starlight in and between optical waveguides made of dielectric structures of con-
trasting refractive indices that confine and carry electromagnetic energy. This is
possible by virtue of total internal reflection. A typical waveguide has a medium of
refractive index 𝑛1 embedded in a medium of refractive index 𝑛2   𝑛1. A light ray
entering the waveguide can remain trapped inside the high index medium before it
emerges at the opposite end.

In astronomical instruments, the delivery of starlight from the focal plane to astropho-
tonic components is done using cylindrical step-index optical fibers. Furthermore,
many astrophotonic devices involve cylindrical waveguides as well, e.g., DBCs,
photonic lanterns, and FBG OH filters. Therefore, the light phenomenon in such
structures is the focus of the following two sections.

3.1 Ray picture of multimode waveguides

An optical fiber is a cylindrical waveguide composed of highly transparent dielectric
materials like fused silica glass (SiO2) of high purity. The inner-most layer is a
central core surrounded by cladding with a lower refractive index. Layers of polymer
for mechanical protection follow as required by the application. In geometrical
optics, rays incident on the core-cladding interface at angles greater than a certain
critical angle undergo multiple total internal reflections and are, therefore, guided
through the structure.

The geometry of a step-index fiber is shown in Fig. 3.1. The core is circularly
symmetric of radius 𝑎, surrounded by the cladding, which is usually large enough
to be assumed unbounded. In most widely used fibers, the refractive index contrast

Δ � 𝑛2
1 � 𝑛2

2

2𝑛2
1

� 𝑛1 � 𝑛2
𝑛1

! 1, (3.1)

since the indices of the two materials differ only slightly. Doping by materials
like boron or germanium has been the industry’s method of choice for altering the
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Figure 3.1: Total internal reflection in one dimension in an optical fiber. Only the
waves that interfere constructively with their reflections are sustained throughout
the structure. The distance 𝐴, the original wave travels before it reaches its twice
reflected counterpart, needs to differ by exactly an integer multiple of 2𝜋 from the
distance 𝐵, traveled by the reflected wave for that set of waves to be guided.

refractive index.

A ray entering the fiber at the air-core interface with an angle 𝜃𝑎 gets refracted
and reaches the core-cladding interface making an angle 𝜃𝑐 with the optical axis.
Since 𝑛1 ¡ 𝑛2, the ray incident at the core-cladding interface will refract away
from the normal towards the surface, and when the incidence angle is large enough,
total internal reflection takes place. Snell’s law is applied to calculate the critical
angle beyond which the reflection occurs and the acceptance angle 𝜃𝑎 at the air-
core interface below which the rays are guided. With air’s refractive index taken

equal to one, sin 𝜃𝑎 � 𝑛1 sin 𝜃𝑐 � 𝑛1

b
1� cos2 𝜃𝑐. The refraction angle at total

internal reflection is 90�, which leads to cos 𝜃𝑐 � sin 𝜃𝑐 � 𝑛2{𝑛1 and therefore
sin 𝜃𝑎 �

b
𝑛2

1 � 𝑛2
2. This is defined as the numerical aperture of the fiber

NA �
b
𝑛2

1 � 𝑛2
2, (3.2)

in analogy with the light-gathering angle of bulk optics. Ideally, for straight undis-
turbed fibers, the light exiting the fiber is also within a cone of angle 𝜃𝑎. However,
effects like focal ratio degradation (FRD) and modal noise cause an increase in the
exit angle, as discussed later in Sec. 3.2.1.

This ray picture, being a geometrical theory of light, is surely approximate and only
valid, strictly speaking, as 𝜆 Ñ 0. It also becomes complicated when extended
into the third dimension since only the rays that cross the fiber axis, i.e., meridional
rays, remain confined to the same plane. Skew rays rotate every time they reflect,
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making it harder to track their phase progression. A wave theory of optical fibers
is, therefore, necessary and is presented in the next section.

3.2 Wave picture of waveguides

The ray optics picture in Sec. 3.1 is very helpful for getting an insight into the
propagation of light through fibers, but it fails at explaining the propagation through
SMFs and relatively small MMFs.1 Taking a closer look, one finds that only a
discrete set rather than all angles inside an acceptance cone results in sustained
waves propagating throughout. The spatial distributions in the transverse plane of
the fields associated with these angles are the modes of the fiber. The modes are
solutions of the source-free Maxwell equations that satisfy the boundary conditions
set by the geometry as derived below.

In the electromagnetic theory of light, the field is described by two temporally and
spatially varying vector fields, i.e., the electric ®Ep®𝑟, 𝑡q and the magnetic ®Hp®𝑟, 𝑡q
fields. Based on the experimental findings of pioneers before him, Maxwell for-
mulated four partial differential equations that relate the functions of these fields
in space and time to each other. Appendix C gives a quick reference to Maxwell’s
equations in free space and source-free media. The derivation of the scalar wave
equation is also given.

The partial time derivatives of the fields are simplified in the case of linear, nondisper-
sive, homogeneous, and isotropic media. The monochromatic Maxwell’s equations
of the complex amplitudes are

∇ � 𝐻 � 𝑖𝜔𝜖𝐸, (3.3)

∇ � 𝐸 � �𝑖𝜔𝜇𝐻, (3.4)

∇ � 𝐷 � 0, (3.5)

∇ � 𝐵 � 0. (3.6)

Differentiating Eq. (C.13) twice with respect to time and substituting in the wave
equation Eq. (C.12), the Helmholtz equation (Born et al., 2013) is obtained

∇2𝑈p®𝑟q � 𝑘2𝑈p®𝑟q � 0, (3.7)
1Known henceforth as few-mode fibers (FMFs).
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where𝑈p®𝑟q can be the complex amplitude of any of the components of ®𝐸 or ®𝐻 and
𝑘 � 𝜔

?
𝜖 𝜇 � 𝑛𝑘0 is the wavenumber in the medium. The factor by which light

slows down in a medium, 𝑛 � 𝑐0{𝑐, is recognized as the refractive index of that
medium.

3.2.1 Weak guidance and circular fibers

The solutions to Eq. (3.7) that satisfy the boundary conditions are the sought-after
modes of the fiber. Those are six equations, one for each of the three components
of 𝐸 and 𝐻. The exact solutions of these equations give the mode configurations
known as TE, TM, HE, and EH. Since Eq. (3.7) is a vector partial differential
equation that couples the 𝑥 and 𝑦 components of 𝑈 (𝑈𝑥 and 𝑈𝑦), the solutions do
not have simple polarization states. They require a lengthy algebraic manipulation
with messy labeling that is listed in specialized books and are, in general, quite
involved.2 A useful approximation is possible for the case of weakly guiding fibers,
i.e., Δ ! 1, which is the case for most fibers in astronomy. The components𝑈𝑥 and
𝑈𝑦 detach and solutions for the resulting scalar wave equation, known as the linearly
polarized (LP) modes, can be found for each one separately. For this case, the
superposition of four modes of the TE, TM, HE, and EH families that have nearly
identical propagation constants and cutoff frequencies under the weak guidance
condition results in a two-fold or a four-fold degenerate mode (Gloge, 1971).

In the ray picture, the guided rays are paraxial in such a fiber. In the wave picture, this
means that the guided waves are approximately transverse electromagnetic (TEM),
with the longitudinal components of the fields much smaller than the transverse
components. Additionally, in a cylindrical fiber, the refractive index 𝑛 is azimuthally
invariant and changes only in the radial direction, i.e., 𝑛 � 𝑛p𝜌q. For a step-index
fiber, Eq. (3.7) is obeyed in each of the two regions, the core and the cladding. The
use of cylindrical coordinates is now in order, given the symmetry of the problem.
In cylindrical coordinates,𝑈 � 𝑈p𝜌, 𝜙, 𝑧q and the Helmholtz equation becomes

B𝜌𝜌𝑈 � 1
𝜌
B𝜌𝑈 � 1

𝜌2B𝜙𝜙𝑈 � B𝑧𝑧𝑈 � 𝑛2𝑘2
0𝑈 � 0. (3.8)

The dependencies of the fields components on the spatial coordinates could be
constrained by the symmetries of the situation at hand. The waves are propagating
in the 𝑧 direction along the fiber axis, and therefore 𝑈 would have a harmonic

2See, for instance, Black et al. (2010).
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dependence of the form 𝑒�𝑖𝛽𝑧, where 𝛽 is the rate of phase accumulation in 𝑧 known
as the propagation constant. In an MMF, each field component is, in fact, a sum of
modes

𝑈p𝜌, 𝜙, 𝑧q �
¸
𝑖

𝑢𝜌,𝑖p𝜌q𝑢𝜙,𝑖p𝜙q𝑒�𝑖𝛽𝑖𝑧, (3.9)

where the dependencies of𝑈 on 𝜌, 𝜙, and 𝑧 were separated into 𝑢𝜌,𝑖 ,𝑢𝜙,𝑖 and 𝑒�𝑖𝛽𝑖𝑧,
respectively. Given the linearity, each mode in Eq. (3.9) is by itself a solution to
Eq. (3.8). Additionally, for paraxial waves, the field is not dependent on 𝑧, and the
term B𝑧𝑧𝑈 drops from the Helmholtz equation. This gives

𝑢𝜙
d2𝑢𝜌

d𝜌2 � 1
𝜌
𝑢𝜙

d𝑢𝜌
d𝜌

� 1
𝜌2𝑢𝜌

d2𝑢𝜙

d𝜙2 � 𝑛2𝑘2
0𝑢𝜌𝑢𝜙 � 0, (3.10)

which can be rearranged to get

𝜌2

𝑢𝜌

d2𝑢𝜌

d𝜌2 � 𝜌

𝑢𝜌

d𝑢𝜌
d𝜌

� 𝜌2𝑛2𝑘2
0 � � 1

𝑢𝜙

d2𝑢𝜙

d𝜙2 . (3.11)

Since one side of Eq. (3.11) depends only on 𝜌 while the other depends only on 𝜙,
the two sides must equal a constant as they vary independently. This separates Eq.
(3.11) into two equations (Buck, 2004)

d2𝑢𝜙

d𝜙2 � 𝑙2𝑢𝜙 � 0, (3.12)

and

d2𝑢𝜌

d𝜌2 � 1
𝜌

d𝑢𝜌
d𝜌

�
�
𝑙2

𝜌2 � 𝑛2𝑘2
0



𝑢𝜌 � 0, (3.13)

where 𝑙2 is the designation given to the constant that both sides equal. Equation
(3.12) has the solutions

𝑢𝜙 �
$&
%cosp𝑙𝜙q

sinp𝑙𝜙q
𝑙 � 0,�1,�2, . . . (3.14)
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𝛽

𝜉

𝑛1𝑘0𝑛2𝑘0

𝑛1𝑘0

𝑛2𝑘0

𝑛1𝑘0 sin 𝜃𝑐

𝜃𝑐

𝜃𝑚

𝛽𝑚

Figure 3.2: Simplified picture of the propagation vectors of guided modes. Propa-
gation constants, 𝛽𝑚 � 𝑛1𝑘0 cos 𝜃𝑚, take values between 𝑛1𝑘0 for the fundamental
mode and 𝑛2𝑘0 for the highest order mode. For weakly guiding fibers, the shell be-
tween the two quarter circles is thin leading all modes to have paraxial wavevectors
with a small transverse component.

where 𝑙 must be an integer because the fields must close onto themselves azimuthally
after a rotation of 2𝜋.

Solutions to Eq. (3.13) would give the radial form of the mode, but a range within
which the free parameters are allowed to vary must be identified first. In the wave
picture, the rays serve the purpose of defining the propagation direction of the
waves. From the diagram in Fig. 3.2, 𝛽 � 𝑛1𝑘0 cos 𝜃, where 𝜃 is the angle the ray
makes with the fiber axis. For the waves to be guided, 0   𝜃   𝜃𝑐. Hence, the
propagation constant must lay between the wavenumbers in the cladding and the
core, i.e., 𝑘2 � 𝑛2𝑘0   𝛽   𝑛1𝑘0 � 𝑘1. These two conditions may be rewritten by
first defining (Snyder, 1974)

𝜉2 � 𝑘2
1 � 𝛽2, (3.15)

𝜒2 � 𝛽2 � 𝑘2
2. (3.16)

The guiding condition then demands that 𝜉2 and 𝜒2 are both positive. The differential
equation Eq. (3.13) is separated into two parts, one for the core and the other for
the cladding
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d2𝑢𝜌

d𝜌2 � 1
𝜌

d𝑢𝜌
d𝜌

�
�
𝜉2 � 𝑙2

𝜌2



𝑢𝜌 � 0, 𝜌 ¤ 𝑎,

d2𝑢𝜌

d𝜌2 � 1
𝜌

d𝑢𝜌
d𝜌

�
�
𝜒2 � 𝑙2

𝜌2



𝑢𝜌 � 0, 𝜌 ¥ 𝑎,

(3.17)

where 𝑎 is the core radius. These differential equations have solutions in the family
of Bessel functions that do not diverge at the center or as 𝜌 Ñ 8. The solutions are
hence of the form

𝑢𝜌p𝜌q �
$&
%𝐴𝐽 𝑙p𝜉𝜌q, 𝜌 ¤ 𝑎

𝐵𝐾 𝑙p𝜒𝜌q, 𝜌 ¥ 𝑎,
(3.18)

where 𝐽 𝑙p�q is the Bessel function of the first kind and order 𝑙 while 𝐾 𝑙p�q is the
modified Bessel function of the second kind and order 𝑙. The scaling constants
𝜉 and 𝜒 are chosen such that the solution is continuous across the core-cladding
interface. The parameter 𝜉 determines the oscillation rate of the radial component
of the field distribution, 𝑢p𝜌q, in the core, while 𝜒 serves a similar purpose in the
cladding. Bringing in the axial and azimuthal dependencies, the complete field in
the core is

𝑈1p𝜌, 𝜙, 𝑧q �
$&
%𝐴𝐽 𝑙p𝜉𝜌q cosp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¤ 𝑎,

𝐴𝐽 𝑙p𝜉𝜌q sinp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¤ 𝑎,
(3.19)

and in the cladding

𝑈2p𝜌, 𝜙, 𝑧q �
$&
%𝐵𝐾 𝑙p𝜒𝜌q cosp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¥ 𝑎,

𝐵𝐾 𝑙p𝜒𝜌q sinp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¥ 𝑎.
(3.20)

Summing Eq. (3.15) and Eq. (3.16), one gets a constant

𝜉2 � 𝜒2 � p𝑛2
1 � 𝑛2

2q𝑘2
0 � NA2𝑘2

0, (3.21)

that is independent of the mode in question. This implies that, for each mode,
the rate of oscillations of 𝑢p𝜌q in the core is inversely proportional to that in the
cladding. The two scaling parameters can now be normalized as
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𝜉 1 � 𝑎𝜉, (3.22)

𝜒1 � 𝑎𝜒, (3.23)

to give their values in units of core radii. The sum of their squares is again a constant
for any given fiber at a given wavelength whose square root

𝑉 �
b
𝜉 12 � 𝜒12 � 𝑎𝑘0NA, (3.24)

has significant importance. This is the normalized frequency or the V-number of
a fiber that controls the number of modes supported at any given wavelength. In
terms of the normalized constants, the fields are

𝑈1p𝜌, 𝜙, 𝑧q �
$&
%
𝐴𝐽 𝑙

�
𝜉1𝜌

𝑎

	
cosp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¤ 𝑎,

𝐴𝐽 𝑙

�
𝜉1𝜌

𝑎

	
sinp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¤ 𝑎,

(3.25)

𝑈2p𝜌, 𝜙, 𝑧q �
$&
%
𝐵𝐾 𝑙

�
𝜒1𝜌

𝑎

	
cosp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¥ 𝑎,

𝐵𝐾 𝑙

�
𝜒1𝜌

𝑎

	
sinp𝑙𝜙q𝑒�𝑖𝛽𝑧, 𝜌 ¥ 𝑎.

(3.26)

The scaling factors 𝐴 and 𝐵 are not necessarily the same for the electric and
the magnetic fields, but each is linearly related to its other field counterpart. To
determine their values, the continuity conditions at the interface

𝑈1p𝜌 � 𝑎, 𝜙q � 𝑈2p𝜌 � 𝑎, 𝜙q (3.27)

B𝜌𝑈1p𝜌, 𝜙q|𝜌�𝑎 � B𝜌𝑈2p𝜌, 𝜙q|𝜌�𝑎, (3.28)

are imposed. Substituting for𝑈1p𝑎, 𝜙q and𝑈2p𝑎, 𝜙q from Eq. (3.25) and (3.26)

𝐴𝐽1
�
𝜉 1
� � 𝐵𝐾1

�
𝜒1
�
, (3.29)

𝐴
𝜉 1

𝑎
𝐽 11

�
𝜉 1
� � 𝐵

𝜒1

𝑎
𝐾 11

�
𝜒1
�
. (3.30)

Now dividing Eq. (3.30) by Eq. (3.29) to get
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𝜉 1𝐽 11p𝜉 1q
𝐽1p𝜉 1q � 𝜒1𝐾 11p𝜒1q

𝐾1p𝜒1q . (3.31)

Applying the identities

𝐽 1𝑙p𝑥q � � 𝐽 𝑙	1p𝑥q 	 𝑙 𝐽 𝑙p𝑥q
𝑥

, (3.32)

𝐾 1𝑙p𝑥q � � 𝐾 𝑙	1p𝑥q 	 𝑙 𝐾 𝑙p𝑥q
𝑥

, (3.33)

yields the characteristic equation

� 𝜉 1𝐽 𝑙�1p𝜉 1q
𝐽 𝑙p𝜉 1q � 𝜒1𝐾 𝑙�1p𝜒1q

𝐾 𝑙p𝜒1q � 0. (3.34)

With 𝜉 1 and 𝜒1 related to𝑉 by𝑉2 � 𝜉 12�𝜒12, the characteristic equation is a function
of one unknown for a given fiber’s 𝑉 and mode’s azimuthal order 𝑙. Equation (3.34)
may be solved numerically or graphically to find the values of 𝜉 1 that satisfy it for
each value of 𝑙. With all the values of 𝜉 1 known, the scaling parameters 𝜉 and 𝜒,
the propagation constant 𝛽 and therefore the spatial distribution of the modes may
all be determined using Eq. (3.21), Eq. (3.22), and Eq. (3.23).

A proof that all six fields components are attained, given only two, by the formulation
above is presented in App. C.

The modes of weakly guiding fibers

From the 𝜒1 versus 𝜉 1 plots of the two terms of Eq. (3.34), one sees that more
solutions, i.e., intersections, for the characteristics equation exist as 𝑉 increases.
The 𝐽 term consists of multiple branches intersecting the abscissa at the roots of
𝐽 𝑙�1p𝜒1q while the 𝐾 term is a monotonically decreasing curve that intersects the
branches of the 𝐽 term until it reaches the 𝜒1 � 0 axis at 𝜉 1 � 𝑉 . The number
of supported modes is, therefore, limited by the number of roots in the interval
0   𝜉 1   𝑉 (see Fig. 3.3 for the case of 𝑙 � 0). The maximum value of 𝑉 below
which a given mode is not supported is known as the cutoff frequency of that mode.
For 𝑙 � 0, the 𝐽1 term has its smallest root at 𝜉 1 � 0. This is the fundamental mode
of the fiber, and it is always supported for any non-vanishing 𝑉 . For an arbitrarily
small 𝑉 Ñ 0, 𝛽 Ñ 𝑘0𝑛2 and the wave becomes poorly guided with most of the
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Figure 3.3: (a) The two arms of the characteristics equation (Eq. (3.34)) for 𝑙 � 0
and 𝑉 � 14.67. Every intersection is a solution and, therefore, a fiber mode. (b)
Number of LP modes plotted against 𝑉 . Only one polarization state is accounted
for. Also plotted is the approximation formula for 𝑉 " 1.

field distribution in the cladding. With 𝑉 increasing, only this fundamental mode is
supported as long as 𝑉 ¤ 2.405 (for step-index fibers). After that, the next solution
corresponding to a higher-order mode exists.

Each mode, including the fundamental mode, has two polarization states, 𝑒𝑥 and
𝑒𝑦, and must therefore be counted twice. Furthermore, for MMFs, every mode with
𝑙 ¡ 0 must be counted twice to account for the corresponding mode with sinp𝑙𝜙q
(see Eq. (3.25) and Eq. (3.26)). In the ray picture, the 𝑙 � 0 modes correspond
to meridional rays that pass through the fiber axis upon every reflection, while the
𝑙 � 0 modes correspond to skew rays.

The regime where the fiber supports a number of modes P r2,� 100s is designated
as the few-mode regime. Most geometrical approximations followed for large MMFs
do not hold for FMFs justifying their special classification. This is the case for the
fibers considered in this work.

Single-mode fibers (SMFs)

The fundamental mode of an SMF is the first solution that has 𝑙 � 0 (leftmost
solution in Fig. 3.3a), and it can be fairly approximated by a Gaussian function for
fibers with𝑉 ¡ 1.2. The approximation is accurate to within 1% of error at𝑉 � 2.4
(Marcuse, 1978)

𝑢p𝜌q �
d

2
𝜋𝑤02 exp

�
� 𝜌2

𝑤02



, (3.35)
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where 𝑤0, the mode field radius, is the radial distance from the core center to
the point where the field drops to 1{𝑒 of its peak value. A useful formula that
approximates the mode field radius in terms of 𝑎 and 𝑉 is the empirical Marcuse
expression

𝑤0 � 𝑎

�
0.65� 1.619

𝑉3{2 � 2.879
𝑉6



. (3.36)

Marcuse’s Gaussian fit is the one with the maximum inner product with the exact
mode. Other more accurate approximations were given by Yang et al., 2013. From
Eq. (3.36) one sees that the spot radius decreases with increasing 𝑉 resulting in a
field of increasing confinement in the core.

With only one supported mode, SMFs act as spatial filters admitting only normally
incident plane waves to propagate throughout. No extra modes means that there is
not a chance for the coupled light to change its state, and it always exists in the fiber
as a coherent plane wave regardless of the conditions along the fiber. This is not the
case for MMFs.

Multimode fibers (MMFs)

In an MMF, the number of modes increases with 𝑉 , and for small 𝑉 values, all the
modes could be found in reasonable computing time. Otherwise, for fibers with
much larger 𝑉 that support thousands of modes or more, one is often interested in
estimating the modes count. A formula that approximates the number of modes for
fibers with 𝑉 " 1 (as shown in Fig. 3.3b) is

𝑀 � 𝑉2

2
, (3.37)

where multiplicities due to both degeneracy and polarization states are accounted
for.

Compared to SMFs, the several modes of an MMF have diverse field distributions
and accumulate phase at different propagation constants. This causes a pseudoran-
dom interference between the modes, known as modal noise, when certain factors,
e.g., strain, temperature, and composition, which can shift the phase of each mode
differently vary along the fiber. Light initially coupled into a certain mode can then
couple into a neighboring mode after undergoing a random phase shift causing the
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superposition of the fields at the output to have a random pattern uncorrelated to that
at the input. A field coupled into the lowest order modes at the input can populate
all the supported modes as it propagates causing the output beam’s focal ratio to
degrade in an effect called FRD. The dependence of these fluctuations on wave-
length generates a spectral noise if the output pattern of the fiber is to be dispersed.
This presents a problem for high-resolution spectroscopy that needs to be addressed
using scramblers or photonic lanterns (Benoit et al., 2020).

3.3 Losses in optical fibers

Aside from modal noise, many other non-uniformities can cause the behavior of
light in a fiber to deviate from that predicted by the theory. Bends in an SMF
cause the wavefronts, which are otherwise normal to the fiber axis all over the fiber
cross-section, to rotate, inducing a phase velocity gradient between the parts closer
and the parts further from the center of curvature (Snyder et al., 2012). When
the bending exceeds a certain limit where the phase velocity in the cladding away
from the center of curvature becomes larger than the speed of light, the mode must
become radiative. For MMFs, this is easily modeled by considering the ray picture
and taking all modes that do not locally satisfy the condition for the total internal
reflection to be radiation modes.

Another effect overlooked in the theory presented so far is that of leaky modes.
A leaky mode is one that enters the fiber below its cutoff frequency and therefore
undergoes partial reflections at the core-cladding interface radiating away its energy
as it propagates. Within a short distance near the fiber input, the inclusion of
these modes is necessary to calculate the complete field inside and outside the fiber
structure (Snyder et al., 1974).

Furthermore, guided modes are also attenuated in straight fibers by impurities and
irregularities in the material. Scatterers redistribute the energy between the guided
and radiative modes leading to losses, as well as noise, that increases with the length
of the fiber (Snyder, 1974). These effects are not included in the models of Ch. 4,
but they explain the deviations seen in the experiments of Ch. 5 as presented later.

3.4 Waveguide arrays

As seen in Sec. 3.2, the wave picture of the total internal reflection phenomenon
reveals that the field always has a non-zero magnitude in the cladding as demanded
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by Maxwell’s equations and the continuity conditions. For the sustained modes, this
transmitted wave across the interface, known as the evanescent wave, has limited
spatial penetration that decays exponentially depending on the 𝑉-number and the
mode in question.3 Therefore, when the cores of two waveguides are brought
sufficiently close together, their modes overlap even though their cores do not, and
the field in one can excite a wave in the other transferring optical power between
them.

Several astrophotonic devices, e.g., discrete beam combiners, transition regions of
photonic lanterns, and reformatters, feature an array of waveguides — usually all of
which are single mode — that are in close proximity such that their modes overlap.
Light in one waveguide in the array can then couple to the others via evanescent
coupling. One way to analyze such structures is to consider them as a bulk of different
index regions and solve Maxwell’s equations under the boundary conditions set by
symmetry and continuity similar to what has been done for standalone fibers. The
modes of the entire structure, known as the supermodes, are in this case different
from the fundamental modes of the isolated waveguides. Except for the simplest
cases, no analytical solutions exist, and specialized computer algorithms, e.g., the
beam propagation method (BPM), are required to solve the equations numerically
on a grid of discrete points.

When dealing with identical weakly guiding single-mode waveguides that are weakly
coupled to each other, a simplified approach, known as the coupled mode theory
(CMT) (Little et al., 1995), can approximate the solutions. Here the effect that one
waveguide has on the mode profile of a nearby one is neglected, and the mode is
assumed to maintain its distribution with only the amplitude changing due to power
being transferred to the neighborhood. Under these assumptions, a system of first-
order differential equations can be written that describes the axial evolution of the
amplitudes of the modes at each waveguide. For the simplest case of two single-
mode waveguides, the coupled-mode equations are (Saleh et al., 2019; Snyder et al.,
2012)

d𝑎1
d𝑧

� �𝑖𝐶21𝑒
𝑖p𝛽1�𝛽2q𝑧𝑎2p𝑧q, (3.38a)

d𝑎2
d𝑧

� �𝑖𝐶12𝑒
�𝑖p𝛽1�𝛽2q𝑧𝑎1p𝑧q, (3.38b)

3More accurately, it follows a modified Bessel function of the second kind as shown in Eq.
(3.26).
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where 𝑎1 and 𝑎2 are the peak field amplitudes while 𝐶21 and 𝐶12 are the coupling
coefficients given by

𝐶21 �
𝑘2

0
2𝛽1

p𝑛2
2 � 𝑛2q

¼
d𝑥d𝑦𝑢1p𝑥, 𝑦q𝑢2p𝑥, 𝑦q, (3.39a)

𝐶12 �
𝑘2

0
2𝛽2

p𝑛2
1 � 𝑛2q

¼
d𝑥d𝑦𝑢2p𝑥, 𝑦q𝑢1p𝑥, 𝑦q, (3.39b)

where each integration is evaluated over the entire plane and the fields 𝑢1 and 𝑢2

are appropriately normalized. For identical waveguides with 𝑛1 � 𝑛2 and 𝛽1 � 𝛽2,
𝐶21 � 𝐶12 � 𝐶. The solution to Eq. (3.38) can be immediately guessed

𝑎1p𝑧q � 𝑎1p0q cosp𝐶𝑧q � 𝑖𝑎2p0q sinp𝐶𝑧q, (3.40a)

𝑎2p𝑧q � �𝑖𝑎1p0q sinp𝐶𝑧q � 𝑎2p0q cosp𝐶𝑧q. (3.40b)

The algebraic formulation becomes complicated for arrays of more than two waveg-
uides, but if they are all identical and arranged symmetrically, matrix algebra could
be used to write and solve the differential equations. This takes the form

d ®𝐴
dz

� �𝑖𝜅C ®𝐴, (3.41)

where 𝜅 is the coupling coefficient, ®𝐴 is an 𝑁�1 vector that contains the amplitudes
of the fields at the 𝑁 waveguides of the array and C is an 𝑁�𝑁 coupling matrix that
only depends on the arrangement and has the information on how the waveguides
are related to each other in the array. In an array where coupling is only between
each waveguide and its nearest neighbor, e.g., a hexagonal array (see Fig. 3.4b),
the matrix C has ones only in the entries C𝑖, 𝑗 where waveguides 𝑖 and 𝑗 are nearest
neighbors and zeros everywhere else. If the arrangement has next-nearest neighbors,
e.g., a square array (see Fig. 3.4a), for which coupling is weaker than that between
nearest neighbors, then a coefficient 0   𝜅1{𝜅2   1 needs to be entered for these
pairs. Numerically, the system of differential equations is approximated by a system
of difference equations that can be solved using a Crank-Nicolson scheme. This is
left for Sec. 4.2 on modeling matters.
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Figure 3.4: Coupling in a waveguide array. (a) In a square array, two coupling
coefficients 𝜅1 and 𝜅2 for nearest neighbors and next-nearest neighbors, respectively,
characterize the array. (b) In a hexagonal array, only one coefficient is required since
next-nearest neighbor coupling is negligible.

3.5 Slowly varying waveguides and tapers

Born and Fock formulated the adiabatic theorem in quantum mechanics as (Born
et al., 1928; Faddeev, 2019)

A physical system remains in its instantaneous eigenstate if a given
perturbation is acting on it slowly enough and if there is a gap between
the eigenvalue and the rest of the Hamiltonian’s spectrum.

The transition region of a photonic lantern exhibits a wave guiding structure that is
longitudinally variant. Along the taper, the core diameter varies continuously with
distance 𝑧. In the ray picture, the power associated with a bound ray remains constant,
but the axial distance between successive reflections is no longer constant (Snyder
et al., 2012). A rays treatment of MMFs is possible as long as the continuous
non-uniformity is slowly varying over distances of the order of the wavelength.
Moreover, if the non-uniformity varies sufficiently slowly over a ray half-period, the
adiabatic invariant remains approximately constant along the fiber. The invariant
is given by

»
𝑧𝑝p𝑧q

d𝜌𝑛p𝜌, 𝑧qd𝜌
d𝑠
, (3.42)

where the integration path is over a ray half-period, 𝑧𝑝p𝑝q, and d𝑠 is the component
of length along the ray path. In general, the adiabatic invariant of a physical system
is that property that remains approximately constant when a slow perturbation is
introduced between two endpoints. This is true even when the ratio of the core radii
of a taper is arbitrarily large, but the taper angle needs to be small everywhere.
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For SMFs and FMFs, a wave optics treatment is necessary. In general, exact solutions
of Maxwell’s equations for these tapers do not exist but, as intuition suggests, the
modes of the longitudinally uniform fiber should be accurate approximations to the
solution of Maxwell’s equations if the taper is varying slowly enough (Snyder et al.,
2012) in accordance with the adiabatic theorem. These are known as the local
modes and while they change profile, the power of each is conserved along the taper.
The phase accumulation rate is not constant, but since the variation is slow, it can
be approximated by an integral. The local mode has the spatial dependence

𝑈 � 𝑢 𝑗
�
𝜌, 𝛽 𝑗p𝑧q

�
exp

�
𝑖

» 𝑧

0
d𝑧1𝛽 𝑗p𝑧1q

�
, (3.43)

where 𝛽 𝑗 is the local propagation constant of the 𝑗 th mode and 𝑢 𝑗 is the solution of
the wave equation with the refractive index profile at 𝑧. The power in a local mode
is approximately conserved since the change in the mode profile occurs over large
distances. This is why the argument above is known as the adiabatic approximation.

The slow variation condition needs to be quantified. This is given by the total
field in an equivalent uniform fiber. The total field is a superposition of the modes
and, therefore, it changes over a distance due to the phase differences between the
constituent modes. The largest beat length (or coupling length) occurs between the
two nearest neighboring modes that have the two closest propagation constants since
the beat length between modes 1 and 2 is given by

𝑧𝑏 � 2𝜋
𝛽1 � 𝛽2

. (3.44)

The taper length thus must be long compared to 𝑧𝑏 for the local mode approximation
to hold. The high order modes in an MMF have the closest separation in terms of
propagation constants, and separation decreases as 𝑉 increases. However, the ray
optics treatment given above suffices to determine the maximum taper angle before
adiabaticity is destroyed. The change in the local mode distribution varies as 𝑧𝑏B𝑧𝑛2

and qualitatively, using Eq. (3.44), the adiabaticity criterion is (Black et al., 2010)���� 2𝜋
𝛽1p𝑧q � 𝛽2p𝑧q

1
𝑛2B𝑧𝑛2

���� ! 1. (3.45)

An exact criterion can be derived using an adaptation of the CMT (cf. Eq. (3.38))
known as the coupled local-mode theory that determines the exchange of power
between each local mode and the radiation field (Snyder et al., 2012)
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𝛽1 � 𝛽2

d𝜌
d𝑧

»
𝐴

d𝐴𝑈1B𝑧𝑈2

���� ! 1, (3.46)

where the non-uniformity in the refractive index profile here is only due to the
change in core diameter. This is the mathematical form of Born and Fock’s adiabatic
theorem in the context of waveguide modes.

In light of the quantum mechanical analogy, the propagation constants are the
eigenvalues of the modes. The adiabatic theorem then states that slowness is when
(Martínez-Garaot et al., 2017) ����x𝑈1|B𝑧𝑈2y

𝛽1 � 𝛽2

���� ! 1, (3.47)

where the Hamiltonian here is space- rather than time-dependent as in the original
theorem.

This analogy can be taken even further to develop an intuition about the working
principle of photonic lanterns. While photons are fundamentally different from
electrons, the wavelike behavior of electrons at atomic scales has similarities with
that of a photon. A conduction electron in a 1-D periodic lattice experiences a
potential caused by the electromagnetic field of the positive ions. They have a
wavefunction described by the Bloch function. In the Kronig-Penney model, the
potential wells are simplified and made rectangular (Kronig et al., 1931), similar to
the index profile of a step-index waveguide array.

The scalar wave equation (Eq. (3.7)) can be rewritten as (Black et al., 1985)

�
∇2 � 2𝑘2𝑛2

1Δ

�
𝜉 12

𝑉2 � 𝑓 p𝜌q

�

𝜓p𝜌q � 0, (3.48)

where 𝑘 � 2𝜋{𝜆, 𝜉 1 � 𝑎𝑘p𝑛2
1�𝑛2

eff q1{2,𝑉 � 𝑎𝑘p𝑛2
1�𝑛2

2q1{2, andΔ � �
1� 𝑛2

2{𝑛2
1
� {2.

The effective index 𝑛eff of the mode equals 𝛽{𝑘 . In comparison, the time-independent
Schrödinger equation for a unit mass particle of energy 𝔈 reads

�
∇2 � 2

ℏ2 p𝔈 �𝑄p𝜌qq
�
𝜓p𝜌q � 0, (3.49)

where 𝑄p𝜌q is the potential well and ℏ � ℎ{2𝜋. Planck’s constant ℎ is therefore
analogous to 𝜆, and the energy 𝔈 is analogous to
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Figure 3.5: Analogy between (a) the refractive index profile in a step-index waveg-
uide structure that supports two non-degenerate modes and (b) the potential in a 1D
quantum well. (c) The analogy in (a) and (b) applied to the three regions of a 1� 2
photonic lantern.

𝑛2
1Δ𝜉

12{𝑉2 � 1
2
r𝑛2

1 � 𝑛2
eff s, (3.50)

while the potential 𝑄p𝜌q is analogous to

𝑛2
1Δ 𝑓 p𝜌q �

1
2
r𝑛2

1 � 𝑛2p𝜌qs, (3.51)

where 𝑛p𝜌q � 𝑛1 r1� 2Δ 𝑓 p𝜌qs1{2 is the refractive index profile. The quantity in
Eq. (3.51) decreases as one approaches 𝜌 � 0 in the core from either side, forming
a well. The potential energy is therefore analogous to the reciprocal of the refractive
index profile, 1{𝑛.
In the spirit of this analogy, guided modes can take discrete effective index, 𝑛eff ,
values between the index of the cladding and that of the core. Cladding or radiation
modes take values from the continuum below the cladding index in the case of an
infinite cladding fiber. Values of 𝑛2

eff   0 (𝑛eff is imaginary) correspond to the



54

leaky modes discussed in Sec. 3.3 analogous to the metastable states of a quantum
mechanical system. Figure 3.5 illustrates the analogy between the two systems.

It is now appropriate to explain the working principle of photonic lanterns using this
analogy.

3.5.1 Photonic lanterns and adiabatic mode transformation

In its standard form, the single-mode end of the photonic lantern has an array of
𝑀 decoupled identical SMFs. Collectively, the array is a structure that supports
𝑀 spatial degenerate modes, known also as the supermodes (Ladouceur et al.,
1990). A gradual transition after that, when adiabatic, will allow the supermodes
of the array to evolve into the modes of the multimode end. A lossless transition
is theoretically possible if the degrees of freedom, i.e., the entropy, do not decrease
along the propagation direction. These are, nonetheless, necessary but not sufficient
conditions for lossless transformation. One more condition is the correct geometric
arrangement of the waveguides, as seen later.

Maxwell’s equations do indeed apply to light propagating through structures like
photonic lanterns. Solvers that numerically calculate the field at each point on a
defined grid based on the initial conditions and propagate it forward in discrete steps
using the BPM exist (Spaleniak et al., 2013; Synposys and RSoft Design Group,
1993-2018) but an analogy based on the introduction in Sec. 3.5 can be given to
develop an intuition of how photonic lanterns work.

The analogy in Fig. 3.5 is made between a mode-matched photonic lantern and a
quantum mechanical system that has 𝑀 separated narrow potential wells brought to-
gether into one wider well that has 𝑀 energy levels. When operated with monochro-
matic light, all photons in the photonic lantern have the same energy, unlike the
electrons in a potential well. However, the analogy is not made between the energies
of the two systems but rather between the energies of the electrons in the wells
and the transverse components of the wavevectors 𝜉 of the modes in the waveg-
uides (Leon-Saval et al., 2010). The higher the order of the mode, the longer is its
transverse wavevector, as depicted in Fig. 3.2.

The fundamental mode of a single-mode waveguide is analogous to the ground state
of the electron in a narrow well. This mode has a high effective index value close to
that of the core, and its transverse wavevector 𝜉 is therefore short. When the wells
are brought closer together while made narrower, as is the case for the waveguides
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in a photonic lantern, the wavefunctions become less localized and spread further
beyond the wall (since the well depth is finite). The energy increases all the way
to the point where the wavefunctions start to overlap, and the electrons become
conduction electrons shared by the atoms of the periodic lattice. The electrons are
no longer confined to their initial wells but occupy the energy levels of a single
broader potential well. In the photonic case, the fields spread further into the
cladding as the core radius (and in turn the 𝑉-number) decreases in the transition
region. At the multimode end, the energy levels of a lattice are similar to the modes
of the larger multimode waveguide, which, when fabricated with fibers, has a lower
refractive index of the multimode end core than that of the single-mode end.

Geometry and arrangement of cores

Along the propagation direction in the transition region of a photonic lantern, the
cores of the waveguides need to align with the local modes for the adiabatic condition
in Eq. (3.47) to hold. Without the waveguides evolving into a geometric arrangement
compatible with the local modes upstream, the overlap is poor and light would not
couple into the local (super)modes of the structure ahead leading to losses.

For a circular step-index MMF that supports the linearly polarized modes 𝐿𝑃𝑛𝑚,
the SMFs arrangement that eliminates losses is one with maxp𝑚q concentric rings,
with 2𝑝�1 SMFs in each ring where 𝑝 � maxp𝑛q for each radial order 𝑚 (Fontaine
et al., 2012).

Depending on the fabrication method of choice, the SMFs may not be freely arrange-
able, and modal losses would be unavoidable for arrangements with large numbers
of SMFs as seen below. The large number of modes, however, means that a loss of
only a few of the modes might be negligible.4

Photonic lanterns fabrication

Photonic lanterns could and have been made by all different fabrication methods
that can realize waveguides that exhibit the conditions above for lossless transition.
This excludes methods restricted to 2-dimensional planes, e.g., photolithography,
but techniques like ULI (Harris et al., 2015) and tapering (Noordegraaf et al., 2009)
have been used successfully to fabricate them.

4Several works in the literature explored this compatibility further for a wide range of specific
arrangements. See, for instance, Fontaine et al. (2012) and J. J. Davenport et al. (2021).
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Figure 3.6: Micrographs showing side views and cross-sections of the main regions
of a photonic lantern fabricated by a filament fusion splicer.

When tapered in a fusion splicer, the SMFs are stripped down to the cladding and
inserted inside an F-doped Si capillary with refractive index 𝑛3 slightly lower than
the refractive index of the claddings as depicted in Fig. 3.9. The stack is then heated
either by a tungsten filament (Noordegraaf et al., 2012) or a ring CO2 laser beam
before tension is applied from both ends. As shown in Fig. 3.6, the SMFs fuse
together as the stack diameter decreases to the point where the cores become too
narrow to couple light, and the fused claddings act as the core of the multimode end
of the photonic lantern (J. Davenport et al., 2021). The capillary is now the cladding
of the multimode end. The arrangement of SMFs inside the capillary needs to be
optimized to ensure that they are tightly packed with a high fill factor and therefore
will maintain order in accordance with the geometrical requirements above as they
are tapered (J. J. Davenport et al., 2021). The same tapering approach has also been
used to taper multicore fibers into photonic lanterns where a capillary might not be
required (Haynes et al., 2018).

ULI focuses ultrashort laser pulses inside a glass substrate to modify the glass at
the focus, increasing the refractive index and hence writing optical waveguides
(Thomson et al., 2011). Usually, the substrate is precisely translated relative to the
focus to realize waveguides in three dimensions. The dimensions and the design
parameters of such a component are given in Ch. 6.

3.6 Coupling theory

Quantifying the amount of light that can be injected (and guided) into a waveguide
given the properties of the excitation source is known as the coupling efficiency.
Coupling from free space using a telescope and how it is affected by the geometry
of the aperture and the atmosphere above it are discussed next.
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3.6.1 Free space coupling

In general, the optical field propagating in a waveguide is a superposition of the
modes supported by the said waveguide. The complex amplitude is (Neumann,
2013)

𝑢p𝑥, 𝑦, 𝑧q �
¸
𝑚

𝑎𝑚𝑢𝑚p𝑥, 𝑦q𝑒�𝑖𝛽𝑚𝑧, (3.52)

where 𝑢𝑚 is the transverse distribution of the mode 𝑚, 𝑎𝑚 is its weight, and 𝛽𝑚 is
its propagation constant. Here the weights t𝑎𝑚u depend on the correlation between
the exciting source and the mode 𝑚. If only one mode is to be excited with 100%
efficiency, the source must perfectly match the distribution of that mode. Since the
modes are orthogonal functions, the weight of mode 𝑚 is given by

𝑎𝑚 �
¼

d𝑥d𝑦𝑢p𝑥, 𝑦q𝑢𝑚p𝑥, 𝑦q. (3.53)

With the proper normalization, the coupling efficiency, defined as the fraction of the
total power available at the entrance pupil that couples power into the waveguide, is
given by the sum of the power weights |𝑎𝑚 |2, i.e.,

𝜂𝑚 �
��´ d𝑥d𝑦𝑢�p𝑥, 𝑦q𝑢𝑚p𝑥, 𝑦q

��2´
d𝑥d𝑦

��𝑢p𝑥, 𝑦q��2 ´ d𝑥d𝑦
��𝑢𝑚p𝑥, 𝑦q��2 , (3.54)

where � denotes complex conjugation. The integral in the numerator, known as the
overlap integral, quantifies the correlation between the mode and the exciting field,
while the integrals in the denominator are simply the total powers of the two fields
since they are not necessarily normalized to unity. The modes are nearly transverse,
while the exciting field is purely transverse. When polarization is ignored, the
products in Eq. (3.54) can be written as inner products (Horton et al., 2007)

𝜂𝑚 � |x𝑢|𝑢𝑚y|2
x𝑢|𝑢y x𝑢𝑚|𝑢𝑚y , (3.55)

where x�|�y is the inner product of the two arguments. Conservation of energy
means that coupling efficiency is preserved along the propagation direction. This
allows for the overlap integral to be evaluated at any convenient transversal plane.
Therefore, the waveguide modes may be back-propagated from the focal plane to
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the entrance pupil of the telescope, where the overlap with the aperture function
produces an equal result due to the linearity of Maxwell’s equations if the optical
system is lossless (Haffert, 2021).

A case of particular interest, for which an analytical solution exists, is the coupling
via a diffraction-limited telescope into an SMF. The exciting field, in this case, is
the Airy pattern in Eq. (B.16), while the mode is the fundamental one approximated
by Eq. (3.35). The clear mismatch between the two distributions prohibits a 100%
coupling. The size of the Airy pattern needs to be optimized to the Gaussian mode
by choosing the focal ratio that leads to the maximum correlation. At the entrance
pupil, the exciting field is a plane wavefront, and the mode remains a Gaussian
whose parameters are determined by Gaussian beam optics (Neumann, 2013). The
distribution of the mode at the aperture is

𝑢1𝑚p𝜌q �
d

2
𝜋𝑤2

1
𝑒
� 𝜌2

𝑤2
1 , (3.56)

where polar coordinates are used for the circular fiber and 𝑤1 is the 1{𝑒 radius, i.e.,
the mode field radius, of the Gaussian beam at the pupil related to the radius at the
focus by 𝑤1 � 𝜆 𝑓 {𝜋𝑤0 with 𝑓 being the focal length of the focusing optic. Both
fields have planar wavefronts at the aperture, and thus 𝑢�𝑢𝑚 reduces to |𝑢 | |𝑢𝑚 |. The
numerator in Eq. (3.54) becomes

𝜂𝑚 � 4
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where 𝑤1 was expressed in terms of its focal plane counterpart, 𝑤0, and the integral
at the denominator was recognized to be simply the area of the aperture. When 𝜂 in
Eq. (3.58) is plotted against 𝜋𝑤0𝐷{2𝜆 𝑓 similar to the plot shown later in Fig. 5.11,
5 one finds that it has its maximum equal to 0.816 at 𝜋𝑤0𝐷{2𝜆 𝑓 � 1.121. This
is the maximum coupling efficiency that one can get from plane waves diffracted
by circular apertures into step-index SMFs. The optimum focal ratio, 𝑓 {# � 𝑓 {𝐷,

5Actually, the plot in Fig. 5.11 is calculated at the focal plane with the true mode rather than its
Gaussian approximation, and it is, therefore, more accurate than the formula in Eq. (3.58).
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for maximum coupling into a given fiber should be chosen such that it equals
𝜋𝑤0{p2𝜆 � 1.121q. Worth mentioning is that the actual maximum calculated with
the exact mode rather than its Gaussian approximation is a bit lower at � 79% (see
Fig. 5.11).

Effect of obscuration and spiders

Most astronomical telescopes do not have pupils that are clear circular apertures but
are instead obscured by a secondary mirror and its spiders. Both of which adversely
affect the coupling of light into waveguides (Coudé du Foresto, 1994). Structures
like these diffract light away from the focus, effectively reducing the Airy disk’s
peak amplitude and carrying the power to the outer rings and the spikes, as shown in
Fig. 3.7. In the case of a secondary mirror with negligible spiders, the PSF deviates
from the Airy pattern in Eq. (B.16) and takes the form (Everhart et al., 1959)

𝐼p𝜌1, 𝜙1q � 2𝐴2p2𝜋𝑎2q2
𝑟K2

�
𝐽1p𝑘𝑎𝜌1{𝑟Kq
𝑘𝑎𝜌1{𝑟K � 𝜁2 2𝐽1p𝜁 𝑘𝑎𝜌1{𝑟Kq

𝜁 𝑘𝑎𝜌1{𝑟K

�2
, (3.59)

where 𝜁 is the obscuration ratio. The effect is extreme for telescopes designed for
wide FoV surveys with a large obscuration ratio, e.g., VRO at 𝜁 � 0.62. One
way of mitigation is to apodize the pupil by shifting the light at the edges of the
pupil towards the center to transform the intensity from a uniform distribution into
a Gaussian-like one by optics that modulate the phase to redistribute the amplitude
across the pupil. A phase-induced amplitude apodizer (PIAA) that brings the outer
rays into the middle before collimating the beam can perform better than a Gaussian
apodizer in terms of coupling if tailored to its host telescope (Calvin et al., 2021;
Jovanovic, Schwab, et al., 2017).

Coupling through turbulence

The effect of turbulence on coupling is the main point that this work is trying to
address and numerical results calculated with attention paid to the contributing
phenomena detailed so far are presented in Sec. 5.2. Some insights are, however,
possible at this point and can help develop an intuition without the need for intricate
computations.

This involves the brightness theorem and the concept of étendue to relate the turbu-
lence strength to the modes of a large MMF. According to the brightness theorem,
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Figure 3.7: Top panels: aperture functions of various telescope configurations. The
parameter 𝜁 is the obscuration ratio, while 𝜄 is the spider width as a fraction of
the whole diameter. Bottom panels: their respective normalized PSFs in base 10
logarithmic.

the étendue, 𝑆, is conserved for light traversing an ideal passive optical system. In
an imperfect system, however, it can only increase since entropy must also increase.
In free space, the étendue of a source is given by (Minardi et al., 2021)

𝑆 � 𝐴Ω, (3.60)

where 𝐴 is the source area normal to the line of sight and Ω is the solid angle of the
emission. The étendue of light that couples into a fiber

𝑆F � 𝜋2𝑎2NA2 � 𝜆2𝑉2

4
, (3.61)

where 𝑎 is the fiber radius, NA is its numerical aperture, and 𝑉 its normalized
frequency. The approximation Ω � 𝜋𝛼2 for the solid angle was used. The seeing
disk, as seen from the aperture, has the area

𝐴 � 𝜋 p𝜃𝑆 𝑓 q2 , (3.62)

where 𝜃𝑆 is the seeing and 𝑓 is the focal length. The solid angle seen by the telescope
is

Ω � 𝜋

�
1

2 𝑓#


2
, (3.63)
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where the solid angle approximation was used once more. The étendue of the
telescope is, therefore,

𝑆T � 𝜋2𝜃𝑆
2𝐷2

4
, (3.64)

where the definition 𝑓 � 𝐷 𝑓# with 𝐷 being the diameter of the telescope was used.
Imposing the conservation of étendue

𝜆2𝑉2

4
� 𝜋2𝜃𝑆

2𝐷2

4
, (3.65)

one reaches the formula for the number of modes contained in the seeing disk

𝑀 � 𝑉2

4
�
�
𝜋𝐷

2𝑟0


2
, (3.66)

where the approximation for the number of modes in terms of the 𝑉-number (Eq.
(3.37)) and the angular size of the seeing disk in terms of Fried’s parameter 𝜃𝑆 � 𝜆{𝑟0

(Sec. 2.1.3) were utilized. Note that this formula only counts one polarization state.

Although an approximation, this is a significant result. The number of modes that an
MMF needs to support in order to couple the seeing disk is given simply in terms of
the turbulence strength 𝐷{𝑟0. Note that p𝐷{𝑟0q2 is the count of coherent wavefront
patches at the aperture and roughly the count of speckles in the PSF. One, therefore,
arrives at the elegant conclusion that efficient coupling requires a mode (or an SMF)
per speckle in the focal plane.

3.7 Integrated optics and astrophotonics

The photonic advantage that integrated optics bring to astronomical instrumentation
was touched on in Sec. 1.3. Some of the most advanced photonic technologies that
have been proposed to perform a variety of functionalities on starlight are discussed
next. A brief description is given, demonstrating their superiority over bulk optics
while stressing the necessity for them to operate in the single-mode regime. Note
that this list is by no means exhaustive.

3.7.1 Photonic spectrographs

Next to interferometry, spectroscopy stands to benefit the most from photonic tech-
nologies. For typical slit spectrographs with bulk optics dispersers, e.g., gratings
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Figure 3.8: Pictures of (a) an AWG shown next to a 2 euro cent coin [adapted from
Stoll et al., 2020] and (b) multiple four-telescopes DBCs inscribed in a glass substrate
held between two fingers [image credit: A. N. Dinkelaker (AIP)], highlighting the
scale.

and prisms, the plate scale defines the slit width given the seeing, which in turn
constrains the size of the optics required for the spectrograph. The size of the
instrument, therefore, grows linearly with the diameter of the aperture. The costs
of both, the telescope and the instruments, grow even faster as the aperture square
(Belle et al., 2004; Blind et al., 2017). Some form of AO will consequently be
indispensable to control the size of the seeing disk and maintain a practical size of
the spectrograph. With AO correction, coupling into a single-mode waveguide is
viable, and the use of a photonic spectrograph becomes even more attractive.

Several technologies have been identified as candidates for photonic spectroscopy.
One example is arrayed waveguide gratings (AWGs) which are high-resolution
planar spectrometers developed originally for DWDM. The light delivered by the
input fiber is allowed to diverge in one dimension in a slab waveguide known as the
free propagation zone before before an on-chip phased array of waveguides picks
it up. The beams propagating out of the array waveguides, having accumulated
progressive phase shifts, then interfere to produce a dispersed output because the
interference is constructive for different wavelengths at different output angles.
AWGs are fully integrated with all the segments on the same platform (see Fig.
3.8a), but the spectral orders may overlap if the free spectral range is too small.
Cross dispersion can be introduced after that to separate the orders but that would
add an additional stage and increase the size.
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3.7.2 Beam combiners

In an array of 4 telescopes or more, the flux reaching the detector after combination is
only a few percent of its initial value because of the multiple reflections it undergoes
in the delay lines and the beam splitters (Labadie et al., 2016). Using an integrated
optics beam combiner is one way to mitigate this light loss. The need for the
combiner waveguides to operate at the single-mode regime (Perraut et al., 2018)
contributes to the losses as the coupling is never total, but AO can be used to tip the
scale in favor of the photonic approach.

Long-baseline interferometry was the first application of astrophotonics. The pro-
totype FLOUR (Coudé du Foresto et al., 1992) instrument used SMF couplers to
combine a pair of telescopes on Kitt Peak observatory before becoming a facility
instrument at IOTA (Coudé du Foresto et al., 1998). Soon after, the VLTI followed
suit with PIONIER and GRAVITY. Planar photonic chips admitted active phase
shifting allowing the derivation of visibility amplitudes and closure phases using
the ABCD scheme. GRAVITY, operating in the K-band, combines the light from
the four 8-m VLT telescopes using a planar lithographic chip. It has been used
successfully to uncover the orbital motions of stars in the crowded Galactic Center
and led to, among other achievements, the discovery of a supermassive object at Sgr
A� (Abuter et al., 2018).

DBCs like the one shown in Fig. 3.8b use a 3D array of nonoverlapping single-mode
waveguides to combine multiple telescopes. They are discussed further in Sec. 4.2
and Ch. 7.

3.7.3 OH suppression filters

A series of high refractive index regions inscribed in the core of an SMF, known
as an FBG, have the capability of reflecting back the light of a selected wavelength
via Fresnel reflections. The reflections from all the interfaces between the different
index regions interfere constructively when the grating period matches an integer
multiple of half-wavelength, and the grating, therefore, acts as a notch filter. In
IR ground-based astronomy, this can be exploited to develop complex filters to
suppress the problematic hundreds of telluric OH lines. One complication is that
these background lines are not periodically spaced and vary in depth. Nevertheless,
the filter spectrum could be controlled by precisely tuning the spacings and depths of
the index modulations, which can be laser-inscribed into the core. OH suppression
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should allow the observation of faint, high redshift objects like the cosmic noon
galaxies that can only be reliably observed from the ground upon filtering the IR
sky background.

If written in MMFs, each mode would experience a slightly different periodicity
resulting in the periodic filter rejecting multiple lines instead of one. Fortunately,
photonic lanterns can help overcome this difficulty by feeding the multimode seeing
disk to several SMFs before the downstream half of the lantern converts them back
to a single MMF. This was first done for the GNOSIS spectrograph (Ellis et al.,
2012) and next-generation designs continue to be developed (Rahman et al., 2020).

3.7.4 Mode converters (photonic lanterns)

Unlike many of the other astrophotonic technologies developed first for the com-
munication industry, photonic lanterns were originally conceived to increase the
throughput of FBGs, which only operate efficiently in SMFs (Leon-Saval, 2015) as
mentioned above. They have since made the leap and found applications in telecom-
munications and sensing, and are now commercially traded. Photonic lanterns trans-
form, in theory without loss, the multimode light in a multimode waveguide into
multiple single-mode waveguides and vice versa (see Fig. 3.9). This breakthrough
has a substantial significance for astronomical instruments. It means that starlight
distorted by the atmosphere, composed of numerous modes, can be transformed into
Gaussian-like coherent beams. No matter how much distorted the wavefront is, the
input port of the photonic lantern can be made large enough for all the constituents
of the PSF to find modes in the plethora of guided modes offered to couple into.
The drawback, however, is that the degrees of freedom must be matched. This is
to say, the system’s entropy must be conserved as demanded by the second law of
thermodynamics. Any design of an instrument that utilizes photonic lanterns has to
navigate this limitation.

The symmetry between the identical SMFs of the photonic lantern could interestingly
be broken to make a mode-selective photonic lantern (MSPL) that has a one-to-one
correspondence between the modes and the SMFs. This is discussed in detail in Ch.
6 where the potential advantages it could bring to astronomy are pointed out.

Other astrophotonic technologies that have been studied but are of less relevance
to this work include pupil remappers, reformatters, microring resonators, phase
chronographs, and frequency converters.
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Figure 3.9: A 1 � 7 photonic lantern fabricated by tapering a stack of SMFs. The
greyscale also reveals the refractive index profile from the dark grey of the SMFs
cores being the highest index to the light grey of the capillary representing the lowest
[adapted from J. J. Davenport et al., 2021].
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C h a p t e r 4

NUMERICAL MODELS FOR COUPLING THROUGH
TURBULENCE

The theoretical concepts presented in Ch. 2 for turbulence mechanics and AO and
in Ch. 3 for waveguides describe the physics, but the mathematical equations need
to be formulated in a manner more suitable for implementation on a computer.
The numerical models for these concepts are presented here. Section 4.1 gives the
considerations necessary for simulating SMFs and FMFs, while Sec. 4.2 does the
same for waveguide arrays. Section 4.3 shows how phase screens for the atmospheric
layers are generated using matrix algebra and FFT. Section 4.4 discusses the use of
FFT to model free space propagation. Finally, Sec. 4.5 presents the models for the
components of an AO system.

4.1 Modeling few-mode fibers (FMFs)

To find the LP modes of weakly guiding step-index fibers, the characteristics equation
(Eq. (3.34)) is solved numerically. For a given azimuthal index 𝑙 and a maximum
radial order 𝑚, the first 𝑚 positive zeros of the Bessel function 𝐽 𝑙�1 are found by
applying Halley’s iterative method (Alefeld, 1981; Traub, 1982). The least-square
fits of the first three zeros are used to get approximate initial values that will cause
the method to converge to the correct zeros. The fact that the zeros of Bessel
functions are regularly spaced is used to find the initial values for the subsequent
zeros starting from the third. Tabulated values are not used here but could lead to
a faster computation if the iterations involved in Halley’s method are identified as a
bottleneck in the calculations pipeline.

Next, the characteristic equation is solved by looking for the point where the equation
changes signs within the interval defined by the zeros of the Bessel function. The
solution represents the 𝜉 1 value of the found mode and 𝜒1 can be calculated using
𝜒1 �

a
𝑉2 � 𝜉 12. The field distributions in the core and the cladding are then given

by Eq. (3.25) and (3.26). The process is repeated for increasing values of the indices
𝑙 and 𝑚 until no more modes could be found. The first 15 LP modes found using
this algorithm are shown in Fig. 4.1. Figure 4.2 shows how more modes become
supported as 𝑉 increases.



67

Figure 4.1: The first 15 LP modes of a weakly guiding step-index fiber with the
dotted circles marking the core-cladding interface. The subscript 𝑒 denotes even
while 𝑜 denotes odd for the degenerate modes. The insets show the phase profile,
which only flips between 0 and 𝜋 for the LP modes.

Figure 4.2: The increase in the effective indices of the modes in Fig. 4.1 as 𝑉
increases. The effective indices, 𝑛eff � 𝛽{𝑘0, take values between that of the core,
𝑛1, and that of the cladding, 𝑛2. The cutoff frequencies are at the crossings on the
cladding index value on the 𝑥 axis.
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4.2 Modeling waveguide arrays

To solve the differential equations of the CMT in Sec. 3.4, the Crank-Nicolson
method (Crank et al., 1947) is applied. The discrete approximation of Eq. (3.41)
has the form

®𝐴p𝑘�1q � ®𝐴p𝑘q
Δ𝑧

� 𝑖

2
𝜅C

�
®𝐴p𝑘�1q � ®𝐴p𝑘q

�
, (4.1)

whereΔ𝑧 is the size of the differentiation step and 𝑘 is the index of the step. Grouping
all terms from the same step in 𝑧 together, one gets
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where 1 is the identity matrix. Using the notations L � 1 � 𝑖
2𝜅Δ𝑧C and R �

1� 𝑖
2𝜅Δ𝑧C, one gets

®𝐴p𝑘�1q � L�1R ®𝐴p𝑘q. (4.3)

Evolving the field forward to the next step in an array of 𝑁 identical waveguides
is therefore reduced to a problem of inverting and multiplying an 𝑁 � 𝑁 matrix
by another. Figure 4.3 shows the results of propagating an initial field through a
hexagonal waveguide array using CMT.

When waveguide arrays are used for phase retrieval, like in DBCs and mode ana-
lyzers, their geometrical configuration and the choice of the excitation sites make
a difference on how sensitive the system is to noise, as further discussed in Ch.
7.1 This is characterized by the condition number of the transfer matrix of the said
system. Therefore, a fast numerical algorithm is essential when a large number of
configurations is to be tested. BPMs, although more accurate than the CMT, are
far too slow for testing all the possible permutations of excitation sites in a given
waveguide array.

Together with the local modes assumptions of slowly varying waveguides given
in Sec. 3.5, CMT could also be used to model the transition regions of photonic
lanterns. As mentioned, BPM, although demanding in terms of computing power,
is superior in terms of accuracy, and it is used for the photonic lanterns modeled in

1Put differently, the geometry determines how chaotic the resulting system will be.
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Figure 4.3: Evolution of the field in a hexagonal array of identical waveguides. Only
two waveguides are initially excited, and steps of 50 𝜇m are calculated using the
CMT are shown. Wavelength is 𝜆 � 1.55 𝜇m, and coupling length 𝐿𝐶 � 1 mm.

this works whenever the number of simulation runs planned could be accomplished
inside a reasonable time frame.

4.3 Modeling the atmosphere with phase screens

When simulating atmospherically distorted starlight, a key tool is the phase screen
generator. The generator produces random realizations of the wavefront phase after
propagation through an atmospheric layer that have the correct spatial statistics, e.g.,
the Kolmogorov (Eq. (2.34)) or the von Kármán (Eq. (2.35)) spectra. The temporal
evolution of the turbulence can then be easily simulated by shifting a large phase
screen over the aperture following Taylor’s frozen flow hypothesis (see Eq. (2.37)).

Methods for creating phase screens generally fall under two categories. In the
sample-based method, a matrix of random Gaussian numbers is filtered with Kol-
mogorov’s spectrum. The filtered matrix is inverse Fourier transformed to get the
phase (Welsh, 1997). The resolution of the matrix limits the representation of low
spatial frequencies in the wavefront, which are the main contributors according to
the 5{3rds law (Louthain et al., 1998). The second category is the modal-based
method where the phase is decomposed into an infinite set of orthogonal functions
over the aperture. The basis functions are assigned coefficients that are random
Gaussian numbers with zero mean and variances that satisfy the desired statistics.
The underrepresentation of low-frequency components is therefore avoided in doing
so.
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The approach proposed by Welsh, 1997 is a modal method that uses a Fourier series
as the expansion of the wavefront. The phase 𝜙p ®𝜌q is assumed to be a stochastic pro-
cess that is Gaussian and has zero mean. According to the Wiener–Khinchin–Einstein
theorem, the PSD of the process is given by the Fourier transform of the autocorre-
lation function. The autocorrelation of the phase is

𝐵𝜙p ®𝜌0q � x𝜙p ®𝜌q𝜙p ®𝜌 � ®𝜌0qy, (4.4)

which is independent of the absolute position ®𝜌 due to the process being a spatial
wide sense stationary process, i.e., its mean and variance do not change when shifted
in space. The PSD is
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where ®𝑓 is the vector spatial frequency coordinate. If the screen is being generated
over an area of dimension 𝐷 𝑝, then the phase will have a period of 𝐷 𝑝 in both
directions. The Fourier series expansion of the generated phase is

𝜙1p ®𝜌0q �
8̧

𝑖��8

8̧

𝑗��8
𝑐𝑖, 𝑗 exp

�
2𝜋𝑖

�
𝑖𝑥

𝐷 𝑝

� 𝑗 𝑦

𝐷 𝑝


�
, (4.6)

where 𝑥 and 𝑦 are the orthogonal components of ®𝜌0. and 𝑐𝑖, 𝑗 are the coefficients to
be determined for the spatial frequencies ®𝑓 � 𝑖𝑥{𝐷 𝑝 � 𝑗 𝑦̂{𝐷 𝑝. The coefficients are
independent random complex numbers that have a Gaussian distribution with the
mean square

x|𝑐𝑖, 𝑗 |2y � 1
𝐷2
𝑝

Φ

�
𝑖

𝐷 𝑝

,
𝑗

𝐷 𝑝



. (4.7)

Furthermore, the symmetry of the problem requires that the coefficients are Hermi-
tian, i.e., 𝑐𝑖, 𝑗 � 𝑐��𝑖,� 𝑗 . Both the generated and the true phases have approximately
the same autocorrelation function within a distance of 𝐷 𝑝 from the origin. With 𝐷 𝑝

chosen larger than the outer scale and in general much larger, the autocorrelation
approaches zero as 𝐷 𝑝 Ñ 8 and it decreases to negligible values for 𝜌0 ¥ 𝐷 𝑝{2.
The expansion over a finite number, 𝑁 , of basis functions is
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𝜙1p ®𝜌q �
𝑁�1̧

𝑖��p𝑁�1q

𝑁�1̧

𝑗��p𝑁�1q
𝑐𝑖, 𝑗 exp

�
2𝜋𝑖

�
𝑖𝑥

𝐷 𝑝

� 𝑗 𝑦

𝐷 𝑝


�

� 2 Re

#
𝑁�1̧

𝑖�0

𝑁�1̧

𝑗�0
𝑐𝑖, 𝑗 exp

�
2𝜋𝑖

�
𝑖𝑥

𝐷 𝑝

� 𝑗 𝑦

𝐷 𝑝


�

�
𝑁�1̧

𝑖�1

�1̧

𝑗��p𝑁�1q
𝑐𝑖, 𝑗 exp

�
2𝜋𝑖

�
𝑖𝑥

𝐷 𝑝

� 𝑗 𝑦

𝐷 𝑝


�+
(4.8)

The pseudocode for generating a phase screen with a von Kármán spectrum proceeds
as follows:

For 𝑁 sampling points in the frequency domain in each direction and a period 𝐷 𝑝

of the Fourier series, the spatial frequency column vector is

𝑓 �
�
0,

1
𝐷 𝑝

, � � � , 𝑁
𝐷 𝑝

�ᵀ
. (4.9)

The elements 𝑐𝑖, 𝑗 in Eq. (4.8) have the variances

𝜎2
1 �

1
𝐷2
𝑝

Φ

�
𝑘 � 1
𝐷 𝑝

,
𝑙 � 1
𝐷 𝑝



,

𝜎2
2 �

1
𝐷2
𝑝

Φ

�
𝑘 � 1
𝐷 𝑝

,
�𝑙 � 1
𝐷 𝑝



,

(4.10)

where 1 and 2 designate the variances associated with the first and the second terms
in Eq. (4.8), respectively. The spatial frequencies for each term are

| 𝑓1 |2p𝑘, 𝑙q �
�
𝑘 � 1
𝐷 𝑝


2
�
�
𝑙 � 1
𝐷 𝑝


2
,

| 𝑓2 |2p𝑘, 𝑙q �
�
𝑘 � 1
𝐷 𝑝


2
�
��𝑙 � 1

𝐷 𝑝


2
.

(4.11)

In terms of the spatial frequency, the von Kármán PSD has the form

Φp ®𝑓 q �
0.023

�
𝐷 𝑝

𝑟0

	5{3
𝐷2
𝑝�

| ®𝑓 |2𝐷2
𝑝 �

�
𝐷 𝑝

L0

	2

11{6 . (4.12)
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Substituting in Eq. (4.10) with 𝑓 as defined in Eq. (4.11)

𝜎2
1 �

0.023
�
𝐷 𝑝

𝑟0

	5{3

�
𝑓 2
1 𝐷

2
𝑝 �

�
𝐷 𝑝

L0

	2
�11{6 ,

𝜎2
2 �

0.023
�
𝐷 𝑝

𝑟0

	5{3

�
𝑓 2
2 𝐷

2
𝑝 �

�
𝐷 𝑝

L0

	2
�11{6 .

(4.13)

The amplitudes of 𝐶1 and 𝐶2 have the values

𝐴1 � 𝜎1𝑅1,

𝐴2 � 𝜎2𝑅2,
(4.14)

where 𝑅 is an 𝑁 � 1 square matrix of normally (Gaussian) distributed random
numbers of zero mean and variance 1. The angles of the complex coefficients are

𝜃1 � 2𝜋𝑅11,

𝜃2 � 2𝜋𝑅12,
(4.15)

where 𝑅1 is an 𝑁 � 1 square matrix of uniformly distributed random numbers in the
interval p0, 1q.The coefficients therefore are

𝐶1 � 𝐴1𝑒
𝑖𝜃1 ,

𝐶2 � 𝐴2𝑒
𝑖𝜃2 .

(4.16)

The first row and the first column of 𝐶1 are set to zero since the second sum in Eq.
(4.8) starts from 𝑖 � 1, 𝑗 � �p𝑁 � 1q
The pupil sampling in both dimensions is defined by the vectors

𝑥 �
�
0 :

𝐷

𝑀 � 1
: 𝐷

�
,

𝑦 �
�
0 :

𝐷

𝑀 � 1
: 𝐷

�
,

(4.17)

where 𝑥 and 𝑦 are row vectors of length 𝑀 that contain the 𝑥- and 𝑦-coordinates of
the grid points, respectively.
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Wavelength 𝜆

Aperture diameter 𝐷

Size of the spectrum period 𝐷 𝑝

Sampling of the spatial frequency 𝑁

Sampling of the phase screen 𝑀

Fried’s parameter 𝑟0
Outer scale L0
Velocity vector ®𝑣 � p𝑣𝑥 , 𝑣𝑦q
Time delay 𝜏

Table 4.1: Simulation parameters used for modeling the atmospheric layer.

Substituting in Eq. (4.8), the generated phase screen is

𝜙̂ � 2 Re
 �
𝑒2𝜋𝑖 𝑓 𝑥�ᵀ �C1𝑒

2𝜋𝑖 𝑓 𝑦 � C2𝑒
�2𝜋𝑖 𝑓 𝑦�( , (4.18)

where ᵀ indicates a transpose. This is the matrix form of Eq. (4.6). Table 4.1 lists
the input parameters required for simulating an atmospheric layer.

4.4 Free space propagation

Once atmospheric turbulence is modeled and a phase screen generator is at hand,
one needs to calculate the optical field at the focus and at intermediate planes
where certain AO operations take place. This is done by propagating the phase
screen through free space using Fraunhofer diffraction as detailed in App. B. If
scintillation is to be modeled (see Sec. 2.1.2), the phase screen from the highest
atmospheric layer is propagated by a Fresnel diffraction integral (Eq. 4.21) to the
next layer and so on to the aperture to get both the phase and the amplitude of the
wavefront (Osborn, 2015). Simulations that do not involve AO correction require a
single propagation from the aperture to the focal plane where a waveguide is placed.
Some numerical considerations are necessary before Eq. (B.9) is applied.

When the aim is to calculate the overlap integral in Eq. (3.54) to estimate the
coupling efficiency, the integral may be evaluated at either the focal or the pupil
plane. The number of phase screens required to obtain ensemble averages is normally
more than the number of modes involved, and therefore, the waveguide modes are
back-propagated to the pupil plane for computing economy.

The modes Mi calculated as described in Sec. 3.2.1 are zero-padded by adding
an equal number of zero-containing rows and columns in all directions, effectively
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increasing the size of the matrix. This is done for two reasons. First, to increase
the size of the matrix to have a power-of-two dimension, allowing the FFT codes to
apply the extremely efficient radix-2 algorithm (Kelly, 2014). Secondly, since the
size of the FFT output matrix equals that of the input, increasing the input size by
adding zeros also increases the FFT resolution. This is not to say that the frequency
resolution, given by 1{𝑁 where 𝑁 is the length of the data-containing matrix Mi,
increases. Zero-padding, however, ensures that no information is lost in the FFT
output because of poor sampling.

The zero-padded modes are back-propagated to the pupil plane via an inverse FFT

M1
𝑖 � FFTshift�1

�
FFT�1

�
FFTshift�1

�
𝑖𝜆 𝑓 exp

�
�2𝜋𝑖
𝜆

�
𝑓 � 𝑥2 � 𝑦2

2 𝑓




M𝑧
𝑖



�
,

(4.19)

where M𝑧
𝑖

is the zero-padded mode, and 𝑥 and 𝑦 are vectors that contain the 𝑥-
and 𝑦-coordinates of the grid over which 𝑀 𝑧

𝑖
is defined. FFT�1p�q returns the two-

dimensional discrete inverse FFT of its argument while FFTshift�1p�q rearranges its
argument by swapping its first with its third quadrants and its second with its fourth
quadrant such that it is consistent with the requirement of FFT�1p�q (Breckinridge
et al., 2011). In Eq. (4.19), 𝑓 is the focal length of the focusing optic, i.e., the
telescope. The resulting pupil field is then properly truncated and interpolated to
match the dimensions of the wavefront that it needs to be overlapped with.

4.5 Modeling AO correction

To include the effect of AO correction on wavefronts before coupling, the three
main elements of an AO system, i.e., the WFS, the DM, and the wavefront con-
structor, need to be modeled. Each component is defined by several parameters and
performance specifications, as shown in Table 4.2.

4.5.1 WFS model

The model here assumes a WFS of the Shack-Hartmann type introduced in Sec.
2.2.2. The MLA is defined by the number of microlenses along each direction,
its pitch, and focal length. The focal length determines the linear size of the
spots on the detector and the amount of shift per unit tilt, setting the limits on the
dynamic range of the sensor. Since the MLA is placed at the exit pupil of the
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WFS Controller DM

MLA Number (𝑁𝑀𝐿) and
arrangement of mi-
crolenses

Reconstruction
modes

Number and arrange-
ment of actuators

Size (𝑑) and subaper-
ture pitch

Pure delay Actuators pitch

Focal length ( 𝑓 ) Influence functions

Detector QE Response time

RON Stroke

Dark current (𝜎dark) Pupil diameter

Gain (ADU)

Pixel pitch

Exposure time (𝑇exp)

Table 4.2: AO system parameters relevant to modeling.

telescope, the wavefront it intercepts is the same as the wavefront at the aperture
apart from a multiplication factor equal to the magnification of the afocal system
formed by the telescope’s primary and the collimator. The detector behind the MLA
is characterized by its QE, dark current, pixel pitch, discretization levels, i.e., analog
to digital units (ADUs), and exposure time.2

The wavefront phase is that of the generated phase screen in Sec. 4.3, and its
amplitude is assumed to be uniform and normalized to unity unless scintillation
effects are included. The shape of the telescope aperture, i.e., primary mirror and
secondary obscuration, is accounted for by appropriate masking. The resulting
wavefront is

𝜓 � 𝐴𝑁𝑀𝑇𝑇ML exp p𝑖𝜙q , (4.20)
2Or the frame rate if it happens to be the limiting factor.
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where 𝐴𝑁 is an amplitude normalizing factor, 𝑀𝑇 is the telescope aperture mask,
𝜙 is the phase screen, and 𝑇ML is the transmission function of the MLA. For a
square MLA of 𝑁ML microlenses in each direction, the transmission function is a
concatenation of 𝑁ML � 𝑁ML single-lens transmission functions, which are simply
spherical wavefronts for spherical lenslets, i.e., exp

��𝜋𝑖®𝑟2{ p 𝑓 𝜆q�, where 𝑓 is the
focal length and ®𝑟 is the position. The phase modulation of the lenslets array is
illustrated in Fig. 4.4a. The piston component can be removed by subtracting the
mean value from the wavefront. The Fraunhofer condition 𝑑2{p𝜆 𝑓 q ! 1, where
𝑑 is the side length of the array, does not hold here and cannot be used for the
optical propagation through the array to its focal plane. Furthermore, the incoming
wavefront modulated by the short focal length array differs from the planar wavefront
by multiple wavelengths over the extent of the aperture. Such an arrangement calls
for Fresnel’s diffraction

𝐸p𝑥1, 𝑦1q � F�1  F t𝜓p𝑥, 𝑦qu𝑌p𝑘𝑥 , 𝑘𝑦q
(
, (4.21)

where the propagator transfer function 𝑌 is given by

𝑌p𝑘𝑥 , 𝑘𝑦q � 𝑒𝑖𝑘 𝑓 𝑒�𝑖𝜋𝜆 𝑓 p𝑘
2
𝑥�𝑘2

𝑦q. (4.22)

This is implemented numerically using FFTs as follows

Ep𝑥1, 𝑦1q � FFTshift�1 �FFT�1 �FFTshift�1 �Yp𝑘𝑥 , 𝑘𝑦qFFT
�
FFTshift�1 p𝜓p𝑥, 𝑦qq���� .

(4.23)

The pattern forming on the detector due to this optical field is

I � 1
2𝑍0

|Ep𝑥1, 𝑦1q|2, (4.24)

where 𝑍0 is the impedance of the free space. The reference locations of the spots
are obtained by propagating a plane wave using the same Eq. (4.23). The photons
count per pixel is calculated using

𝑛ph �
𝜆𝐴px𝐼𝑇exp

ℎ𝑐
, (4.25)
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Figure 4.4: Lenslets array of the SH sensor. (a) Phase of the array. (b) Simulated
spots pattern due to a circular planar wavefront. Red line encircles ¡ 25% illumi-
nated subapertures, and blue line encircles spots with 99% illumination threshold.

where 𝐴px is the area of a single pixel and 𝑇exp is the total exposure time. Shot
noise is included by adding a term ?

𝑛ph � R to each pixel value where 𝑅 is a
normally distributed random scalar. Finally, the number of photoelectrons is found
by accounting for the QE of the detector. Dark current may be included by adding a
term 𝜎dark � 𝑅 to the number of photoelectrons where 𝜎dark is the rms dark current
noise.

A centroiding algorithm is run next on this WFS image. Within each subaperture,
a check is carried out to ensure that it is well illuminated. This is always the case
for the central subapertures when a circular beam is illuminating a square lenslets
array but not for the outer ring, as shown in Fig. 4.4b. Subapertures with a fill
factor below a defined threshold are considered noisy and not used for calculating
local slopes. The centroid coordinates for a subaperture that has 𝑁 pixels are given
by Eq. (2.55) which has the discrete form

𝑐𝑥 �
°
𝑖, 𝑗 𝑥𝑖, 𝑗 𝐼𝑖, 𝑗°
𝑖, 𝑗 𝐼𝑖, 𝑗

, (4.26a)

𝑐𝑦 �
°
𝑖, 𝑗 𝑦𝑖, 𝑗 𝐼𝑖, 𝑗°
𝑖, 𝑗 𝐼𝑖, 𝑗

, (4.26b)

where 𝐼𝑖, 𝑗 is the number of photoelectrons of pixel 𝑖, 𝑗 while 𝑥𝑖, 𝑗 and 𝑦𝑖, 𝑗 are the
𝑥- and 𝑦-coordinates of that pixel, respectively. The indices p𝑖, 𝑗q run over all the
pixels in the region of interest behind the subaperture. These centroids could be
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arranged in two vectors 𝑂𝑥 and 𝑂𝑦, one for each coordinate, and the local slopes
measured by the WFS are, therefore, given by

𝑆𝑥 �p𝑂𝑥 � 𝑅𝑥q𝛿
𝑓 𝑀𝑇

, (4.27)

𝑆𝑦 �
p𝑂𝑦 � 𝑅𝑦q𝛿

𝑓 𝑀𝑇

, (4.28)

where 𝛿 is the pixel pitch of the detector and𝑀𝑇 is the magnification of the telescope-
collimator system that reduces the received beam size to that of the lenslets array.
The vectors 𝑅𝑥 and 𝑅𝑦 are the reference centroids due to a plane wave. The two
vectors 𝑆𝑥 and 𝑆𝑦 are concatenated into one vector 𝑆 � r𝑆𝑥𝑆𝑦sᵀ for the use of further
wavefront reconstruction computations in Sec. 4.5.3.

4.5.2 DM model

Formulas for calculating the influence functions of generic DMs have been reported
in the literature (Ealey et al., 1992). The simplest of these models approximate
the shape by a Gaussian and assume that the functions are axisymmetrical. They
also model all the actuators by the same function regardless of position (F. Roddier,
1999).

The use of influence functions assumes that the DM is linear and that its actuators are
fairly decoupled, i.e., the response due to two actuators poked by some commands
𝑎1 and 𝑎2 is simply the sum of the unit step responses of each actuator weighted by
𝑎1 and 𝑎2, respectively. The DM parameters relevant to modeling are the number
of actuators and their arrangement, the stroke, i.e., the maximum extent an actuator
can reach from its nominal position before its behavior deviates from linearity,
and the response time it takes an actuator to reach within �10% of the set point.
Artifacts like creep and hysteresis are neglected in this modeling but tended to in the
experimental work in Sec. 5.2. The measured influence functions of all 97 actuators
of an ALPAO DM97-15 mirror are shown in Fig. 5.4.

When one knows the make of the DM one plans to use, measured influence functions
are usually available from the vendor (Garcia et al., 1978). The influence functions
used in this work were provided by ALPAO SAS (Bouquin et al., 2018).
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4.5.3 Wavefront reconstruction

To perform a modal reconstruction, a matrix that has the WFS response to the first
𝑀 Zernike modes is filled. The WFS slopes are acquired as in Sec. 2.1.4, except that
the propagated wavefront is a Zernike mode (Eq. (2.50)) instead of a phase screen.
This results in an 𝑁 �𝑀 matrix D whose columns are the gradients of the different
Zernike modes. Equation (2.59) is then used to find the Zernike coefficients of the
measured wavefront where ®𝑔 is acquired as in Sec. 2.2.2. To find the modal control
matrix of the DM, i.e., the matrix that produces the correct DM commands given
the Zernike coefficients, the WFS responses to the influence functions are required.
This is obtained by propagating the functions through the WFS to get the matrix B.
The modal control matrix is then given by

®𝐶𝑍 � B�®𝑔, (4.29)

where B� denotes the Moore-Penrose pseudoinverse of B which is computed by
performing an SVD on the matrix B � U𝚺V� to get B� � V𝚺�U�. The pseu-
doinverse of the rectangular diagonal matrix 𝚺 is obtained by taking the reciprocal
of the nonzero elements larger than some set threshold on the diagonal. The DM
commands are

®𝐶 � ®𝐶𝑍a. (4.30)

When a correction by a limited number rather than all of the modes is desired, the
higher-order modes coefficients in a (see Eq. (2.60)) are set to zero and to account
for the limited stroke of the DM, the values in ®𝐶 are capped at�1. Figure 4.5 shows
one example of a wavefront reconstruction calculation.

The major results obtained from the simulations run using the models detailed
here are reported in Ch. 5. The computational burden involved in running such
models calls for the use of a multicore processor, especially when a large number of
waveguide modes and a large number of phase screens are involved. The simulation
results obtained in this work were possible thanks to a multicore processor with 88
cores that runs parallel computing codes.
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Figure 4.5: A reconstruction of a 𝐷{𝑟0 � 5 wavefront with 97 modes. (a) The
incident wavefront. (b) The reconstructed wavefront that matches the best fit the
DM can produce. (c) The difference between (a) and (b). (d) The resultant shifts in
the SH-WFS.
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C h a p t e r 5

EXPERIMENTS AND SIMULATIONS RESULTS

Section 5.1 of this chapter is an adapted version of the proceeding

Diab, M., Dinkelaker, A. N., Davenport, J., Madhav, K., & Roth, M. M. (2020).
Testbed for coupling starlight into fibers and astrophotonic instruments. Ad-
vances in Optical and Mechanical Technologies for Telescopes and Instru-
mentation IV, 11451, 114516G. https://doi.org/10.1117/12.2564720

Section 5.2 was published as

Diab, M., Dinkelaker, A. N., Davenport, J., Madhav, K., & Roth, M. M. (2021).
Starlight coupling through atmospheric turbulence into few-mode fibres
and photonic lanterns in the presence of partial adaptive optics correction.
Monthly Notices of the Royal Astronomical Society, 501(2), 1557–1567.
https://doi.org/10.1093/mnras/staa3752

The mathematical models detailed in Ch. 4 are only possible because of the as-
sumptions made to simplify the problem under study and are, therefore, merely an
approximation to the physical reality they attempt to describe. To assess the impact
of these approximations on the accuracy of the models, experimental results are
needed. An on-sky test that uses an astronomical telescope to collect starlight from
point sources archetypal of science targets suitable for astrophotonic technologies
would be the ultimate verification. Professional observatories are, however, heavily
overbooked and enough time to conduct experiments and troubleshoot arising issues
on a 𝐷 ¡ 4 m class telescope is hard to come by. An alternative is to recreate the
conditions of an observation run in the lab. Section 5.1 gives the specifications of
the testbed built to run the experiments, while Sec. 5.2 presents the main results
obtained, followed by a discussion on their agreement with theoretical predictions.

5.1 Testbed subsystems

5.1.1 Optics and hardware

The testbed is illustrated in Fig. 5.1. At its core is an ALPAO LOAO system
that corrects wavefronts distorted by an atmosphere emulator upstream. Two laser

https://doi.org/10.1117/12.2564720
https://doi.org/10.1093/mnras/staa3752
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sources are used, one in the visible to simulate a guide star and one in the near-IR to
simulate a science target. A pigtailed DFB LD with a center wavelength 𝜆 � 1550
nm and an FWHM linewidth Δ 𝑓 � 1 MHz simulates the science target. Wavelength
tunability over a small range, Δ𝜆 � 8 nm, is possible with a temperature controller
allowing limited spectral response measurements. A Fabry-Pérot single-mode LD
with a central wavelength 𝜆 � 785 nm and maximum FWHM linewidth Δ𝜆 � 2 nm
is used to simulate the guide star. Both beams, launched from SMFs, are collimated
and then expanded to 24 mm diameters using achromats and Galilean telescopes,
respectively. A beam splitter overlaps the two beams before a phase distortion is
introduced in the wavefronts.
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Atmosphere emulator

The combined beams are passed through a phase screen that emulates an atmospheric
turbulence layer. The phase screen from LEXITEK (Ebstein, 1996) is a sandwich
of 4 optical disks (see Fig. 5.2). The outer 2 are protective windows, while the inner
2 are polymers of nearly matched refractive indices (Δ𝑛   0.001). The exterior
surfaces are planar, meaning that an optical plane wave propagating through the
plate will have an optical path difference (OPD) defined by the relief height of the
inner interface and the refractive index mismatch

Figure 5.2: Structure of the NIM phase plate. The plate reshapes a planar wavefront
propagating downward to have the required statistics.

𝑂𝑃𝐷p𝑥q � ℎp𝑥qp𝑛1 � 𝑛2q � ℎp𝑥qΔ𝑛. (5.1)

The near index match between the two materials means that the physical profile
variation across the screen to produce a given optical path difference is coarser
than that for an air-glass interface. Such relaxation results in a profile difference
as high as 75 𝜇m being required to introduce a phase shift of only 1 wave on an
incoming planar wavefront at 1550 nm. This allows for engraving the phase pattern
using typical CNC machining techniques, greatly reducing fabrication costs. The
sandwich is itself cemented between two 𝜆{10 N-BK7 windows with AR coating.
All materials are transparent between 600 nm and 1600 nm, and the dispersion in
the refractive index difference Δ𝑛 of the two polymers is less than 0.001 between
785 nm and 1550 nm. The phase pattern is impressed on an outer annulus of width
24 mm, and thus a maximum beam diameter of 24 mm can be passed through the
plate. The plate is mounted off-center to overlap the outer annulus with the beam
path, and different pattern realizations can be attained by translating and rotating
the plate about its axis.



85

A pattern that has Kolmogorov statistics with a Fried’s parameter 𝑟0 � 0.6 mm is
impressed on the two polymers before they are bonded. Turbulence strength 𝐷{𝑟0

can be controlled by clipping the emerging beam by an iris down to the required
size. The plate is mounted on a rotary stage that can rotate at a maximum of 100
rpm to allow for measurements at different realizations from the screen and simulate
wind velocities, in accordance with Taylor’s frozen flow hypothesis. Fig. 5.3 shows
the phase plate mounted on the rotary stage and the OPD structure used.

Figure 5.3: (a) Phase plate mounted on a rotary stage. (b) OPD pattern engraved on
the screen in (a).

For the smaller beams, a translation stage moves the plate laterally to make use
of most of the screen area. An afocal system (L1 - L2) is then needed to image
the phase screen with the correct magnification on the DM of the AO system. The
telescope lenses are uncoated singlets, and lens pairs that produce the minimum total
Seidel aberrations were selected from off-the-shelf catalogs using Zemax. Folding
mirrors on kinematic mounts allow for independently realigning the beam to the
optical axis every time the afocal system is replaced to vary the turbulence strength,
and a removable cage system facilitates the replacement of the lenses.

ALPAO LOAO

The AO setup employed is a turn-key system integrated and supplied by ALPAO
SAS. The pre-aligned optical setup consists of the DM, the WFS, and the relay
optics necessary to conjugate the two pupils to each other. A PC connected to the
WFS and the drive electronics of the DM acts as a controller.
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In a closed-loop configuration, the distorted beam is first reflected off the DM toward
a dichroic mirror that passes the visible beam through to a beam reducer (L3 - L4)
which resizes the beam to match the pupil at the MLA as shown in Fig. 5.1. The
MLA is placed at the DM’s conjugate plane with the detector at the focal plane of
the MLA, 7 mm away. The AO setup is aligned by the vendor and no realignment,
except for tip/tilt adjustments of the DM, is necessary upon varying the turbulence
strength. The DM, however, must be at the exit pupil, i.e., the conjugate plane of the
phase screen, and the afocal system (L1 - L2) is placed appropriately depending on
the magnification with the exact distances obtained from Zemax calculations (see
Fig. 5.5).

The 13.5 mm DM from ALPAO has a continuous face sheet membrane controlled
by 97 magnetic voice coils arranged in a square array inside an octagon, as shown in
Fig. 5.4a. The DM can achieve a tip/tilt (P-V) stroke of 60 𝜇m and an inter-actuator
stroke ¡ 3 𝜇m. It can attain a flatness of 2.89 nm rms in closed-loop mode and can
be driven at a frequency up to 1 kHz before the first resonance sets in. Figure 5.4
shows the measured influence functions of the DM97-15 of the AO setup and the
working principle of the voice coils.

Figure 5.4: (a) Influence functions of the ALPAO DM used in the AO setup, each
depicted on the location of its respective actuator. (b) Construction of the magnetic
voice coils.

Wavefront sensing is performed downstream of the DM in a closed-loop architecture
by a Shack-Hartmann type sensor that consists of a 16� 16 MLA with an EM-CCD
camera. The EM-CCD from Nüvü has a quantum efficiency QE ¡ 75% between
500 and 800 nm and a full-frame rate of 1 kHz. The system features a dichroic
mirror to split the science beam from the guide star beam, which is resized by a
beam reducer (a Keplerian telescope of 2 achromats) to match the size of the lenslet
array (2.75 mm). The beam reducer also conjugates the DM pupil to the lenslet
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array placed at the exit pupil of the system. A field stop at the image plane between
the telescope lenses baffles the light from all sources other than the guide star beam.

The loop is controlled with a PC driven by an Intel i5-8500, 3.0 GHz, 6 cores
processor, and 16 GB RAM running a Matlab-based engine developed by ALPAO.
The pure delay, i.e., the time it takes the PC to have the DM commands ready
after the end of an exposure, is 1.38 ms (as measured by ALPAO). The loop can
be closed at 500 Hz with the WFS camera operating at maximum frame rate with
sufficient photons available for each frame to guarantee a high SNR (camera requires
3 photons/frame/subaperture for SNR � 1). The rejection (correction) bandwidth,
i.e., the maximum Greenwood frequency that can be corrected for, is the figure
of merit most significant here, and for this system, it is about 20 Hz. The partial
correction nature of the LOAO system is clear from the limited number of modes
(97) it can correct for (spatial limitation) and the maximum Greenwood frequency
it can track (temporal limitation) compared to the needs of large and very large
telescopes.

Relay and coupling optics

The corrected science beam reflected out of the AO system can be directed toward
a focusing lens where the PSF is imaged with a C-RED2 InGaAs camera (Feautrier
et al., 2017). The focusing lens (L5) has a long focal length 𝑓 � 1 m to enlarge
the PSF on the detector and thus increase the resolution. With the diameter of the
DM, 𝜙 � 13.5 mm, the Airy disk of the diffraction-limited PSF has a linear size of
0.28 mm at 𝜆 � 1550 nm. This is sampled by � 19 � 19 pixels on the detector,
guaranteeing that larger speckle patterns are well sampled for further calculations.
The corrected beam can also be passed to a coupling lens with a 6-axis positioner at
the focal plane. Fibers and integrated optics components can be precisely aligned to
the optical axis at the focus with a LUMINOS nano-positioner. A 10 nm resolution
can be achieved for 𝑥 and 𝑦 alignment, while 50 nm is possible for the less stringent
𝑧 axis. Pitch and yaw can be adjusted with a resolution of 0.2 arcsec. The same
𝑓 � 75 mm lens is used for all fibers. With the beam diameter at the lens equal to
the DM aperture, i.e., 𝑑 � 13.5 mm, an ƒ{5.56 beam results, close to the optimum
for coupling into an NA � 0.1 SMF at 𝜆 � 1550 nm as shown in Fig. 5.11. The
optimum ƒ{# for coupling into SMFs of a different NA or FMFs is different, but
5.5 is roughly the midpoint where sufficient coupling is expected for all the cases
considered. The spot at the output of the component under test is imaged by a coated
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convex lens (L6) onto a PD. This arrangement allows for measuring the total output
power of the diverging beam out of the waveguide without the need to place the
PD arbitrarily close to the component. By choosing the right lens, the imaged spot
can be made small enough to fit inside the active area of the PD within the limits
allowed by conservation of étendue. Such an arrangement is necessary because
the femto-watt PD has a small active area (0.2 mm2), making it difficult to entirely
capture the diverging beam directly after the fiber. The highly sensitive InGaAs PD
has a noise equivalent power (NEP)� 7.5 fW and bandwidth BW � 25 Hz. The
two PDs were calibrated against each other using the fiber port-lens-PD setup across
their dynamic range, i.e., 10 fW - 100 pW.

To measure the total power available for coupling at the aperture, a flip mirror (M4)
reflects the converging beam behind L6 toward a second PD aligned at the focus.
Coupling efficiency can thus be quantified. Flip mirrors instead of beam splitters are
used to avoid NCPA and the chromatic response of BSs with regard to split ratios.
A 200 MHz, 8 bits oscilloscope is used to average and digitize the voltages of the
PDs.

Realignment of tip/tilt and defocus are usually required before a measurement run.
The DM mount is adjusted to reduce tip/tilt to lower than 0.1 𝜇m rms, and the afocal
system (L1 - L2) is adjusted to correct defocus. Calibration is then performed to
record the influence functions and calculate the eigenvalues of the influence matrix.
A realignment is required anytime the largest and the smallest eigenvalues differ by
more than an order of magnitude (condition number ¡ 10).

A feedback loop is closed between the C-RED2 camera and the DM (on top of the
main AO loop) to correct for temperature-induced tip and tilt in the IR arm only and
hence not seen by the WFS. Wavefront error, temperature, and humidity are logged
for the open-loop case to ensure that creep and memory effects as reported by Bitenc
et al., 2014 do not introduce measurement artifacts.

Testbed ray traces (Zemax models)

To decide on the off-the-shelf optics needed for the experimental setup (see Fig.
5.1), the optical train is designed sequentially using Zemax. The science and the
guide star arms are simulated separately at their respective nominal wavelengths.
Moreover, since the set of lenses for the Keplerian telescope (L1 - L2) are different
for each desired 𝐷{𝑟0 point, the ray tracing is repeated for each set. The optics are
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Figure 5.5: Pictures of the testbed. (a) Sources and atmospheric emulation setup.
RS: rotary stage. TS: translation stage. (b) AO, coupling, and imaging setups.

chosen such that the coupling efficiency is maximized, which is the case when the
f-number is optimized (see Sec. 3.6.1 and Sec. 5.2.4), and the total aberrations
are minimized. The boundary conditions for the design are the wavelengths and
the diameter of the DM, i.e., the system’s aperture stop. The design of the AO
subsystem was shared by ALPAO upon delivering the setup.

Apart from helping with the selection of the optics, the ray traces were crucial
for aligning the components. The most problematic to align is having the DM at
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the image plane of the phase screen, and Zemax was used to get the correct axial
separations. Fig. 5.6 shows the ray trace of one instance along with its Seidel
aberrations.

Figure 5.6: (a) Ray trace of one configuration of the science arm of the testbed.
5 configurations were designed to emulate 5 different 𝐷{𝑟0 scenarios. (b) Seidel
diagram showing the primary aberration contributions of the optics in the testbed
(24/25 surfaces belong to L2 and 34/35 surfaces belong to L6) .

5.1.2 Control software

Closing the loop and driving the DM is done using ALPAO Core Engine (ACE)
(Schimpf et al., 2014). ACE is a Matlab environment, object-oriented toolbox
that provides classes for interfacing the DM and the WFS and allows different
modes of operation, e.g., closed-loop, feed-forward with Zernikes, zonal and modal
reconstruction. Data acquisition and control of the rest of the equipment, i.e., LDs,
rotary stage, InGaAs camera, flip mirrors, translation stage, and oscilloscope, are
also done through Matlab.
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Matlab scripts were written to automate measurements of coupling efficiencies,
capture PSF images and collect relevant wavefront information. Due to the stochastic
nature of atmospheric turbulence, one is usually interested in metrics averaged over
an ensemble of phase screens for variables sensitive to atmospheric effects, e.g., the
number of speckles in the PSF, wavefront error, or coupling efficiency of light into
a waveguide. The script, therefore, rotates and translates the phase screen in steps
and records the measurements from the 2 PDs and the 2 cameras, consequently.

Objects from ACE classes are used to control the AO system as desired. The effects
of closing the loop, compensating for tip/tilt only or correcting with a limited number
of modes on coupling, and the anatomy of the PSF can all be tested seamlessly. Post-
processing the PSF images yields additional information about the SR, EE, and the
centroid shift, i.e., image motion. Additionally, wavefront measurements are also
recorded.

The LDs currents are adapted by the software to maximize the PDs utilization, i.e.,
make full use of their dynamic range. The integration time of the InGaAs camera is
then automatically set to prevent saturation while maintaining the highest possible
SNR. Moreover, the software performs the necessary dark current and background
subtractions for the PDs and the InGaAs camera.

Besides analyzing the PSF, the InGaAs camera can also be used to provide feedback
for correcting the residual tip/tilt errors in the IR beam induced by temperature vari-
ations after alignment. Temperature and humidity at the DM, the nano-positioner,
and the MLA are monitored in case creep and memory effects in the DM (Bitenc
et al., 2014) are suspected of causing any anomalies seen in long-term open-loop
experiments.

5.1.3 Testbed limitations

To give an impression of the capabilities of the testbed, presented here are examples
of the results one can obtain for a turbulence strength of 𝐷{𝑟0 � 8.3 and the
FG025LJA multimode fiber from THORLABS. Figure 5.7 shows an example of the
data collected for one measurement point. The trends in Fig. 5.8 show the variations
in coupling efficiency and wavefront rms errors across the phase screen.

The PDs are the highly sensitive PDF10C from THORLABS. With an NEP of 7.5 fW,
they can measure coupling efficiencies as small as 75� 10�6. The calibration table
of the PDs is made available for the coupling calculations script. Optical power
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Figure 5.7: Cameras images and calculated parameters for one instance. (a) and
(b) WFS image and the calculated phase, respectively. (c) commands sent to the
DM by ACE. (d) and (e) PSFs before and after correction, respectively. (f) PSF
containment within the fiber core. (g) phase screen. (h) 84% encircled energy. (i)
Strehl ratio. (j) scatter plot of PSFs centroids distribution around the fiber before
tip/tilt correction.

measurements, taken for one instance of a phase screen, are averaged for a few
seconds in the oscilloscope to minimize the effect of electronic noise in the PDs.

For cases of high turbulence strength (𝐷{𝑟0 ¡ 15), the loop might diverge due
to the highest order modes having too low eigenvalues, i.e., the influence matrix
being ill-conditioned, or the wavefront error being greater than the maximum DM
stroke. The software optimizes the number of modes accordingly by filtering as
many higher-order modes as necessary to prevent the loop from diverging.

The largest unobstructed beam diameter that can be passed through the atmosphere
emulator is 24 mm, limiting the turbulence strength to 𝐷{𝑟0 � 40. The complete
aperture of the screen with a diameter of 83 mm can, in theory, be used but with
an obscuration of � 40%. For small beams, the limiting factor is the magnification
(L2/L1) that one requires to enlarge the beam to match the aperture of the DM.
The testbed components are optimized for the whole H-band, but a tunable or a
broadband NIR light source is required to perform spectral measurements. For
temporal response measurements, the phase screen can be spun continuously by the
rotary stage, but the limitation of the control loop bandwidth is set by the 6 cores,
3 GHz PC used to close the loop. Astronomy-grade AO systems, in contrast, have
real-time computers with pure delays in the order of � 100 𝜇s.
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Figure 5.8: Testbed results for the coupling efficiency for a circular, step-index 6
modes fiber and wavefront errors across the phase screen. (a) rms wavefront error
for the uncorrected case (blue), tip/tilt compensated (orange), and AO corrected case
(yellow); (b) coupling efficiency and rms wavefront error for the AO corrected case;
(c) coupling efficiency for the uncorrected, tip/tilt corrected, and the AO-corrected
cases; (d), (e), and (f) variations of tilt, defocus, and spherical aberrations around
the screen, respectively.

5.2 Simulations and experimental results

This section was published as

Diab, M., Dinkelaker, A. N., Davenport, J., Madhav, K., & Roth, M. M. (2021).
Starlight coupling through atmospheric turbulence into few-mode fibres
and photonic lanterns in the presence of partial adaptive optics correction.
Monthly Notices of the Royal Astronomical Society, 501(2), 1557–1567.
https://doi.org/10.1093/mnras/staa3752

https://doi.org/10.1093/mnras/staa3752
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5.2.1 Abstract

Starlight corrupted by atmospheric turbulence cannot couple efficiently into astro-
nomical instruments based on integrated optics as they require light of high spatial
coherence to couple into their single-mode waveguides. Low-order adaptive optics
in combination with photonic lanterns offer a practical approach to achieve efficient
coupling into multiplexed astrophotonic devices. We investigate, aided by simula-
tions and an experimental testbed, the trade-off between the degrees of freedom of
the adaptive optics system and those of the input waveguide of an integrated optic
component leading to a cost-effective hybrid system that achieves a signal-to-noise
ratio higher than a standalone device fed by a single-mode fiber.

5.2.2 Introduction

As telescope apertures increase in diameter, optical instruments at their foci such as
spectrographs need to proportionally expand in size to make use of the additional
flux without compromising performance, e.g. resolving power or sensitivity (Spanò
et al., 2006; Spanò et al., 2008). This results in costly instruments with large physical
dimensions, making them more sensitive to vibrational and environmental changes.
Photonic technologies offer an opportunity to avoid bulk optics, thus limiting the
increase in size. Using integrated optics (IO) to manipulate starlight in astronomical
instruments before detection– an emerging field known as astrophotonics– has the
potential of reducing the footprint and mass of astronomical instruments, cutting
costs owing to simpler vacuum and thermal control, enhancing performance, and
enabling multiplexing (Minardi et al., 2020).

Photonic spectrographs (Blind et al., 2017), e.g. arrayed waveguide gratings
(AWGs) (Bland-Hawthorn et al., 2006), fiber Bragg gratings for OH suppression
(Bland-Hawthorn et al., 2011; Rahman et al., 2020), and photonic beam combiners,
e.g. GRAVITY (Eisenhauer et al., 2008) and discrete beam combiners (DBCs) (Mi-
nardi, 2012; Minardi, 2015), need to operate in the single mode regime in order to
deliver their promised spectral resolution, filter characteristics and phase retrieval
capabilities, respectively, while avoiding modal noise and focal ratio degradation.
Coupling a seeing-limited point spread function (PSF) at the focus of a large tele-
scope into a single mode waveguide is challenging and typically results in low
efficiency. Two mitigation techniques can be applied to enable the use of a photonic
instrument behind a ground-based telescope: On the one hand, an extreme adaptive
optics (ExAO) system may be used to entirely correct for the atmospheric aberra-
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tions present in the received wavefronts, and in doing so convert the focal speckle
pattern into a diffraction-limited spot that couples efficiently into a single-mode fiber
(SMF). On the other hand, a photonic lantern can be employed to split the optical
power coupled from the telescope into multiple SMFs (Leon-Saval et al., 2005).
ExAO systems have more degrees of freedom and run faster than conventional AO
systems to deliver high Strehl ratios (SR ¡ 0.8 in NIR) but can only do so for bright
objects that act as their own guide stars (Guyon, 2018). As a result, they are more
suited to high-contrast imaging of exoplanets and circumstellar disks. They also
tend to be notoriously expensive for midsize (2 – 4 m) telescopes and can overwhelm
the cost of the telescope itself.

Photonic lanterns, conversely, are mode converting devices that redistribute mul-
timodal light into multiple single-mode beams. They do so by guiding the light
through an adiabatic taper from a multimode core to several single-mode cores. If
the transition is gradual and the number of SMFs is equal to or greater than the
number of modes supported by the multimode port, the conversion is theoretically
lossless. Degrees of freedom are therefore conserved and the second law of ther-
modynamics (brightness theorem) is not violated (McMahon, 1975). A copy of
the IO-based astrophotonic device, which tends to be inexpensive to replicate, is
then needed at the output of every SMF in order to recover all the collected flux.
The number of modes required to efficiently couple starlight at a telescope’s focus
scales as the square of the aperture diameter. This results in� 100s of modes being
required and consequently � 100s of single-mode channels at the output of the
photonic lantern (almost 1000 modes for a 4 m telescope at median seeing). While
such complex lanterns can, in theory, be fabricated, the total flux divided among too
many channels will result in every SMF having a fractional share of the total optical
power comparable to, or even less than, the noise floor of the detector. Accumulating
these noisy signals in post-processing would result in a signal-to-noise ratio (SNR)
smaller than that had all the flux been collected by a sole SMF directly from the
focal plane to the instrument.

An alternative approach is to combine the two techniques, i.e. AO and photonic
lantern, as illustrated in Fig. 5.9. Here, the goal is to partially correct the incident
wavefront using a low-order adaptive optics (LOAO) system first to reduce the modal
content down to a manageable number (� 10s) before coupling the starlight into the
multimode port of a reasonably-sized photonic lantern where a multiplexed photonic
spectrograph like the instrument suggested by Watson (1995) and PIMMS (Bland-
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Hawthorn et al., 2010) can be used at the single-mode output ports. The same
signal, e.g. spectrum, is thus measured multiple times. Such a hybrid solution is
potentially less expensive than employing an ExAO system and amplifies the SNR
compared to a standalone photonic lantern. To find the optimum trade-off between
the complexity, i.e. degrees of freedom, of the LOAO system, and the number of
modes, i.e. degrees of freedom, of the photonic lantern, a study of how an LOAO
system affects the form of the PSF for various turbulence strengths and how coupling
efficiency into fibers depends on the number of modes, is needed. The trade-off
can vary for different instruments: depending on readout noise (RON) and other
detector properties, an optimum number of SMFs exists for a given LOAO system
such that the SNR of the accumulated signal is maximized.

Coupling through turbulence directly into SMFs has been studied for both astronomy
and free-space optical (FSO) communication applications (Dikmelik et al., 2005;
Ruilier, 1998; Shaklan et al., 1988). Horton et al. (2007) calculated coupling into
FMFs numerically for the diffraction-limited case while Zheng et al. (2016) explored
coupling via seeing-limited telescopes but only up to 4 modes. Coupling into a
1 � 7 photonic lantern of high Strehl ratio PSFs was demonstrated on-sky using
the ExAO available at the Subaru telescope (Jovanovic, Schwab, et al., 2017) and
experimentally without correction for FSO scenarios by Tedder et al. (2020).

Here we study systematically for the purposes of H-band astronomy the dependence
of throughput and SNR on the turbulence strength, the extent of AO compensation,
the number of modes sustained by the coupling waveguide, the setup geometry (its
f-number) and the detector quality. Section 5.2.3 revisits the basic physics and
the mathematical tools used to obtain the necessary models for the atmospheric
layer, the AO system, and the waveguides considered. The simulations run utilizing
those models to calculate the dependency of coupling efficiency on f-number and
turbulence strength are described in Section 5.2.4. An experiment is devised around
an LOAO setup to validate the simulation results and check for deviations in the
models. Both the experimental setup and the results obtained are presented in
Section 5.2.5.

5.2.3 Methodology

The mathematical models used to calculate the coupling efficiency of atmospherically-
distorted starlight into fibers are discussed here. First, the wavefronts are propagated
through a ground atmospheric layer before getting clipped by an entrance pupil. The
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Figure 5.9: Concept overview. Starlight collected by an astronomical telescope is
corrected by an AO system before getting coupled into a photonic lantern. Replicas
of an astrophotonic device at the SMFs tips manipulate copies of the same signal to
generate multiple images at the detector that can be stacked in post-processing.
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corrugated wavefronts are then passed through an AO system to calculate the par-
tially corrected beams and their residual error. Next, the corrected wavefronts are
propagated to the focus where the coupling efficiency of the collected light into
SMFs and FMFs is calculated using the supported modes of the waveguides.

Atmospheric turbulence

Distant celestial objects observed through apertures appear as point sources emitting
electromagnetic waves of planar phase fronts and uniform intensities at the top of
Earth’s atmosphere. Upon propagating through the turbulent atmosphere, the optical
field’s phase and amplitude are distorted before reaching ground-based telescopes.
The distortion in phase (F. Roddier, 2008) results in the deformation of the PSF
from the diffraction-limited Airy pattern, where 84 per cent of the total power is
within one central disk, into a speckle pattern where the collected power is spread
among many loci, the number of which depends on the state of the atmosphere
and the diameter of the collecting telescope (see Fig. 5.9). The weak overlap of
such a speckle pattern with the first few modes of a step-index fiber means that
coupling starlight efficiently into a narrow waveguide cannot be achieved without
compensating for the atmospheric turbulence or increasing the number of modes that
the fiber supports. An LOAO system can partially correct the corrugated wavefront
prior to coupling because it has the effect of redistributing most of the optical power
from the speckles back into a central core, albeit with a background halo, and thereby
improving the coupling efficiency into FMFs.

To include the effects of turbulence on light propagating through the atmosphere
and subsequent wavefront correction, mathematical models have to be identified and
implemented in wavefront calculations. Realizations of the atmospheric-induced
wavefront phase distortion, called phase screens, that have ensemble statistics match-
ing those predicted by Kolmogorov’s 1941 theory of turbulence (Kolmogorov, 1991)
are computed (Welsh, 1997). This is a modal-based representation in which the
wavefront is assumed to be a superposition over the aperture of infinite orthogonal
basis functions or modes. The basis functions are assigned zero mean Gaussian
pseudorandom coefficients that possess the desired variance. In doing so, the
modal-based approach avoids the shortcomings of sample-based methods, namely
the underrepresentation of low spatial frequencies.

An LOAO system is a single conjugate adaptive optics (SCAO) system of modest
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capabilities. SCAOs are limited to corrections of a single atmospheric layer, which
in this case is taken to be the ground layer at the pupil where most of the distortions
occur. The phase screens simulating the ground turbulence layer are non station-
ary random functions that can be described by structure functions introduced by
Kolmogorov

𝐷𝜙p𝜌q � x|𝜙p®𝑟q � 𝜙p®𝑟 � ®𝜌q|2y, (5.2)

where 𝜙p®𝑟q is the phase at a point located by the vector ®𝑟 and 𝜙p®𝑟 � ®𝜌q is the phase
at a point a distance 𝜌 � | ®𝜌 | away. The von Kármán power spectral density (PSD)
associated with this structure function is (Hardy, 1998)

Φp𝜅q � 0.023

�����𝜅2 � 1
L2

0

�����
�11{6

𝑟
�5{3
0 , (5.3)

where 𝜅 is the spatial frequency, L0 is the outer scale, and 𝑟0 is the convenient Fried
parameter (Fried, 1965) that quantifies the accumulated turbulence strength over the
thickness of the turbulence layer, defined as

𝑟0 �
�
0.423𝑘2 sec 𝛾

» 8

0
𝐶2
𝑛pℎq𝑑ℎ

��3{5
, (5.4)

where 𝑘 is the wavenumber, 𝛾 is the zenith angle and 𝐶2
𝑛pℎq is the refractive index

structure constant at height ℎ above the aperture. The total wavefront variance 𝜎2
𝜙

in terms of turbulence strength is 1.03p𝐷{𝑟0q5{3. Therefore 𝑟0 defines the telescope
aperture of diameter 𝐷 over which the variance in phase 𝜎2

𝜙
� 1 rad2. The PSD of

the von Kármán spectrum in Eq. (5.3) differs from Kolmogorov’s in one aspect: it
assumes a finite outer scale L0 and thus suppresses the contribution of frequencies
lower than 1{L0. In doing so, it avoids the infinite power in Kolmogorov turbulence
as 𝜅 Ñ 0. Values for L0 differ for different observation sites and measurements
in the literature disagree widely, but in general it has a value in the range 1 � 100
m, meaning an exact value is superfluous for small telescopes as it only amounts
to an overall tilt (Hardy, 1998). In this work we assume L0 � 20 m, an average
of the values measured for the Mauna Kea Observatory (20 m), the Observatoire
de Haute Provence (23 m) (Maire et al., 2007), and the Palomar Observatory sites
(17.5 m) (Ziad et al., 2004). Due to the random nature of atmospheric turbulence,
all calculations affected by it need to be taken as averages over a large number of
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screens. Here, 85 screens are used which is found to produce a relative standard
deviation in the metrics in question that is lower than unity. The fractal nature of
Kolmogorov’s phase screens allow for scaling the aperture size down to convenient
diameters since the statistics remain the same inside the inertial range rℓ0,L0s, apart
from a scale factor (Lane et al., 1992).

Partial adaptive optics correction

To include the effect of partial AO correction on the corrugated wavefronts, the
influence functions of an ALPAO DM97-15 are used to model the deformable mirror
(DM). The DM is highly linear (Gorkom et al., 2018), i.e. its actuators are decoupled
and the influence functions completely characterize its behavior. With 97 actuators
arranged inside an octagon, 11 actuators are on the longest axis across the diameter.
Projected on a midsize 4 m telescope, each DM segment would have a projected size
𝑑 � 0.36 m on the entrance pupil. Since a DM only corrects for optical path delays
between its actuators and cannot correct those within an actuator’s action area, this
configuration can only attain the diffraction limit, 𝜎𝜙   1 rad, for seeing conditions
𝑟0 ¡ 0.36 m. At median seeing conditions for H-band astronomy (𝑟0 � 0.1 m), the
mean square fitting error is 𝜎2 � 3 rad2 (for a continuous facesheet DM) (Miller
et al., 2003); ergo, the correction is partial (Hardy, 1998). Qualitatively, the PSF of
such a partially corrected wavefront has a central core with an angular radius� 𝜆{𝐷
and a background halo with an angular radius � 𝜆{𝑟0.

To calculate the commands for the DM, the wavefront is propagated through a model
of a Shack-Hartmann wavefront sensor (SH-WFS) that has 10 � 10 subapertures.
With actuators at the corners of subapertures, this represents a Fried geometry.
Instead of phase, local wavefront slopes inside the subapertures are sensed by the
SH-WFS. A modal reconstruction is therefore necessary and is performed with the
DM influence functions as a basis to calculate the actuators commands

®𝑐 � B�®𝑠, (5.5)

where ®𝑐 is a vector that contains the DM commands and B� is the Moore-Penrose
pseudoinverse of the matrix B that has the WFS response to the influence functions.
The system in Eq. (5.5) is underdetermined and therefore lacks a unique solution.
The pseudoinverse calculates the solution with the least square departure from a
linear fit by performing a singular value decomposition (SVD) that sets the wavefront
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Figure 5.10: Top: piston-compensated phase screens that exhibit Kolmogorov statis-
tics at varying turbulence strengths. Bottom: corresponding corrected wavefronts
by a 97 degrees of freedom LOAO system.

modes that have a small WFS response to zero. The vector ®𝑠 contains the 𝑥 and 𝑦
slopes of the incident wavefront calculated from the center-of-gravity of the focal
spots behind the microlens array (MLA). Taking advantage of the DM linearity, the
shape of the DM due to the commands ®𝑐 can be calculated by

®𝑀 � Iᵀ ®𝑐, (5.6)

where I is the matrix containing the influence functions of the DM and ᵀ denotes a
transpose. Example realizations of wavefronts generated as described in Sec. 5.2.3
and their corrected counterparts are shown in Fig. 5.10.

To calculate the coupling into fibers and DM commands, the conjugate counterparts
to the entrance pupil (aperture function) at the telescope focus and at the MLA focal
plane are required. Propagating optical fields from pupil planes to focal planes (far-
field) is performed by means of the Fraunhofer diffraction equation. A fast Fourier
transform (FFT) of the pupil field produces the focal field apart from a coordinate
transformation and a scaling phase pre-factor that needs to be included. The optical
field at the focal plane, a distance 𝑓 away, is given by (Goodman, 2004)
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𝜓𝐹p𝑥, 𝑦q � 1
𝑖𝜆 𝑓
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�
𝑓 � 𝑥2 � 𝑦2

2 𝑓


�
𝔉t𝜓𝑃p𝑥1, 𝑦1qu𝑘𝑥 ,𝑘𝑦 , (5.7)

where 𝔉t𝜓𝑃p𝑥1, 𝑦1qu𝑘𝑥 ,𝑘𝑦 is the Fourier transform of the pupil field 𝜓𝑃p𝑥1, 𝑦1q eval-
uated at 𝑘𝑥 � 𝑥{p𝜆 𝑓 q and 𝑘𝑦 � 𝑦{p𝜆 𝑓 q. To perform a back-propagation from the
focal plane to the pupil plane, an inverse Fourier transform is calculated with the
reciprocals of the phase pre-factor and the spatial frequencies instead.

Waveguides

The models for the SMFs and FMFs assume weakly guiding waveguides, i.e. low
index contrast between the core (𝑛𝑐𝑜) and the cladding (𝑛𝑐𝑙) such that Δ𝑛 � 𝑛𝑐𝑜 �
𝑛𝑐𝑙 ! 𝑛𝑐𝑙 , where both the electric and magnetic fields are transverse to the optical
axis. Furthermore, circularly symmetric, step-index waveguides are assumed which
allow the approximation of the guided waves by the linearly polarized (LP) modes.
Given the wavelength, the refractive indices, and the core diameter of the fiber, the
LP modes are analytically calculable (Saleh et al., 2019) and represent a complete
model for the straight fiber. The number of modes that the fiber supports depends
on the normalized frequency𝑉 � 2𝜋𝑎NA{𝜆 where 𝑎 is the core radius and NA is the
numerical aperture, NA � p𝑛2

𝑐𝑜�𝑛2
𝑐𝑙
q1{2. An SMF has𝑉   2.405 and the number of

modes 𝑝 in a multimode fiber (MMF) scales with𝑉 according to 𝑝 � 𝑉2{4 for each
polarization direction. While this approximation is better suited for larger fibers as
FMFs adhere less to geometric optics, it can still be used to estimate the parameters
of the fiber before solving for the exact modes.

Coupling of starlight collected by a telescope into fibers is calculated by evaluating
the overlap integral between the fiber modes and the PSF. For an incident optical
field 𝜓𝐸p𝑥, 𝑦q and the 𝑖�th fiber mode 𝜓𝑖p𝑥, 𝑦q, the coupling efficiency is

𝜂𝑖 �
|
´
𝑑𝑥𝑑𝑦𝜓𝑖p𝑥, 𝑦q𝜓�𝐸p𝑥, 𝑦q|2´

𝑑𝑥𝑑𝑦 |𝜓𝑖p𝑥, 𝑦q|2
´
𝑑𝑥𝑑𝑦 |𝜓𝐸p𝑥, 𝑦q|2

� |x𝜓𝑖|𝜓𝐸y|2
x𝜓𝑖|𝜓𝑖y x𝜓𝐸 |𝜓𝐸y , (5.8)

where the integration window is the smallest area over which neither of the two
fields vanishes and the normalization factors in the denominator are to compensate
for the possibly unequal total powers contained in the fields.

Further losses, e.g. bending, insertion, and propagation losses, are accounted for in
the experimental results but are not included in the models.
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The number of modes 𝑝 required to couple a seeing-limited PSF can be derived
from the conservation of étendue (Minardi et al., 2020). In terms of turbulence
strength

𝑝 �
�
𝜋𝐷

2𝑟0


2
, (5.9)

a relation that is more accurate for highly multimode fibers having been derived
from geometrical optics considerations. Notice that Eq. (5.9) is nothing but the area
of the aperture in units of area elements 𝑟0 � 𝑟0.

Besides SMFs and MMFs (including FMFs) we also consider photonic lanterns
in our models. Here, we assume photonic lanterns with weakly-guiding circular
step index profiles and the mathematical model described above applies to their
multimode ports. The propagation of the field from the multimode port to the SMFs
through the transition region depends on the modal content of the coupled field
and the transversal geometry of the transition region. Beam propagation methods
(BPMs) could be used to simulate the photonic lantern and calculate the distribution
of the optical power among the SMFs. However the discrete step-by-step calculations
involved in BPMs tend to be slow and it is hence unrealistic to run them for a large
number of phase screens. Instead, the assumption that the optical power distributes
equally among the SMFs is made to model the downstream segments of the photonic
lantern. The SNR calculations given below (Sec. 5.2.4) are a good approximation
as long as all SMFs are receiving comparable shares of the total power. Modal noise
and scrambling are discussed further in Sec. 5.2.4

A number of different procedures have been considered to realize the necessary taper
transition between the MMF and SMFs necessary for photonic lanterns (Birks et al.,
2015). Inserting a bundle of stripped SMFs inside a capillary, whose index is lower
than the refractive index of the cladding, and tapering the stack down using a glass
processor (Davenport (in preparation)) is the method of choice in astronomy because
throughput is not compromised. In contrast to lanterns made from multicore fibers
(MCFs) or using ultrafast laser inscription (ULI) techniques, this method results in a
single-mode section with free fibers that can be readily spliced to other components.
This however requires the SMFs in the bundle to be arranged in a close pack
to maintain symmetry along the taper. With an SMF at the center, 1, 2, and 3
rings of SMFs arranged in a hexagonal lattice, i.e. a centered hexagonal number,
result in bundles that have 𝑞 � 7, 19, and 37 SMFs, respectively (Davenport (in
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preparation)). The number of modes sustained by an FMF, 𝑝, can be controlled
by tuning the normalized frequency 𝑉 where the modes count increments by 1 as
𝑉 increases gradually, except for degenerate modes (𝐿𝑃𝑙𝑚, 𝑙 � 0) where 2 modes
appear together. Opting for theoretically lossless lanterns with more SMFs than
modes at the MM section (𝑝   𝑞), two of the FMFs considered for the simulations
below have 𝑝 � 6 and 36 modes, one mode short of the ideal design.

The LOAO system considered below assumes that tip/tilt are already corrected for
by a fast steering mirror (FSM) and that the fiber is aligned at the focus. Aligning
SMFs to images of celestial objects at the focal planes of very large telescopes has
been achieved with the aid of guiding cameras and can nowadays be done with
relative ease (Bechter et al., 2015).

5.2.4 Simulations

A calculations pipeline that propagates the wavefronts perturbed by the atmosphere
from the telescope pupil, through the LOAO system to the focus where a fiber is
placed, is built using the mathematical tools in Sec. 5.2.3. Estimates for the optimum
setup geometry to couple into SMFs and FMFs under diffraction- or seeing-limited
conditions can thus be calculated. The boost in coupling that an LOAO system
provides as compared to the uncorrected case is studied for various turbulence
strengths. The optimum number of channels in a multiplexed astrophotonic device
fed by a photonic lantern can therefore be deduced from this pipeline.

In the following subsections, several free parameters are varied to study the de-
pendencies of the coupling efficiency and the SNR before an optimum number of
channels is selected for specific cases. The free parameters under study are the
telescope properties in form of the f-number (Sec. 5.2.4) as well as turbulence prop-
erties (Sec. 5.2.4). The theoretical SNR of the stacked signal detected at the outputs
of a photonic lantern is eventually calculated to estimate the optimum trade-off
in the size of a multi-channel astrophotonic instrument (Sec. 5.2.4). Additionally,
scrambling is discussed in further detail in Sec. 5.2.4.

Coupling dependence on f-number

Coupling of starlight into waveguides depends on the correlation between the PSF
and the modes of the waveguide. The PSF is defined by the shape of the aperture and
the optical field at the pupil. The linear extent of that pattern however is dependent
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on the effective focal length 𝑓 . As a result, the coupling efficiency depends on the
f-number ƒ{# � 𝑓 {𝐷 of the coupling setup. For a large MMF, one simply considers
the ray optics aspect and selects an ƒ{# that gives a beam slow enough to fit within
the acceptance angle, i.e. NA, of the fiber. Diffraction effects are still non-negligible
for SMFs and FMFs, and calculating the coupling efficiency as a function of the ƒ{#
around the value predicted by geometric optics is necessary to optimize the system.

Fig. 5.11 shows the dependence of the coupling efficiency 𝜂 on the f-number ƒ{#
for the SMF and FMFs sustaining 𝑝 � 6, 19, and 36 modes at 𝜆 � 1550 nm.
All fibers have NA � 0.1 from which the geometrically expected optimum value is
ƒ{# � p2NAq�1 � 5. The efficiency increases rapidly and reaches its maximum
values at ƒ{# around the geometrically predicted values (ƒ{5.1 for 𝑝 � 36). For
higher 𝑝, the efficiency curves plateau for slower beams, but with an additional
oscillation. The maximum efficiency values increase with increasing 𝑝, from 0.78
for the SMF up to 0.91 and 0.92 for 𝑝 � 19 and 36 modes, respectively. Fig. 5.11
(middle) shows the expected lower 𝜂 for a seeing-limited case𝐷{𝑟0 � 15 without AO
correction. 𝜂 increases gradually , and following a maximum, gradually decreases
instead of plateauing. The position of the maxima for 𝑝 � 19 and 36 mode FMFs,
however, are very close to those in the diffraction-limited case (for 𝑝 � 36 modes,
the maximum efficiency is reached at ƒ{5.1 and ƒ{4.9 for the diffraction- and the
seeing-limited case, respectively). The dependence of ƒ{#opt on 𝐷{𝑟0 for the fibers
considered is also shown in Fig. 5.11. The optimum coupling ƒ{# drops as 𝐷{𝑟0

increases due to the focal pattern spreading over a larger area and therefore requiring
a faster beam to confine its linear extent. This gradual drop in optimum ƒ{# and
similarity between the curves suggests that a setup designed for the SMF and the
diffraction limit may be used for the seeing-limited case with only little effect on
coupling. The optimum ƒ{# established here is used for all subsequent calculations
of starlight coupling into fibers.

Coupling dependence on turbulence

The deterioration of coupling efficiency into an SMF and 3 FMFs as seeing worsens
is shown in Fig. 5.12. An ensemble of 85 phase screens was used to calculate the
overlap integral at each turbulence strength point between the diffraction limit and
𝐷{𝑟0 � 30. The improved coupling efficiency that the partial AO-compensation
contributes is also plotted. Phase screens generated with the statistics discussed
in Sec. 5.2.3 are corrected by the LOAO system described in Sec. 5.2.3 before
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Figure 5.11: Top: coupling efficiency dependence on ƒ{# for NA � 0.1 SMF, 6, 19,
and 36 modes FMFs at the diffraction limit. Dashed line indicates the geometrically
predicted optimum ƒ{#. Middle: shows the same efficiency dependence, but with
added𝐷{𝑟0 � 15 turbulence. Bottom: variation in optimum f-number as turbulence
increases.
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Figure 5.12: Coupling efficiency dependence on 𝐷{𝑟0 for NA � 0.1 SMF, 6, 19,
and 36 modes FMFs. Solid line: for AO-corrected wavefronts, dashed-line: for
uncorrected wavefronts with the shaded bands 2𝜎 wide centered on the average
value. Light solid line: gain in coupling with the log ordinate on the right.

coupling into the fibers is computed by Eq. (5.8). For a 4 m telescope at 𝑟0 � 0.2 m,
𝐷{𝑟0 � 20 and the level of correction that the LOAO system attains is only partial.
The coupling efficiency into the SMF is increased a 100 fold to about 20 per cent
as depicted in Fig. 5.12. A comparable boost in 𝜂 between 20 and 3 is attained for
the 6 and 36 FMFs at 𝐷{𝑟0 � 20, respectively. The operation regime for an LOAO
assisted SMF- or FMF-fed astrophotonic instrument can therefore be determined
from curves like those in Fig. 5.12.

SNR dependence on turbulence and modes count

In the absence of detector noise as a consideration, maximum throughput could
be obtained by using a multi-channel astrophotonic instrument with the highest
available number of channels 𝑞, in order to maximize flux collection. Detectors
are however always noisy. Splitting the total flux into small shares by a photonic
lantern and detecting them separately by a noisy detector before accumulating all



108

the signals in post-processing would only result in a better SNR than using an SMF
if the number of channels in the instrument is optimized to the photon flux and
the detector’s RON. Consequently, the SNR is taken here as a figure of merit to
decide on the optimal size of a photonic lantern for a given telescope aperture,
seeing condition, target magnitude, AO degrees of freedom, and detector’s noise.
Sources of noise relevant here are photon shot noise and RON. In a photon-starved
application like astronomy, photon shot noise 𝜎ph dominates (SNR �a

𝑁ph, where
𝑁ph is the photons count) and delivering more photons via larger FMFs is thus
beneficial. Moreover, the electronic circuit of the detector used to sense the starlight
introduces a constant RON independent of photons count every time a pixel is read
out. With the total signal distributed into multiple channels and detected at the
outputs of the photonic devices over more pixels, every output signal has an RON
component and in the aggregated signal the noise accumulates. The multiplexing
approach using a photonic lantern can only yield a better SNR than a standalone
SMF-fed device for detectors with minimal RON and bright objects under relatively
good seeing conditions.

Astronomy-grade NIR detectors typically have RON values in orders of few electrons
(Finger et al., 2014) and improved designs for amplifier circuits with sub-electron
RON continue to come out (Feautrier et al., 2016). The case for a multiplexed
H-band astrophotonic device fed by a photonic lantern is therefore driven by the
technological advancements of both integrated optics and NIR detectors along with
AO.

A two parameter calculation of SNR variation with𝐷{𝑟0 and the number of detection
channels 𝑞 is performed to decide on the optimum configuration for the multiplexed
astrophotonic instrument. With both photon noise and RON considered, SNR for
the accumulated signal is

SNR � 𝜂 � 𝑁phb
𝜎2

ph � 𝑞 � 𝜎2
RON

, (5.10)

where 𝜂 is the coupling efficiency and 𝑞 is the number of channels. Fig. 5.13 shows
the SNR as a function of 𝑞 for the example cases of a faint (𝑁ph � 102) and a
bright (𝑁ph � 108) sources detected with a 𝜎RON � 3 e� detector. For the fainter
object, the maximum SNR is attained using a single channel (𝑞 � 1) device for both
cases with and without LOAO correction ([a] and [d] in Fig. 5.13). For the brighter
objects on the other hand, SNR grows linearly with the number of channels 𝑞 for
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Figure 5.13: SNR dependence on turbulence strength 𝐷{𝑟0 and number of channels
𝑞 for a detector with RON 𝜎 � 3 e�. Photons count � 102 photons (left panels),
105 photons (middle panels) and 108 photons (right panels). Without AO correction
(upper panels) and in the presence of AO correction (lower panels). Black contours
are isolines of constant SNR at 0.75 of the maximum achievable for the scenario in
question. Dashed red lines are polyfits that trace along the 0.99 of the maximum
SNR values for each 𝐷{𝑟0 case.
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all turbulence scenarios in the uncorrected case ([c] in Fig. 5.13) but saturates at
around 𝑞 � 19 channels for the LOAO-corrected case ([f] in Fig. 5.13).

Scrambling

While all MMFs experience modal noise, FMFs are particularly affected due to the
wider separation in terms of effective refractive indices between their supported
modes. Scrambling the modes to minimize modal noise might be crucial depending
on the application, e.g. high precision radial velocity spectroscopy. For a multi-
plexed astrophotonic instrument, modal noise entails that different replicas of the
IO component at the SMFs of the delivery photonic lantern will receive different
amounts of light.

Diffraction-limited and partially AO-corrected PSFs, with most of the optical power
in a central disk, excite azimuthally-symmetric (𝐿𝑃0𝑚) modes only. As 𝐷{𝑟0

increases, more light is present in speckles away from the PSF core and higher, non-
circularly symmetric, LP modes are excited with higher probability. Fig. 5.14 shows
the coupling efficiency into each mode of a 6 modes FMF as a function of turbulence
strength for the AO-corrected and the seeing-limited cases. This suggests that
shifting the corrected PSF away from the center of the FMF in a controlled manner,
akin to the speckles in a seeing-limited focal pattern, can improve scrambling (at
the cost of efficiency) as is planned for the NIRPS spectrograph (Wildi et al., 2017).
Mechanical agitation (Baudrand et al., 2001) and stretching (Chen et al., 2006) on
the other hand scrambles the light by transferring the optical power that is coupled
dominantly in 𝐿𝑃0𝑚 modes into the other modes along the fiber. Static scrambling
strategies, e.g. octagonal fibers, have also been studied (Chazelas et al., 2010).

At the diffraction limit, the IO replica connected to the central SMF (in a hexagonal
pack configuration) will get most of the power. Depending on the application,
an astrophotonic instrument might be able to deliver a good performance with
an unequal distribution of power between the replicas as long as enough light to
achieve an SNR " 1 reaches every replica. Other applications that require an equal
splitting of the total flux would require that the light is scrambled among the SMFs
using one of the techniques mentioned above. For applications sensitive to modal
noise, further investigation of the suitability of the MMFs modelling and scrambling
methods for FMFs is needed since the statistical treatment of the fiber noise in large
MMFs (Grupp, 2003) is not appropriate for modelling FMFs.
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Figure 5.14: Contribution of individual modes to coupling efficiency into a 6 modes
FMF. Inset shows the uncorrected case. Notice the different ranges on the abscissae.

The substantial contribution of 𝐿𝑃0𝑚 modes to coupling as compared to the other
modes presents an opportunity for mode-selective photonic lanterns (MSPL). By
breaking the symmetry between the SMFs in a photonic lantern, a one-to-one
definitive mapping can be enforced between the excited modes and the SMFs (Leon-
Saval et al., 2014). This results in the optical power coupled into the multimode port
being guided dominantly to a subset of all the SMFs present, reducing the number
of channels and alleviating the effect of the detector’s RON. The natural scrambling
that takes place due to the atmospheric turbulence limits the utilization of MSPLs
for the uncorrected wavefronts case (see Fig. 5.14).

5.2.5 Experiments

To validate the aforementioned coupling models, the experimental testbed in Fig. 5.15
is built around an LOAO system. The measurements are performed using two light
sources, one of which is the science beam at 1550 nm that simulates star light
and a second beam at 785 nm as guide star for the AO system. The coupling
models are tested by recreating the simulated scenarios and measuring the cou-
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Figure 5.15: Experimental setup. BE: beam expander, BS: beam splitter, M: stepper
motor, CL: coupling lens. Red arrows indicate conjugated pupil planes.

pling efficiency. The main parts of the experimental testbed are described in the
following subsections, including the LOAO system (Sec. 5.2.5), the atmospheric
emulator (Sec. 5.2.5), the relay and coupling optics (Sec. 5.2.5), and the fiber optics
(Sec. 5.2.5), with the experimental results presented in Sec. 5.2.5.

Atmosphere emulator - Phase screen

The two beams that emulate the astronomical science target and the guide star are
provided by a 1550 and a 785 nm fiber-coupled laser diodes, respectively. The beams
are collimated by doublet achromats and enlarged by Galilean beam expanders to
24 mm diameters. Light polarization is not maintained. The beams are reflected
off folding mirrors that steer them toward a beam splitter where the visible beam
is transmitted and the NIR beam is reflected onto a common axis (c.f. Fig. 5.15).
The combined beams are passed through a phase screen mounted on a rotary stage.
The phase screen from LEXITEK is a 100 mm diameter plate of two polymers of
similar but unequal refractive indices bonded together (Ebstein, 1996). The near
index match between the two materials means that the physical profile variation
across the screen to produce a given optical path difference is coarser than that for
an air-glass interface. This relaxation results in a profile difference as high as 75
𝜇m being required to introduce a phase shift of only 1 wave on an incoming planar
wavefront at 1550 nm. This allows for engraving the phase pattern using typical
CNC machining techniques. The sandwich is itself cemented between two 𝜆{10
BK-7 windows with AR coating. All materials are transparent between 600 nm and
1600 nm and the dispersion in the refractive index difference Δ𝑛 of the two polymers
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is less than 0.001 between 785 nm and 1550 nm. The phase pattern is impressed
on an outer annulus of width 24 mm and thus a maximum beam diameter of 24
mm can be passed through the plate. The plate is mounted off-center to overlap the
outer annulus with the beam path, and different pattern realizations can be attained
by rotating the plate about its axis. The phase screen engraved has Kolmogorov
statistics with an 𝑟0 � 0.6 mm. The beams emerging from the phase plate are
truncated by an iris to allow the emulation of different telescope aperture sizes.
With the fixed Fried parameter of the screen, varying the turbulence strength up to
a maximum of 𝐷{𝑟0 � 40 is possible by changing the iris opening diameter.

Low-order adaptive optics

The LOAO system from ALPAO has a 13.5 mm DM with 97 actuators, that can
achieve a flatness of 2.89 nm rms in closed loop. It can be driven up to a frequency of
1 kHz before the first resonance sets in. Wavefront sensing is performed downstream
of the DM in a closed-loop architecture by a Shack-Hartmann type sensor that
consists of a 16 � 16 MLA with an electron-multiplying CCD (EM-CCD) camera.
The EM-CCD from Nüvü has a quantum efficiency QE ¡ 75% between 500 and
800 nm and a full frame rate of 1 kHz. The LOAO system features a dichroic mirror
to split the science beam from the guide star beam which in turn is resized by a beam
reducer (a Keplerian telescope of 2 achromats) to match the size of the lenslet array
(2.75 mm). The beam reducer also conjugates the DM pupil to the lenslet array that
is placed at the exit pupil of the system. A field stop at the image plane between the
telescope lenses allows for blocking the light from all sources other than the guide
star beam. The loop is controlled with a PC driven by an Intel i5-8500, 3.0 GHz,
6 cores processor and 16 GB RAM running a Matlab-based engine developed by
ALPAO. The pure delay, i.e. the time it takes the PC to have the DM commands
ready after the end of an exposure, is 1.38 ms. The loop can be closed at 500
Hz with the WFS camera operating at maximum frame rate with sufficient photons
available for each frame to guarantee a high signal-to-noise ratio (camera requires 3
photons/frame/subaperture for SNR� 1). The rejection (correction) bandwidth, i.e.
the maximum Greenwood frequency that can be corrected for, is the figure of merit
most important for our purposes and for this system it is about 20 Hz. The partial
correction nature of the LOAO system is clear from the limited number of modes
(97) it can correct for (spatial limitation) and the maximum Greenwood frequency
it can track (temporal limitation) compared to the needs of large and very large
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telescopes.

Relay optics and coupling setup

After passing the phase screen and the iris, the clipped beams are then passed through
a Keplerian telescope that resizes the beam diameter to match the DM aperture. The
secondary lens of the telescope also images the phase screen at the primary lens,
i.e. the entrance pupil, onto the DM when the telescope is kept at the correct image
distance from the DM. The telescope lenses are uncoated singlets, and lens pairs
that produce the minimum total Seidel aberrations were selected from off-the-shelf
catalogues using Zemax. The exit pupil position is also calculated by Zemax.

The combined beams are then folded towards the DM, where the wavefront is
actively controlled. After reflection off the DM, the AO-corrected beams are split
by a dichroic beam splitter (c.f. Fig. 5.15). While the guide star beam goes to the
WFS, the science beam is reflected out of the AO setup toward a coupling lens with
an SMF or FMF aligned at its focus. The same 𝑓 � 75 mm lens is used for all fibers.
With the beam diameter at the lens equal to the DM aperture, i.e. 𝑑 � 13.5 mm, an
ƒ{5.56 beam results which is close to the optimum for coupling into an NA � 0.1
SMF at 𝜆 � 1550 nm as shown in Fig. 5.11. The optimum ƒ{# for coupling into
SMFs of a different NA or FMFs is different, but 5.5 is roughly the midpoint where
sufficient coupling is expected for all the cases considered.

To measure the total power coupled, the output end of the fiber is connected to a fiber
port where the facet is imaged onto a free-space photodetector (PD) by a singlet
lens. Such an arrangement is necessary because the femto-watt PD has a small
active area (0.2 mm2), which makes it difficult to completely capture the diverging
beam directly after the fiber. The highly sensitive InGaAs PD has a noise equivalent
power NEP � 7.5 fW and bandwidth BW � 25 Hz.

The NIR beam is intercepted at two points by flip mirrors. First, before the coupling
lens, the beam can be sent toward a C-RED2 InGaAs camera (Feautrier et al., 2017)
through a long focal length lens 𝑓 � 1000 mm to image the PSF and measure its
Strehl ratio and encircled energy. Second, after the coupling lens and before the
fiber, the beam can be reflected towards a free-space highly sensitive PD to measure
the total power available at the pupil for coupling. The two PDs were calibrated
against each other using the fiber port-lens-PD setup across their dynamic range
10 fW - 100 pW.
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Table 5.1: Properties of the fibers used.

Fiber Core diameter [𝜇m] NA Sustained modes 1

SMF2 8.2 0.143 1
FMF 25� 1 0.08� 0.005 6

Flip mirrors are used instead of beamsplitters after separating the guide star beam
from the science beam to reduce the number of surfaces that may give rise to non-
common path aberrations (NCPA) between the AO setup and the fiber. To align the
fiber at the focus of the coupling lens, a 6-axis kinematic precision stage is used.
The nanopositioning stage used can achieve a resolution of less than 50 nm for 𝑥, 𝑦,
and 𝑧. Pitch and yaw have a 0.2 arcsec resolution.

A feedback loop is closed between the C-RED2 camera and the DM (on top of the
main AO loop) to correct for temperature-induced tip and tilt in the IR arm only and
hence not seen by the WFS. Wavefront error, temperature and humidity are logged
for the open loop case to make sure that creep and memory effects as reported
by Bitenc et al. (2014) do not introduce measurement artifacts.

Coupling is measured for an SMF and an FMF. A coated SMF-28 patch cable from
Corning is used as the SMF. For the FMF, a THORLABS FG025LJA MMF is used.
Table 5.1 lists the properties of the fibers used. Short fibers (  2 m) are used to
minimize attenuation in the fibers and cladding modes are removed by having the
fibers bent at radii (¡ 30mm) larger than their macrobend loss thresholds.

Experimental results

Fig. 5.16 shows the measured coupling efficiencies and gain for an SMF and a 6-
modes fiber using the setup described above. The maximum efficiency measured
at the diffraction limit for both fibers is lower than that theoretically predicted in
Fig. 5.11 by� 25%, for which we identify three causes: 1. Coupling in the testbed is
done at ƒ{5.56, the optimum for the SMF but slightly faster than the ƒ{6.8 required
to maximally couple into a 6-mode fiber. 2. The aberrations in the optical train
amount to an rms wavefront error of 80 � 120 nm depending on the telescope in
place and can only be flattened down to a minimum of 20 nm rms error by closing
the loop. The reduction of the theoretical limit (at an open loop) due to aberrations

1Per polarization and accounting for degeneracies at 𝜆 � 1550 nm
2Fiber is AR-coated at one end
3Measured at 1 per cent power level
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Figure 5.16: Top: measured coupling efficiency into SMF and 6 modes FMF. For
reference, the simulation results are plotted (light lines with shaded areas indicat-
ing uncertainties). Bottom: measured gain in coupling upon application of AO
correction. The line plots going through the data are the simulation results.

was confirmed by modelling the trains in Zemax where a physical optics module
can calculate the overlap between the fundamental mode and the deformed PSF.
Alignment was improved until those theoretical limits were reached. 3. Insertion
and transmission losses in the fibers introduce a small reduction in the measured
efficiencies as compared to the other factors.

The reasons mentioned for the mismatch above cancel out for the gain curves and
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therefore we choose to qualify the models using them. At higher 𝐷{𝑟0 values the
theoretical gain remains constant but a drop is seen in the experimental values for
𝐷{𝑟0 ¡ 16. This is a result of filtering the high-order eigenmodes of the DM to
calculate the command matrix in Eq. (5.5) when closing the loop. The high-order
eigenmodes have smaller eigenvalues and therefore cause the actuator commands to
saturate and the loop to diverge when high spatial frequency shapes are requested
of the DM. Only 3 eigenmodes are filtered for the cases where 𝐷{𝑟0   10 but
more are filtered dynamically by the control code as 𝐷{𝑟0 is increased and the loop
starts to diverge. Moreover, the phase screen of the testbed was calculated as a
Fourier series (FS) expansion over an area equal to the size of the screen while the
phase screen realizations for the model were calculated over an area 40� larger to
minimize the inherited periodicity in the FS-generated phase. The testbed screen
therefore has a structure function (Eq. (5.2)) that deviates from Kolmogorov’s 5{3
law at greater separations while the model’s screens adhere to the law more closely.
The underrepresented low frequencies in the testbed screen cause a higher coupling
efficiency into the fibers for the uncorrected case while the AO-corrected case remain
unaffected (c.f. Fig. 5.17). Furthermore, a large ensemble of unique screens cannot
be achieved for larger beam diameters due to the finite size of the phase screen.

Fig. 5.18 shows the drop in the Strehl ratio (SR) and the increase in the encircled
energy (EE) as 𝐷{𝑟0 increases. The resemblance between the 𝜂 curves for the SMF
in Fig. 5.12 (when normalized to have 𝜂 � 1 at the diffraction limit) and the SR
curves in Fig. 5.18 is a result of the SMF being nearly a point-like sampler of the
center of the PSF as first noticed by Coudé du Foresto et al. (2000). The knee in the
EE curve for the AO corrected case at 𝐷{𝑟0 � 9 indicates the transition between
the total and the partial correction regimes where 𝑟0 projected on the DM becomes
smaller than the inter-actuator spacing. The PSF is no longer contained by the LOAO
system and starts to broaden at a rate equal to that of the uncorrected case. Strehl
ratio drops linearly throughout both regimes for the corrected wavefronts since a
central core is always present in the PSF for 𝐷{𝑟0   18 as shown in the images
at the top of Fig. 5.18. The deviation of the data points at 𝐷{𝑟0 � 16.7 from the
theoretical prediction is again due to the periodicity of the phase screen as discussed
above.
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Figure 5.17: Structure functions of the testbed phase screen (blue line) and the
model realizations (orange line). Plotted also is Kolmogorov’s 5{3 law of turbulence
(dashed line).

5.2.6 Discussion

The results for the effect of the ƒ{# of the telescope on coupling in Fig. 5.11 match
those reported by Horton et al. (2007) for the diffraction-limited case. The extension
into the seeing limit and the study here of how the optimum geometry varies with
turbulence was necessary to confirm that diffraction-limited values remain valid
for all cases. FMFs coupling curves (see Fig. 5.12) for the uncorrected case can
be cross-checked against a number of references that studied coupling for FSO
communication. Tedder et al. (2020) measured coupling for a 15-modes fiber up to
𝐷{𝑟0 � 8.6 and the 6 dB loss reported is comparable to the 0.22 coupling efficiency
for the 19 modes fiber we calculated. Zheng et al. (2016) simulated and measured
received power into SMFs and their results can be directly compared to the drop
in efficiency and increase of the standard deviation with 𝐷{𝑟0. For example, the
1.25% efficiency they reported for 𝐷{𝑟0 � 10 matches the calculated 𝜂 � 1.24% in
Fig. 5.12. The addition here is the inclusion of AO correction and the focus on the
modal counts most relevant to tapered photonic lanterns.
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Figure 5.18: Top: Short exposure PSF images taken with the loop open and then
closed for increasing 𝐷{𝑟0. Middle: SR dependence on 𝐷{𝑟0 for the corrected and
the uncorrected cases. Bottom: PSF 50% encircled energy at ƒ{74 dependence on
𝐷{𝑟0. Simulation results from the theoretical model are also plotted for reference.
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With an experimentally-verified model like the pipeline detailed in this work, one
has the tool to decide if a multiplexed photonic instrument fed by an LOAO-assisted
photonic lantern provides an advantage over a single device in terms of SNR. A
typical scenario is a telescope equipped with an AO system that has a maximum
number of modes and a temporal bandwidth it can correct for but can also function
at decreased capabilities in the absence of a bright enough guide star. A photonic
lantern can then be appropriately sized given the source brightness, the available ex-
posure time and the detector specifications. The availability of photonic components
(lantern and IO devices) in different sizes and quantities for a quick exchange should
be feasible although packaging and alignment techniques need to be perfected to
minimize losses and downtime.

Turnkey, general-purpose AO systems are now available from a variety of vendors.
The use of pre-engineered hardware and software make such solutions affordable (�
$105) for midsize telescopes where astrophotonic technologies could be employed
first. This is in contrast to the custom-made, large-scale AO projects currently
existing or being considered for the very and extremely large telescopes. FSO
communication applications in particular are set to benefit from the anticipated
ubiquity of low-cost AO systems (Leonhard et al., 2016).

Once a verified model for coupling through turbulence in the presence of AO
compensation is available, color maps like those in Fig. 5.13 can be generated for
any given celestial target and scientific camera. A quick multi parameter scan shows
the regime (𝐷{𝑟0, 𝑁ph, and 𝜎RON) under which multiplexing becomes beneficial
and the optimum number of channels that one should opt for to get the most cost-
efficient, i.e. least number of channels, that maximizes the SNR above a certain
threshold.

The study done here concerns H-band astronomy as this is the band where the
operating ranges of current AO and photonic technologies overlap. Results from
simulations and the experiment detailed above are for 𝜆 � 1550 nm but a recal-
culation at a different wavelength between 1500 and 1800 nm is possible without
modification as, in principle, the physics and the assumptions made remain valid.
In general, Fried parameter is smaller towards the blue 𝑟09𝜆6{5 (c.f. Eq. (5.4))
effectively squeezing the curves in Fig. 5.12 to the left as the wavelength decreases.
however the number of modes supported by a given waveguide increases approxi-
mately as� 𝜆�2, hence increasing the total coupling efficiency. The general case of
an unobscured circular aperture was considered for the simulations and the experi-
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ments reported here but obscurations, spiders and segmented pupils can be readily
included in the models when necessary. An on-sky test of fully packaged photonic
lanterns of different sizes assisted by an LOAO shall complement this work.

5.2.7 Conclusions

We presented a feasibility study and made the case for H-band multiplexed astropho-
tonic instruments fed by AO-assisted photonic lanterns. A numerical simulation was
completed to find the compromise between the complexity of the AO system and the
size of the photonic lantern to maximize sensitivity. Photonic lanterns sustain few
modes at their multimode ports and the optimum f-numbers for coupling into FMFs
deviate from the geometric predictions as Fig. 5.11 depicts. An LOAO system can
boost the coupling of atmospherically-distorted starlight into FMFs and photonic
lanterns manyfold (2 � 100, c.f. Fig. 5.12). The SNR of an accumulated signal
detected at the output of a multiplexed instrument depends on the photons flux that
can be coupled into the instrument, the number of channels over which they are split
by a photonic lantern and the RON of the detector used (c.f. Fig. 5.13). The realm
where such an approach offers an advantage over singular standalone devices fed by
SMFs is therefore defined by the aperture size, the science target, and the detector
capability.

With the prevalence of LOAO systems, the continuing improvement of low noise
infrared detectors, and the imminent adoption of photonic technologies by astron-
omy, multiplexed photonic instruments will soon become advantageous for midsize
and large telescopes. Immediate applications for extremely large telescopes could
be considered for AO-supported multi-object spectrographs that are currently being
designed for the next generation of ELTs, such as MOSAIC for the ELT (Jagourel
et al., 2018; Morris et al., 2018).
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C h a p t e r 6

MODE-SELECTIVE PHOTONIC LANTERNS FOR STARLIGHT
COUPLING

This chapter was published as

Diab, M., Tripathi, A., Davenport, J., Dinkelaker, A. N., Madhav, K., & Roth,
M. M. (2021). Simulations of mode-selective photonic lanterns for efficient
coupling of starlight into the single-mode regime. Applied Optics, 60(19),
D9–D14. https://doi.org/10.1364/AO.421799

6.1 Abstract

In ground-based astronomy, starlight distorted by the atmosphere couples poorly into
single-mode waveguides but a correction by adaptive optics, even if only partial,
can boost coupling into the few-mode regime allowing the use of photonic lanterns
to convert into multiple single-mode beams. Corrected wavefronts result in focal
patterns that couple mostly with the circularly symmetric waveguide modes. A
mode-selective photonic lantern is hence proposed to convert the multimode light
into a subset of the single-mode waveguides of the standard photonic lantern, thereby
reducing the required number of outputs. We ran simulations to show that only two
out of the six waveguides of a 1 � 6 photonic lantern carry ¡ 95% of the coupled
light to the outputs at 𝐷{𝑟0   10 if the wavefront is partially corrected and the
photonic lantern is made mode-selective.

6.2 Introduction

Although starlight arrives at the top of Earth’s atmosphere with planar wavefronts
that would form Airy patterns when focused by unobscured circular apertures,
atmospheric turbulence distorts the wavefronts before they are collected by ground-
based telescopes. Such distortion introduce random information into the wavefront
which translates into the point spread function (PSF) breaking up into a speckle
pattern that couples poorly with single-mode waveguides. Photonic lanterns can be
used to couple atmospherically-distorted starlight into single-mode integrated optics
and fibers, where the multimode speckle pattern at the focal plane is converted into
multiple single-mode beams. This conversion is however only lossless if the degrees

https://doi.org/10.1364/AO.421799
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of freedom are conserved, i.e. the number of single-mode channels is at least equal
to the number of supported modes at the multimode input (Leon-Saval et al., 2005).
Since the modal content of the seeing-limited PSF increases as the telescope aperture
grows or as seeing worsens, hundreds, if not thousands, of modes are required to
efficiently couple all the starlight into the multimode port of the lantern which
results in the signal getting split among an equal number of single-mode channels.
To minimize the size of the lantern, adaptive optics (AO) may be used to first
correct the received wavefront and hence reduce the modal content of the PSF to
the point where only � 10s of modes are required to efficiently couple the PSF of a
ground-based large telescope into a multiplexed photonic device (Diab et al., 2021).

Partially AO-corrected wavefronts result in PSFs that have a prominent core on top
of a background halo (Hardy, 1998). The near symmetry of such PSFs means that
they have a stronger overlap with the circularly symmetric of the linearly polarized
(LP) modes of step-index circular fibers. By breaking the degeneracy between the
single-mode waveguides, a mode-selective photonic lantern (MSPL) like the one
depicted in Fig. 6.1 can be designed that converts the light coupled into a certain
spatial mode to one specific output waveguide (Leon-Saval et al., 2014). For the
case of partially AO-corrected PSFs, this can be exploited to transform most of the
coupled multimode starlight into a subset of the total number of modes supported
by the photonic lantern. Specifically, most of the light can be coupled into the
waveguides associated with the circularly symmetric modes (𝐿𝑃0𝑚, 𝑚 � 1, 2, ...)
and thus reduce the number of single-mode channels, i.e. waveguides, that needs to
be handled at the output of the photonic lantern without significant loss of light.

While conventional photonic lanterns were originally invented to accommodate fiber
Bragg grating-based sky emission filters for H-band astronomy (Bland-Hawthorn
et al., 2011), MSPLs were first used as spatial division multiplexers (SDMs) to
increase the capacity of optical communication channels (Leon-Saval et al., 2014).
They have since been proposed to multiplex orbital angular momentum modes (Zeng
et al., 2018) and to selectively amplify spatial modes in doped fibers (Wittek et al.,
2016). MSPLs also found applications as bending sensors (Newkirk et al., 2015),
as differential group delay compensator (Huang et al., 2015) and made a comeback
to astronomy as a way of mitigating focal ratio degradation (Benoit et al., 2020).

In this work, we present simulation results that demonstrate the potential of MSPLs
as a method of reducing the number of single-mode channels for the various as-
tronomical applications that photonic lanterns have been suggested for so far, e.g.
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Figure 6.1: Layout of a 1 � 6 MSPL inscribed in a glass substrate. Corrected
starlight coupled into the few-mode core (grey) will predominantly route towards
the two single-mode cores (blue) that correspond to the 𝐿𝑃0𝑚 modes of the input.

OH suppression (Bland-Hawthorn et al., 2011), reformatting (J. J. Davenport et al.,
2020), multiplexed spectrographs (Bland-Hawthorn et al., 2010), and beam combin-
ers (Diab et al., 2019; Minardi, 2012). First, the working principle and the design
of the MSPL we considered are given. Next, we show how the modal content of
starlight PSFs depends on the turbulence strength and the degree of correction. We
finally present the expected performance results of using a 1�6 and a 1�15 MSPLs
to convert AO corrected PSFs into few single-mode beams and discuss the limits
beyond which this approach becomes less beneficial.

6.3 Concept and MSPL design

Conventional photonic lanterns guide the light from a multimode core through an
adiabatic transition to an array of identical single-mode cores (Leon-Saval et al.,
2010). A one-to-one mapping between the spatial modes of the multimode end
and the single-mode waveguides of the array can be achieved with an MSPL that
has dissimilar diameters or refractive indices for the array cores. The fundamental
modes supported by the single-mode waveguides will consequently have different
propagation constants leading to the modes of the input port orderly coupling with
the dissimilar cores one by one. Single-mode waveguides support only the funda-
mental mode 𝐿𝑃01. Higher-order circularly symmetric modes, 𝐿𝑃02 and 𝐿𝑃03, are
supported by 6 and 15 modes waveguides, respectively. Disregarding geometry,
one could directly assign different diameters or refractive indices to the cores in
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descending order within the allowed range. The modes from the multimode core
would then occupy the single-mode cores in succession. Opting for dissimilar core
sizes rather than varying the refractive indices and since the selectivity of the device
can be improved by optimizing the diameters to the cores arrangement (Fontaine
et al., 2012; Shen et al., 2018), we carried out an optimization of the geometry
parameters using the beam propagation solver BeamPROP (Synposys and RSoft
Design Group, 1993-2018) on CAD models of the structures. The designs assume
a device written using ultrafast laser inscription (ULI) (Thomson et al., 2011) in a
block of GLS or Eagle glass (Spaleniak et al., 2013) with refractive index contrast
Δ � p𝑛core � 𝑛claddingq{𝑛core � 4.138� 10�3 (Tepper et al., 2017).

To avoid mode coupling along the transition, the adiabaticity criterion (Snyder et al.,
2012; Yerolatsitis et al., 2014)���� 2𝜋

𝛽1 � 𝛽2

d𝜌
d𝑧

»
𝐴

𝜓1
B𝜓2
B𝜌 d𝐴

���� ! 1, (6.1)

must be fulfilled. The criterion demands that the propagation constants 𝛽1 and 𝛽2 of
neighboring modes 𝜓1 and 𝜓2 that evolve slowly along the taper to be well separated
if the taper length is to remain short enough for the simulations to conclude in
a reasonable time. In Eq. 6.1, 𝜌 is the local core size and 𝑧 is the longitudinal
coordinate, making d𝜌{d𝑧 a measure of the taper ratio, while 𝐴 is the structure
cross-sectional area. The range of propagation constants to be filled p𝛽max� 𝛽minq is
limited by the wavelength and the normalized frequency (V-number) of the single-
mode waveguides. It has an upper limit determined by the requirement for the largest
waveguide in the array (corresponding to the fundamental mode of the multimode
core) to remain single-mode and the smallest (corresponding to the highest order
mode of the multimode core) to be 3.6 times larger than the longest operating
wavelength to have a V-number of at least 1.5 for good field confinement of the field
within the core. The minimum separation to have the output waveguides decoupled
is � 30 𝜇m. With a device length of 50 mm, the taper angle is 0.03°and therefore
the taper is gradual enough to guarantee adiabaticity.

In addition to the bounds set by the propagation constants range, the maximum
diameter for the single-mode cores and the minimum diameter for the multimode
core depend on the operating wavelength range. The diameters are chosen such
that the device will operate across the H-band (1550 - 1800 nm) while keeping the
number of supported modes at both ends the same.
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Two MSPLs were designed within the constraints given above, a 1� 6 and a 1� 15.
The anatomy of both devices consists of three segments. The input at the front facet
of the glass substrate is a straight, uniform, few-mode core that can be readily spliced
to a fiber. The tapered cores start at the end of the few-mode core with a matching
diameter and then taper over a 5 mm length down to the designated final diameter
while fanning out from the center to form a pentagon with a central core for the 1�6
MSPL. The 1� 15 MSPL has the remaining 9 cores fanning into an outer nonagon
and thus meeting the geometric requirement for lossless transition (Fontaine et al.,
2012). The last segment has cores of uniform diameters that continue to fan out
at the same angle for 22 mm to a maximum separation of 30 𝜇m from the center
where the cores are decoupled. These segments can be identified by the jumps in
the effective refractive index curves in Fig. 6.2b.

For the 1� 6 MSPL (cf. Fig. 6.1), the multimode core has a diameter of 18.58 𝜇m
and NA � 0.13177 and therefore supports the 6 modes (12 vector modes): 𝐿𝑃01,
2� 𝐿𝑃11, 2� 𝐿𝑃21, and 𝐿𝑃02 between 𝜆 � 1550 and 1800 nm. The diameters for
the 6 single-mode waveguides found by the optimization are 8.5, 7.5, 7.5, 5.8, 5.8,
and 5.6 𝜇m, respectively. While the MSPL is highly selective for all modes, only
the waveguides for 𝐿𝑃0𝑚 modes are of interest here. Fig. 6.2a shows the light spatial
distribution corresponding to excitations with pure modes and Fig. 6.2c shows the
selectivity matrix of the device, where the rows indicate how much of the total power
launched into a given mode ends up at each core.

A similar procedure is followed for the 1 � 15 MSPL except that the diameters for
the waveguides associated with the degenerate higher-order modes (𝐿𝑃1𝑚, 𝐿𝑃2𝑚, ...)
are all set to the same value to narrow the parameter space of the optimization, as
only 𝐿𝑃01, 𝐿𝑃02 and 𝐿𝑃03 are relevant for this application.

6.4 Starlight coupling into few-mode waveguides

The atmospherically induced distortion of starlight, particularly in the field’s phase,
precludes efficient coupling into single-mode photonic devices, but a combination
of AO and photonic lanterns can help couple light efficiently into astrophotonic
instruments that allow multiplexing. Without any correction, the number of modes
that the photonic lantern would need to support, 𝑝, (and in turn the number of
channels of the device) depends on the aperture of the telescope, 𝐷, and the seeing
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Figure 6.2: (a) Output patterns of the 1�6 MSPL due to excitations by a pure mode.
The insets show the launched mode. (b) Variation of the effective index along the
propagation direction. Horizontal dashed lines indicate the cladding and the core
refractive indices and the vertical dotted lines indicate the interfaces between the
segments of the device. (c) Selectivity matrix illustrating the power shares of the
output cores with a pure mode launched.

condition gauged by Fried’s parameter 𝑟0 (Minardi et al., 2020):

𝑝 � 𝜋2𝐷2

4𝑟2
0
. (6.2)

A 4 m telescope at median seeing conditions, 𝑟0 � 20 cm, in the NIR would
require � 1000 channels to couple the light efficiently into a multiplexed single-
mode integrated optic. To fully correct such a wavefront, an AO system that has a
comparable � 1000 degrees of freedom, i.e. count of the wavefront sensor (WFS)
subapertures and the deformable mirror (DM) actuators, is required. However, a
partial correction with only a � 100 actuators low-order system can already boost
the coupling efficiency into single-mode fibers a 100-fold and decrease the number
of channels required of the photonic lanterns for full coupling to only � 10s (Diab
et al., 2021).

Through scrambling, AO-assisted photonic lanterns can redistribute the light, more
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or less, equally among the single-mode channels (Baudrand et al., 2001) and there-
fore one would need to process the beams at all output ports if the flux collected
by the telescope is to be fully utilized. Without scrambling, the redistribution is
not equal but rather highly dependent on the time-varying environmental and atmo-
spheric conditions, meaning again that all the channels must be used. An MSPL
can help reduce the number of channels by routing most of the light coupled into
the multimode core to only 2 of the total 6 channels of a 1� 6 MSPL.

Fig. 6.3 shows the contribution of each mode to coupling into a 6 modes waveguide
as the turbulence strength 𝐷{𝑟0 is increased for both, the uncorrected and the
AO-corrected cases. For this computation, 20 seeing-limited PSFs, 𝜓𝐸 , at each
𝐷{𝑟0 point are calculated from Kolmogorov’s phase screens (Welsh, 1997) and the
overlap with the LP modes of a weakly-guiding, step-index circular waveguide, 𝜓𝑖,
is evaluated to find the coupling contributions 𝜂𝑖

𝜂𝑖 � |x𝜓𝑖|𝜓𝐸y|2
x𝜓𝑖|𝜓𝑖y x𝜓𝐸 |𝜓𝐸y . (6.3)

To compute the LP modes analytically, an ansatz that satisfies the symmetry
boundary conditions of the cylindrical, step-index waveguide is substituted in the
Helmholtz equation, ∇2𝜓 � 𝑛2𝑘2

0𝜓 � 0 (Snyder et al., 2012). The resulting dif-
ferential equations have solutions in the family of Bessel functions. Imposing the
weak guidance condition, Δ ! 1, a characteristic equation is obtained that may be
solved graphically to determine the parameters of the modes and subsequently their
spatial distribution.

AO correction is applied to the distorted phase screens by simulating a Shack-
Hartmann WFS and a DM that has 97 actuators (Gorkom et al., 2018). A modal
reconstruction is performed to calculate the wavefront from the local slopes sensed
by the WFS and find the commands for the DM (Hardy, 1998).

For the uncorrected case, the contributions of 𝐿𝑃01 and 𝐿𝑃02 are initially highest,
but drop for increasing turbulence, with higher-order modes quickly contributing
similar amounts. In the case where partial AO correction is applied on the distorted
wavefronts, contributing the most are the 𝐿𝑃01 and 𝐿𝑃02 modes. The same calcula-
tion was performed for the 1 � 15 MSPL, where we still find 𝐿𝑃01 and 𝐿𝑃02 carry
the largest fraction of light. 𝐿𝑃03, however, does not contribute.
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Figure 6.3: Contribution of the modes to coupling from an unobscured circular
aperture at the optimum 𝑓 {# � 4.83 at 𝜆 � 1550 nm as 𝐷{𝑟0 is increased for a 6
modes waveguide. Left: Without AO correction. Right: with partial AO correction.

6.5 Starlight coupling into MSPLs

To demonstrate the MSPL ability to convert the multimode starlight to a few of
its single-mode outputs, focal fields of AO-corrected wavefronts at the optimum
coupling 𝑓 {# are computed and launched into the multimode waveguide of a model
of a 1 � 6 MSPL. The beam propagation method is then used to evolve the launch
field along the MSPL and calculate the output fields at the tips of the single-mode
waveguides. Fig. 6.4 shows the dependence of the power at the outputs on 𝐷{𝑟0 for
the corrected and the uncorrected cases at 𝜆 � 1550 nm.

As the overlap of the corrected PSF with the 𝐿𝑃01 mode is higher than the overlap
with 𝐿𝑃02, the 1� 6 MSPL will always redistribute the light unequally between the
two output waveguides. Without further scrambling, this may prove problematic
for certain applications, e.g. high-resolution spectroscopy, and would require a
redistribution among the channels using a scrambling device for the outputs.

Of the total optical power coupled from free space into the 1 � 6 MSPL, ¡ 99%
is delivered to the two cores associated with 𝐿𝑃0𝑚 at the diffraction limit. The
preference for the light to steer toward those cores decreases as turbulence strength
is increased but the share of the power remains ¡ 85% at all 𝐷{𝑟0   20 for the
unobscured telescope. Fig. 6.5 shows how the share of the power in the two 𝐿𝑃0𝑚

cores of a 1� 6 MSPL depends on 𝐷{𝑟𝑜 and the obscuration ratio of the telescope.
At the diffraction limit, a central obscuration effectively redistributes part of the
power from the Airy disk into the rings and thus increases the coupling into the
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Figure 6.4: Normalized optical power at the single-mode output cores as turbulence
strength increases for unobscured circular apertures. Insets show the cores arrange-
ment at the output. Top: 1� 6 MSPL. Bottom: 1� 15 MSPL. Left: No correction.
Right: With AO correction

higher-order 𝐿𝑃0𝑚 modes. The total share of the power remains the same in these
circularly symmetric modes as seen in Fig. 6.5.

6.6 Conclusion and future outlook

We have run simulations to demonstrate the potential of MSPLs to coupling starlight
into the single-mode regime upon introducing AO correction to atmospherically
distorted wavefronts. MSPLs can reduce the number of output beams that one
needs to consider as compared to conventional photonic lanterns for an equal total
flux delivered. For multiplexed photonic devices (Watson, 1995), fewer channels
also mean that the signal-to-noise ratio is improved by requiring the stacking of
fewer signals in post-processing after detection (Diab et al., 2021). The MSPL is
selective across the H-band where the modal count of both ports remains the same.

Several methods can be considered to fabricate MSPLs. For the simulations pre-
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Figure 6.5: Share of light contained in the two 𝐿𝑃0𝑚 cores for the 1 � 6 MSPL.
Curves are shown for obscuration ratio � 0, 12.5, 20, and 50%.

sented here, we have assumed the ULI technique. With ULI, 3D structures can be
written into bulk glass by moving the substrate in all three dimensions relative to a
focused short-pulse laser beam. The refractive index is modified at the focus, thereby
producing waveguide structures. By combining laser parameters, focusing optics,
and sample movement appropriately, the position, shape, and size of each waveguide
can be changed. ULI has already been used to write single-mode waveguides, direc-
tional couplers and interferometers (Piacentini et al., 2021), Bragg-gratings (Brown
et al., 2012), photonic reformatters (MacLachlan et al., 2016; Pike et al., 2020), as
well as photonic lanterns (Spaleniak et al., 2013; Thomson et al., 2011). MSPLs,
however, have not yet been fabricated using ULI. High positional precision and
repeatability will be required to shape the individual waveguides, especially for
the lowest MFD difference of 200 nm between mode-selective waveguides in our
simulations. Here, the substrate motion will be crucial. For systems utilizing air-
bearing translation stages, (e.g. Brown et al., 2012; MacLachlan et al., 2016),
hardware specifications from the manufacturers state positioning repeatability of
�25 � 100 nm. While we expect the precision to be sufficient, experimental tests
should be conducted to verify MFD and selective coupling of ULI-manufactured
devices. The effect of position uncertainty might be mitigated when using the
multiscan technique, where the combined index change of several displaced scans
accumulates to form the final waveguide, e.g. Brown et al., 2012.

Furthermore, photonic lanterns can be produced by tapering stacks of optical fibers.
Many single-mode fibers fuse together to form the multi-mode waveguide (J. J.
Davenport et al., 2020). MSPLs can be produced by this method, either by using
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optical fibers of varying sizes (Yerolatsitis et al., 2014), with similar cladding
diameters but different cores (Leon-Saval et al., 2014), or using a multicore fiber
(Benoit et al., 2020).

With a fabricated device, the simulation results reported here can be verified on an
AO testbed where 𝐷{𝑟0, the degree of correction, and the obscuration ratio can be
changed (Diab et al., 2020). After initial proof-of-concept experiments in the lab,
subsequent on-sky tests would be required. As losses in the laser-written devices
can accumulate to cancel any signal advantage from the MSPL, the throughput has
to be evaluated. Optimization might be required to reduce losses. However, if the
throughput is too low, a similar MSPL could be fabricated from a fiber stack for
testing on an astronomical telescope. Both techniques can be used complementally
to find suitable MSPL configurations for different telescopes and AO systems in
order to improve light coupling in photonic devices under the effect of turbulence.
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C h a p t e r 7

PHOTONIC WAVEFRONT SENSING AND MODAL ANALYSIS

This chapter was published as

Diab, M., & Minardi, S. (2019). Modal analysis using photonic lanterns coupled to
arrays of waveguides. Optics Letters, 44(7), 1718–1721. https://doi.org/10.
1364/OL.44.001718

7.1 Abstract

We present a new concept of an integrated optics component capable of measuring
the complex amplitudes of the modes at the tip of a multimode waveguide. The
device uses a photonic lantern to split the optical power carried by an 𝑁-modes
waveguide among a collection of single-mode waveguides that excite a periodic
array of at least 𝑁2 single-mode evanescently-coupled waveguides. The power
detected at each output of the array is a linear combination of the products of
the modal amplitudes—a relation that can, under suitable conditions, be inverted
allowing the derivation of the amplitudes and relative phases of the modal mixture
at the input. The expected performance of the device is discussed and its application
to the real-time measurement of modal instability in high power fiber lasers is
proposed.

7.2 Article

The decomposition of the optical field carried by a multimode fiber into its supported
modes is a requirement for several applications in the photonic industry ranging from
spatial division multiplexing communication protocols (Li et al., 2017) to manage-
ment of modal instability in high power fiber lasers (Eidam et al., 2011). However,
while modal decomposition of an optical field is a straightforward numerical task,
it is usually a rather complex one from the experimental viewpoint. Free space
modal characterization techniques often use phase holograms as multiplexed mode
matched filters (Goodman, 2004) to retrieve amplitude and phase from optical cross-
correlations of the mode functions with the fiber field (Kaiser et al., 2009). Direct
field measurement by means of a wavefront sensor (Paurisse et al., 2012) or by means
of a spatial-spectral scan of the mode profile (Nicholson et al., 2008) are other free

https://doi.org/10.1364/OL.44.001718
https://doi.org/10.1364/OL.44.001718
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space methods used to estimate the modal coefficients in an excited fiber. A common
feature of free space methods is the requirement of extended setups and slow data
processing, making them unsuitable for high speed applications. Integrated optics
mode-division multiplexer/demultiplexer can offer devices with smaller footprints
and a fast measurement of the modulus of the modal (complex) amplitude. In this
respect, asymmetric couplers in 2 (Narevicius et al., 2005) and 3 dimensions (Han-
zawa et al., 2014; Riesen et al., 2014) and asymmetric photonic lanterns (Leon-Saval
et al., 2014) have been used to multiplex/demultiplex up to 3 modes in rectangular
multimode waveguides. While the speed of the modal decomposition in demulti-
plexers is limited by the speed of the light detector at the output, an integrated device
measuring the relative phase between the excited modes has not been reported so
far. The measurement of the modal phase is an essential requirement to determine
the exact optical pattern at the output plane of the multimode fiber, information that
could find application in the active control of modal instability in high power fiber
lasers (Otto et al., 2013).

In this letter we present the concept of a new integrated optics device designed to
accomplish a complete measurement of the complex modal amplitudes at the input
of a multimode waveguide (Minardi et al., 2019). The proposed device combines a
photonic lantern (Leon-Saval et al., 2005) with a discrete beam combiner (Minardi
et al., 2010), as sketched in Fig. 7.1. After describing the operating principle, we
present the results of a numerical optimization of the device and discuss estimates
of the precision of the modal complex amplitude retrieval relative to detection noise.

As known, the photonic lantern is a tapered waveguide that transforms adiabatically
the modes supported by its multimode end into the supermodes of an array of single-
mode waveguides. The output of the lantern can be used to excite an array of coupled
single-mode waveguides, designed to act as an interferometric beam combiner, i.e.,
the discrete beam combiner. We show here below that by choosing appropriately
the interface between the photonic lantern and the discrete beam combiner, it is
possible to relate linearly the power carried by each output of the beam combiner
with the square moduli and mutual products of the input modal amplitudes.

We begin by describing our system in terms of a linear operator 𝜓̂ from the 𝑁-
dimensional functional space spanned by the transverse modes 𝑈𝑖p𝑥, 𝑦q of the mul-
timode end of the lantern to an 𝑀-dimensional functional space describing the
excitations of the 𝑀 waveguides of the discrete beam combiner. In the frame of
the coupled-mode approximation, the fields supported by the array of evanescently-
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Photonic lantern Discrete  beam combiner

Multimode Core
27 Coupled single-

mode cores

7 Coupled 

single-mode cores

Figure 7.1: Layout of a photonic mode analyzer designed to retrieve the complex
amplitudes of the modes excited at its multimode input. The scale in the propagation
direction is reduced by 200x relative to the transverse coordinates and the cladding
of the waveguides is hidden for clarity.

coupled waveguides are written in terms of the mode profile 𝑢0p𝑥, 𝑦q of the isolated
single-mode waveguide, each centered at the coordinates p𝑥𝑛, 𝑦𝑛q of the 𝑛th waveg-
uide axis. With this approximation, we can choose as a base of the 𝑀-dimensional
space, fields composed of single waveguide excitations at the output of the array
𝑢𝑛p𝑥, 𝑦q � 𝑢0p𝑥 � 𝑥𝑛, 𝑦 � 𝑦𝑛q. We can thus rewrite the operator 𝜓̂ as an 𝑀 � 𝑁

complex matrix 𝜓𝑛,𝑖 � x𝑢𝑛|𝜓̂𝑈𝑖y, where the norm x�|�y is the usual overlap integral.
Notice that 𝜓𝑛,𝑖 represents the complex amplitude of the mode of the 𝑛th waveguide
at the output of the array due to an excitation of the photonic lantern input with mode
𝑈𝑖. If the transition from multimode end to array output is lossless and the chosen
bases are normalized we clearly have that

°𝑀
𝑛�1 |𝜓𝑛,𝑖|2 � 1 for every 𝑖 � 1, ..., 𝑁 . A

generic superposition of the input modes𝑈𝑖 with weights 𝑐𝑖 P C will therefore map
into the output amplitude

𝜙𝑛 �
𝑁̧

𝑖�1
𝑐𝑖𝜓𝑛,𝑖, 𝑛 � 1, ..., 𝑀. (7.1)

We now consider that powers rather than fields are measured at the output waveg-
uides, i.e., with a detector array aligned with the waveguides. Because we assume
that the chosen base is orthonormal, the signal 𝐼𝑛 of the detector is

𝐼𝑛 �
����� 𝑁̧
𝑖�1

𝑐𝑖𝜓𝑛,𝑖

�����2 , (7.2)

which can be written in the following expanded form:
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𝐼𝑛 �
𝑁̧

𝑖�1
|𝑐𝑖|2|𝜓𝑛,𝑖|2

� 2
𝑁�1̧

𝑖�1

𝑁̧

𝑗�1
rRep𝑐𝑖𝑐�𝑗 qRep𝜓𝑛,𝑖𝜓�𝑛, 𝑗q � Imp𝑐𝑖𝑐�𝑗 q Imp𝜓𝑛,𝑖𝜓�𝑛, 𝑗qs, (7.3)

where the operators Rep𝑧q and Imp𝑧q denote the real and imaginary parts of 𝑧,
respectively. For all output waveguides, the equations in Eq. (7.3) can be arranged
in a matrix form:

®𝐼 � 𝑽 � ®𝐽. (7.4)

By choosing the 𝑁2-dimensional vector ®𝐽 as

®𝐽 � r|𝑐1|2, . . . , |𝑐𝑁 |2,
Rep𝑐1𝑐

�
2q, . . . ,Rep𝑐𝑁�1𝑐

�
𝑁q, Imp𝑐1𝑐

�
2q, . . . , Imp𝑐𝑁�1𝑐

�
𝑁qs𝑇 , (7.5)

the matrix 𝑽 can be divided into three sub-matrices 𝑽 � r𝑨 : 𝑩 : 𝑪s where 𝑨

is an 𝑀 � 𝑁 matrix that contains the squared moduli of 𝜓𝑛,𝑖 while 𝑩 and 𝑪 are
matrices of size 𝑀 � 𝑁p𝑁 � 1q{2 that contain the real and imaginary parts of all
possible pair products 𝜓𝑛,𝑖𝜓�𝑛, 𝑗 , respectively. The entries of 𝑨 � r𝛼𝑖, 𝑗 s, 𝑩 � r𝛽𝑖, 𝑗 1s
and 𝑪 � r𝛾𝑖, 𝑗 1s are given explicitly by

𝛼𝑖, 𝑗 � |𝜓𝑖, 𝑗 |2,
𝛽𝑖, 𝑗 1 � 2 Rep𝜓𝑖,𝑝p 𝑗 1q𝜓�𝑖,𝑞p 𝑗 1qq,
𝛾𝑖, 𝑗 1 � �2 Imp𝜓𝑖,𝑝p 𝑗 1q𝜓�𝑖,𝑞p 𝑗 1qq,

𝑖 � 1, � � � , 𝑀,
𝑗 � 1, � � � , 𝑁,
𝑗 1 � 1, � � � , 𝑁p𝑁 � 1q{2, (7.6)

where 𝑝p 𝑗 1q and 𝑞p 𝑗 1q are given by

𝑝p 𝑗 1q � 𝑚, for 𝑚 P N that satisfies

p𝑚 � 1q
�
𝑁 � 𝑚

2

	
  𝑗 1 ¤ 𝑚

�
𝑁 � 𝑚 � 1

2



,
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𝑞p 𝑗 1q � 𝑝p 𝑗 1q � 𝑗 1 � r𝑝p 𝑗 1q � 1s
�

1
2
𝑝p 𝑗 1q � 𝑁

�
. (7.7)

Now 𝑽 in Eq. (7.4) has a generalized inverse provided that its number of rows
𝑀 ¥ 𝑁2, i.e., the discrete beam combiner section of the device must at least have
a number of coupled waveguides equal to the square of the number of modes to be
analyzed.

While the numerical determination of the matrix 𝑽 is straightforward, in a real
experiment a calibration procedure is required. This can be accomplished with a
method similar to the one used for the calibration of integrated optics interferometers
for astronomical use (see for instance Saviauk et al., 2013). In the present case, a
spatial light modulator is required to excite selectively the modes of the multimode
end of the device and perform the calibration. In particular, the columns of the sub-
matrix 𝑨 are obtained from the power delivered by each output waveguide resulting
from the excitation of individual modes of the photonic lantern. The sub-matrices
𝑩 and 𝑪 are obtained by exciting the device with a superposition of modes with a
linearly increasing phase delay between them.

The column vector ®𝐽 [Eq. (7.5)] contains the square moduli of the coefficients 𝑐𝑖 and
the real and imaginary parts of all possible pair products of the modal amplitudes.
Since only the relative phase between the modes matter to retrieve the input pattern
of light, only the real and imaginary parts of the products of the amplitudes of a
reference mode (e.g. the fundamental one) by the conjugate of the amplitudes of
the other modes are indeed necessary to solve the modal decomposition problem.
Solving for ®𝐽 is equivalent to solving an overdetermined system of equations, which
is possible by left multiplying the vector ®𝐼 by the Moore-Penrose pseudoinverse of
𝑽: 𝑽� � p𝑽𝑇𝑽q�1𝑽𝑇 (Press et al., 1992). An important feature of this solution
algorithm is to gauge the sensitivity of the solution to the inevitable measurement
noise of the elements of ®𝐼. This is possible by estimating the condition number of
𝑽, which is defined as the ratio of the maximum to the minimum singular values of
the matrix (Press et al., 1992).

The condition number (which we denote with the symbol 𝜅) can be interpreted
as the ratio of the maximal to minimal stretching ratios of the matrix 𝑽 along
specific directions in the space of the ®𝐽 vector. Thus, an ill-conditioned matrix
(large 𝜅) would stretch the vectors much more in one direction than another meaning
that small perturbations of the vector ®𝐽 chosen along certain directions would be
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amplified greatly by the mapping operation. Therefore, a small 𝜅 is required to
ensure the numerical stability of the transformation 𝑽 and its pseudoinverse.

As it has been already shown in the past (Minardi, 2012; Minardi, 2015), the
conditioning of the transfer matrix 𝑽 of a discrete beam combiner significantly
depends on the geometric parameters of the waveguide array and its excitation
configuration. To optimize the modal analyzer, we considered not only the geometry
of the array of waveguides, but we also carried out tests to find a convenient injection
geometry from the photonic lantern to the discrete beam combiner. A thorough
verification of all injection configurations would become very rapidly an intractable
problem due to their factorial scaling with the number of waveguides in the photonic
lattice. We therefore used a heuristic method to guide our optimization process,
which was based on the requirement of a field transfer function 𝜓i,j with aperiodic
phases evenly distributed on the 0� 2𝜋 interval (Minardi, 2015). The optimization
was carried out by means of an RSoft CAD (Synposys and RSoft Design Group,
1993-2018) model of the mode analyzer. The 𝑽 matrices of the studied designs
were constructed according to Eq. (7.6) from the peak amplitudes of the fields at
the waveguides centers 𝜓i,j calculated by the beam propagation solver BeamPROP
(Synposys and RSoft Design Group, 1993-2018). The multimode end of the device
has an 8 𝜇𝑚 core diameter and a numerical aperture of 0.17 and hence supports 3 LP
modes (the fundamental LP01 and the doubly-degenerate LP11) at 𝜆 � 1.5 𝜇𝑚 (see
Fig. 7.1). The single-mode fibers emerging from the multimode core and the array’s
waveguides have a 5 𝜇𝑚 core diameter each with a similar numerical aperture. The
lattice constant of the hexagonal array is 7.5 𝜇𝑚 which gives a coupling length of
𝐿𝐶 � 1𝑚𝑚. The lantern’s taper angle is taken shallow enough for it to be adiabatic.

Figure 7.2 shows the dependence of 𝜅 on the array’s length for some of the con-
figurations we studied while attempting to optimize the device. This optimization
strategy was supported by the observation that an input configuration where the
output waveguides of the photonic lantern are symmetrically distributed across the
array give rise to highly ill-conditioned 𝑽 matrices (one example of this case is the
configuration shown by green dashed line in Fig. 7.2). For those configurations the
modes of the photonic lantern excite with high efficiency the analogous real-valued
supermodes of the photonic lattice, which allow only two possible phases separated
by 𝜋. On the contrary, by restricting the injection sites to contiguous sites of the
photonic lattice (see brown circle in Fig. 7.2), the field propagating in the array
is in general a complex-valued superposition of different supermodes, allowing the
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transfer function 𝜓i,j to take arbitrary phase values. An off-center excitation of
the array provided a smoother dependence of 𝜅 on the device’s length (cf. purple
dotted-dashed line and black solid circle in Fig. 7.2) as more phase diversity is
introduced thanks to the broken symmetry of the system in agreement with previous
results (Minardi, 2015). Additionally, the array needed to be compatible with the
symmetry of the modes of the photonic lantern to avoid modal losses (Birks et al.,
2015). For this reason, we chose a 1� 7 photonic lantern supporting 𝑁 � 3 linearly
polarized (LP) modes coupled to 7 neighboring sites of a hexagonal photonic lattice
featuring more than 9 waveguides (see red open square in Fig. 7.2). We thus signif-
icantly restricted the number of configurations to be tested with a beam propagation
method to a bare minimum. We confirmed that, even though the minimal number
of waveguides required in the photonic lattice is 𝑀 � 𝑁2 (in this case, 9 for the
3 modes), an oversized device with more waveguides leads to better conditioned
matrices 𝑽 (cf. red open square and blue solid line in Fig. 7.2). The phases at
output waveguides corresponding to each of the supported modes for two of the
configurations we studied are counted in the histograms in Fig. 7.3. The oversized
hexagonal configuration (shown by the blue solid line in Fig. 7.2 and by dotted

Figure 7.2: Variations of the condition number 𝜅 of 𝑽 along the array in units of
coupling lengths for different geometries. A hexagonal oversized array with an
off-center 1� 7 lantern (blue solid curve) provides the best performance as it has a
low condition number that is fairly insensitive to length.
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outline, blue fill in Fig. 7.3) which possesses all the attributes we deemed beneficial
to lowering 𝜅 has its phases more evenly distributed in the interval r�𝜋, 𝜋s than the
phases of the square configuration (shown by green dashed line in Fig. 7.2 and by
solid outline, green fill box in Fig. 7.3), which lacks those attributes.

Figure 7.1 illustrates the layout of a device with an optimized configuration. The
device has been designed for an input lantern supporting 3 modes and has a minimal
condition number of 𝜅 � 4.4 (at array length 𝐿 � 3.3𝑚𝑚) as a result of the oversized
array (27 waveguides). Interestingly, the condition number varies smoothly along
the length of the device (Fig. 7.2, blue solid line curve), so that the performance of
a real device is relatively tolerant to uncertainties in the coupling coefficient of the
waveguide array.

The performance of the same device was evaluated numerically by calculating the
impact of an additive random noise in the intensity measurement (e.g. dark current
of a single pixel detector) on the retrieval of the complex amplitudes of the input
modes. The algorithm computes the intensity signal at the output of the mode
analyzer ®𝐼 from an array of different input vectors ®𝐽, each one with unitary modal
amplitude and a phase covering all possible combinations of relative phases between
modes 1-2 and 1-3 sampled on the r0, 2𝜋s interval. We added to each element of the

Figure 7.3: Histogram of the phase of the field transfer matrix 𝜓n,i for i = 1, 2 and 3
(excitation of the device with the 3 modes supported by the lantern and shown in the
insets) in a 9 waveguides square array (solid outline, green fill, 𝜅 � 2 � 106) and a
27 waveguides hexagonal array with an off-center lantern (dotted outline, blue fill,
𝜅 � 4.4). Greater phase diversity of the field transfer matrix yields 𝑽 matrices with
lower condition numbers.
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calculated ®𝐼 vectors a random number with zero mean and Gaussian distribution of
amplitude 𝜖 . The noisy vector was transformed back to the modal amplitude vector
®𝐽𝜖 by means of the pseudoinverse of 𝑽 and its average distance 𝜒 from the input
vector ®𝐽 was calculated:

𝜒 �
d°𝑁2

𝑖�1r𝐽𝜖p𝑖q � 𝐽p𝑖qs2
𝑁2 . (7.8)

The average of 𝜒 over 1000 noise realization was calculated for each input vector.
Because of the chosen normalization, 𝜒 can be seen as the average relative error of
the retrieved elements of vector ®𝐽. Figure 7.4 shows the averaged 𝜒 as a function
of the relative phases differences 1-2 and 1-3 for 𝜖 � 0.1. We notice that there is
no preferential phase combination. The phase-averaged 𝜒 grows linearly with the
noise 𝜖 with a slope of 0.7.

The fidelity of the modal analysis depends ultimately on how well the modes of the
multimode waveguide describe the input field. A numerical estimate shows that a
lateral shift of the input field by 1/32 of the waveguide diameter will change the
projected amplitudes of the modes by �10%. We notice, however, that solid state
lasers can feature a pointing stability better than 1/100 of the beam divergence.

To conclude, we proposed a fast and computationally inexpensive method for de-
termining the complex amplitudes of the excited modes in a waveguide by means

Figure 7.4: The expected average relative error of the retrieved vector ®𝐽 from a
noisy measurement of the output signal with the device depicted in Fig. 7.1. The
horizontal axes represent the relative phase between modes 1-2 and 1-3. Only an
additive Gaussian noise with standard deviation 𝜖 � 0.1 was considered in the
calculation (see text for details).
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of intensity measurements. A single matrix multiplication is required to retrieve
the sought-after coefficients, which implies that the method can be as fast as the
photo-detection is. The method is, in principle, applicable to any number of modes;
however, the array must have a number of waveguides that is at least equal to the
square of the number of modes. The geometry of the lantern’s SMFs, the geometry
of the array, the manner by which the lantern is connected to the array, and the array’s
length all have an impact on how the modes evolve into the supermodes of the array.
This, in turn, determines the condition number of the device’s transfer matrix, which
must be low to have a system that is relatively insensitive to measurement noise.
The optimal configuration, shown by blue solid line in Fig. 7.2, has a low 𝜅 over
a wide length range, which makes it suitable for broadband operation and makes it
more tolerant to fabrication defects. A device like the one described here may be
fabricated using 3D micro-fabrication techniques such as ultrafast laser inscription
in glasses (Thomson et al., 2009) or laser two-photon polymerization (Woods et al.,
2014).

The device can be used to monitor the transverse modes in lasers for control pur-
poses. The integrated mode analyzer could be matched directly to multimode fiber
lasers or through free space optics to conventional laser cavities. The possibility
to operate the device in real time opens its application in the control of the beam
quality of fiber lasers (Otto et al., 2013) or of the oscillating mode in transverse
multi-stable lasers (Tamm et al., 1990).

Funding. German Federal Ministry of Education and Research (BMBF) (03Z22AN11).
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C h a p t e r 8

CONCLUSIONS AND OUTLOOK

Conceptually, when starlight travels from the top of the atmosphere to a detector
behind a telescope, all information is conserved as long as no losses occur in
between. Part of that information is the sought-after properties of the science
object, while the rest is noise introduced by the atmosphere, the telescope optics,
the delivery waveguide, and other instrumentation artifacts. In interferometry, for
example, SMFs are used to couple only the desired fundamental mode that carries
information about the unresolved source and intentionally filter the higher-order
modes that carry information about the atmosphere’s temporal and spatial states.
The filtered modes, in this case, are valuable stellar flux that was corrupted by
atmospheric noise but may be recovered if the added information can be measured
and thus isolated. This is, in principle, what AO and fringe tracking systems do. Still,
the correction can only be performed to an extent, mainly limited by the brightness
of the available reference. Photonic lanterns, either on their own or assisted by AO,
can also be used to avoid the losses that direct coupling into an SMF involves. In this
case, the atmospheric noise is not filtered but instead passively rearranged, and it is
now represented by the differences in amplitude and phase between the single-mode
outputs of the photonic lantern. For spectroscopy, since the spectral content of the
starlight is unaltered by turbulence, all the output channels carry the same spectral
signal and might be used to maximize the sensitivity. Compared to MMFs, SMFs
can be used to feed photonic components and are immune from modal noise that
encodes additional information about the mechanical state of the delivery fiber.

The photonic approach to starlight processing has the potential of addressing some
of the major challenges that astronomical instruments will face as telescope aper-
tures grow into the extremely large phase and beyond. Many of the benefits such
an approach offers, e.g., multiplexability, also extend to current smaller observa-
tories and telescope arrays, allowing better utilization of the collected light while
simplifying the instrument design. To large telescopes, AO systems are indispens-
able, making it possible to couple light into the waveguide intakes of astrophotonic
devices. However, efficient coupling into the single-mode regime requires an exten-
sive level of turbulence correction as is offered by ExAO systems, but that is only
available under tightly limited conditions of brightness and FoV. Photonic lanterns
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can be brought in to bridge the gap between the few-mode regime that conventional
AO setups can achieve and the single-mode regime that astrophotonic components
require. Nonetheless, as most of these novel technologies remain under develop-
ment, midsize telescopes seem like the stage where astrophotonic instruments will
be demonstrated first before they are fully deployed on larger observatories as facil-
ity instruments. With the continuing drop in the costs of AO systems, particularly
those that are LOAO, a photonic solution can arrive at the telescope together with
its AO system for on-sky testing and proofs of concept.

Quantifying the level of coupling possible via a photonic lantern into a given pho-
tonic component is imperative for deciding on the suitability of a candidate telescope
and choosing science targets. This is because splitting signals inevitably impacts
the SNR of the aggregate signal. Therefore, finding the best combination requires
end-to-end simulations that take into account the physics of atmospheric turbulence
(see Sec. 2.1.2) and imaging (see Sec. 2.1.3), the principles of AO correction (see
Sec. 2.2), and the theory of optical waveguides (see Ch. 3).

For Kolmogorov’s turbulence, simulating atmospheric layers requires an efficient
algorithm that can generate a library of phase screens promptly since only statistical
metrics taken from a large sample of such screens carry meaningful information
(see Sec. 4.3). The challenge with simulating AO systems, on the other hand, is the
large variety of configurations these systems could take. A general-purpose script,
like the one presented in Sec. 4.5 for Matlab or the recently published open-source
AOtools (Townson et al., 2019) for Python, are adjustable, to a certain degree, as
required by the science case. In its current form, the script developed for this work
simulates an SCAO system since the focus is on LOAO for enabling photonics,
but an expansion to add more DMs or WFSs as required by the more advanced
AO architectures should be straightforward. The effect of scintillation may also be
included when higher turbulence layers are to be modeled, but this typically comes at
a computational cost (see Sec. 2.1.2). Moreover, scenarios other than astronomical
observations, e.g., laser communication, where light propagation might be upward
towards a satellite or horizontal between ground stations, can also be simulated with
some changes to the models of Sec. 4.3.

Multiple methods are available to solve Maxwell’s equations in dielectric media and
thus simulate optical phenomena in waveguides. The brute-force BPM, calculates
light propagation in slowly varying waveguides by solving the Helmholtz equation
on a discretized grid. However, when the interest is on circular step-index fibers that
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are weakly guiding, analytical solutions exist, and the propagation into an idealized
straight fiber is easily calculated using the LP modes as is done in Sec. 4.1. This
technique’s rapidness compared to BPMs is crucial for large FMFs with modes
¡ 20. For astrophotonic devices with non-circular cores, e.g., trench waveguides
in planar structures, analytical solutions for the modes do not exist. However, the
results obtained for their closest circular analogs can prove helpful, especially when
these results are read together with the geometrical optics approximation of Eq.
(3.66).

With these simulators, computer models can then be run to solve the equations
acquired (see Ch. 4) and gain insight into the dependence of coupling on geometry,
turbulence, and degree of correction (see Sec. 5.2). The trade-off between the
number of degrees of freedom needed at the side of the AO system and the side
of the photonic lantern is accordingly calculated given the target brightness and
the quality, i.e., the noise characteristics, of the detectors available. Experimental
verification is consequently essential to assess the impact of the approximations
made in the models on the accuracy of the simulation results (see Sec. 5.1 and Sec.
5.2).

Results on what configuration (of AO and photonic lantern) to use are highly de-
pendent on the circumstances of the science case, and one needs to run a simulation
before a configuration is favored. The criterion chosen here is to maximize the cost
function that expresses the SNR in terms of those variables. The color maps in
Fig. 5.13 are only valid for a 97 elements AO system and a 3 e� RON detector
but a rerun of some parts of the calculations pipeline is immediately possible if
different inputs are desired. Such maps reveal the regimes where an SMF produces
a higher SNR than a photonic lantern solution. When an AO correction is applied,
this is the case for faint sources under weak or strong turbulence (see Fig. 5.13d).
A photonic lantern is superior for brighter sources, and the optimum size depends
on the turbulence strength, as Fig. 5.13e and f show. These results assume equal
splitting of optical power by the photonic lantern among its outputs which is, strictly
speaking, only true when a scrambling technique is successfully employed (see Sec.
5.2.4). To account for the unequal splitting, BPMs must be used to simulate the
photonic lantern, which again comes at a computational cost. Neural networks have
also been used recently to model photonic lanterns, including fabrication defects
when trained with in situ measurements of a physical lantern (Sweeney et al., 2021).
Separately, the different parts of these numerical models are useful to calculate dis-
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torted and corrected wavefronts, PSFs, modes, coupling coefficients, output fields,
among other physical parameters.

Photonic lanterns, being relatively new, continue to be designed and configured in
different manners other than the one originally proposed for suppressing telluric
lines. One way they can help reduce the multiplicity of a multiplexed instrument is
by breaking the symmetry between their SMFs to get mode selectivity whereby, if
AO is utilized, many of the output channels can be discarded (see Ch. 6) leading to
accumulated signals with a better SNR. Such an approach will further strengthen the
case for multiplexed astrophotonic devices. Experimental work and on-sky testing
are clearly the next milestones for this concept of applying AO-assisted MSPLs to
astrophotonics.

Furthermore, when combined with a DBC, a photonic lantern can be used to analyze
the modes at its multimode input (see Ch. 7). This represents a focal plane,
all-photonic WFS. For astronomy, the integrated nature of such devices does not
outweigh their need for a large number of subapertures leading to them requiring
even brighter guide stars than their pupil plane analogs, e.g., SH-WFS. Convolutional
neural networks may, however, help in the future tip the scale in favor of the photonic
mode analyzer if post-processing of the outputs of an undersized device, with fewer
waveguides than theoretically required, can be done fast enough (Norris et al.,
2020) but this is yet to be studied. They can, however, be used for measuring
NCPAs that dictate the achievable contrast in exoplanet imaging. NCPAs arise
from the path mismatch between the WFS and the science arm and are therefore
quasi-static in general, with changes only occurring due to mechanical creep and
temperature variations. The long-time scales allow the implementation of post-
processing computations to overcome the lack of measurements of an undersized
sensor and for longer exposures to overcome the low photons count in an oversized
sensor (Orban de Xivry et al., 2021). At their current state, photonic mode analyzers
comprised of photonic lanterns and DBCs offer an integrated WFS for industries
where the brightness of the illumination source is ample, e.g., FSO communication
(Calvo et al., 2019), photolithography, directed energy applications, and vision
sciences. For high-power fibered lasers used in metal processing, the mode analyzer
could be used as a feedback sensor for the control loop that suppresses the excitation
of higher-order modes in LMA fibers. In ophthalmology, the photonic WFS is well
suited for integration in handheld ophthalmoscopes (DuBose et al., 2018) being
developed to visualize retinal structures in vivo.
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Space is also one more frontier where integrated optics may find applications in
the near future. Photonic WFSs could, to give one example, be used to correct
phasing errors in segmented space telescopes (Potier et al., 2021). Generally, the
multiplexing approach, that photonic lanterns enable, can help recover the last 20
per cent of starlight that is otherwise lost, even under diffraction-limited conditions,
when light is directly focused onto an SMF. Qualifying integrated optics for space
applications to ensure they can endure vacuum and radiation is an active area of
research of several groups (Piacentini et al., 2021).



149

A p p e n d i x A

KOLMOGOROV’S LAW

An alternative derivation of Kolmogorov’s law that also uses a dimensional analysis
argument is given here. Again, the goal is to find the share of energy in every length
scale in the continuum of vortices between the outer and the inner scales. Instead
of working in real space, it is convenient to work in the reciprocal space 𝑘 and find
the number of vortices in a unit length.

If the energy stored in each mode 𝑘 per unit mass is Φp𝑘q, the quantity Φp𝑘qd𝑘 has
the dimension J�kg�1 in SI units. Since J = kg�m2�s�2, one gets rΦp𝑘qs �m3�s�2 and
r𝜀s �m2�s�3. Kolmogorov’s assumption is that, in the inertial subrange, the energy
is governed only by the scale size 𝑘 and the energy injection rate 𝜀, i.e., Φp𝑘q9𝜀𝑎𝑘𝑏.
The constant of proportionality of this relation must be dimensionless since the
equation does not depend on the choice of units. This leads to m3 �m2𝑎�m�𝑏 and
s2 �s3𝑎. For the dimensions to match, 𝑎 � 2{3 and 𝑏 � �5{3 giving

Φp𝑘q9𝜀2{3𝑘�5{3, (A.1)

which is Kolmogorov’s 5{3rds law. The subrange L0{𝑙0 where the law is valid
grows as the turbulence develops (Re Ñ 8), and it increases with Re as Re3{4. The
dimensionless constant of proportionality depends on Re and needs to be determined
from experiments. In general, it has values P p1.4, 1.8q.
One shortcoming of the Kolmogorov theory is that it is not consistent with the
intermittency of the small-scale eddies in fully developed turbulence. The velocity
signal exhibits short bursts in time because the small scales are not space-filling as
Kolmogorov assumed since the number of generated eddies 𝑁 by one parent eddy
in each step in the cascade is not necessarily as much space-filling as the parent, i.e.,
𝑁   23 for a second generation of eddies that are each half the size of the primary
one. The power law (Eq. A.1) holds for the spectrum in the inertial range but the
exponent must be modified (Frisch, 1980)

Φp𝑘q9𝜀2{3𝑘�5{3p𝑘𝑙0q�p3�log2 𝑁q{3. (A.2)

Experimental results show that 𝑁 � 22.5 and not 23 like Kolmogorov assumed.
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A p p e n d i x B

DIFFRACTION THEORY

The derivation of the Fraunhofer diffraction integral from Huygens’ principle is
given here. The special case of planar waves passing through a circular aperture is
also calculated.

A typical scenario (see Fig. B.1) has the aperture at the 𝑧 � 0 plane centered on the
coordinate system’s origin with a point source on the 𝑧 axis at 𝑧 � �8. The waves
arriving from the source are, therefore, planar and normally incident at the aperture.
According to the Huygens-Fresnel principle (Born et al., 2013), every elemental
area d𝑆 within the aperture emits spherical wavelets. At an arbitrary point 𝑃 on the
observation plane, a distance 𝑟𝑠 away, the contribution to the field from the element
d𝑆 is

d𝐸p𝑥1, 𝑦1q � 𝐴

𝑟𝑠
𝑒𝑖p𝜔𝑡�𝑘𝑟𝑠qd𝑆, (B.1)

where 𝐸p𝑥1, 𝑦1q is the field at the observation plane 𝑧1 � 0, 𝐴 is the constant
amplitude of the field over the aperture plane, 𝜔 is the temporal angular frequency,
and 𝑘 � 2𝜋{𝜆 is the wavenumber. For astronomical telescopes, the observation
plane is the far field, i.e., the focal plane. There, the aperture is small compared to
the distance between the two planes, and all elemental areas can be assumed to be
at the same distance from the observation point. Specifically, all area elements are

Figure B.1: Geometry of a diffracting aperture and an observation plane.
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assumed to be at the origin, a distance 𝑟K � p𝑥1 � 𝑦1 � 𝑧1q1{2 away. Equation (B.1)
is thus simplified by replacing 𝑟𝑠 with 𝑟K in the amplitude term, i.e., 𝐴{𝑟𝑠 � 𝐴{𝑟K.
The wavenumber 𝑘 has a large magnitude at short wavelengths, which causes the
phase to be more sensitive to path differences between different area elements than
amplitude (Hecht, 2002) and therefore cannot be simplified in a similar manner .
The distance between the observation point 𝑃 and the element d𝑆 is

𝑟𝑠 �
�
𝑧12 � p𝑥1 � 𝑥q2 � p𝑦1 � 𝑦q2�1{2

. (B.2)

Expanding the squares

𝑟𝑠 � 𝑟K
�
1� 𝑥2 � 𝑦2

𝑟K2 � 2p𝑥1𝑥 � 𝑦1𝑦q
𝑟K2

�1{2
, (B.3)

where use was made of the formula for 𝑟K. The term p𝑥2 � 𝑦2q{𝑟K2 is negligible
when the distance 𝑟K is very large compared to the size of the aperture. Keeping
only two terms of the binomial expansion

𝑟𝑠 � 𝑟K
�
1� 𝑥1𝑥 � 𝑦1𝑦

𝑟K2

�
. (B.4)

Substituting in Eq. (B.1) and integrating one gets

𝐸p𝑥1, 𝑦1q � 𝐴𝑒𝑖p𝜔𝑡�𝑘𝑟Kq

𝑟K

¼
𝑆

𝑒𝑖𝑘p𝑥
1𝑥�𝑦1𝑦q{𝑟Kd𝑆, (B.5)

This is the optical field at the focal plane of an arbitrary aperture when illuminated
by a monochromatic plane wave of constant amplitude and phase throughout. In
general, this need not be the case. Both amplitude and phase can vary over the
aperture, and the amplitude in Eq. (B.5) can be rewritten as a complex amplitude

𝐴p𝑥, 𝑦q � 𝐴0p𝑥, 𝑦q𝑒𝑖𝜙p𝑥,𝑦q, (B.6)

where 𝐴0p𝑥, 𝑦q represents the amplitude over the aperture while 𝜙p𝑥, 𝑦q represents
the phase. The optical field due to a general wavefront passing the aperture is then

𝐸p𝑥1, 𝑦1q �
�8¼
�8

𝐴p𝑥, 𝑦q𝑒𝑖𝑘p𝑥1𝑥�𝑦1𝑦q{𝑟Kd𝑥d𝑦, (B.7)
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where the limits on the integral were extended to �8 since the aperture function
𝐴p𝑥, 𝑦q is zero outside the aperture and the differential area element d𝑆 was replaced
by its Cartesian representation d𝑥d𝑦. The time-dependant factor 𝑒𝑖𝜔𝑡 , the constant
phase factor 𝑒�𝑖𝑘𝑟K and the amplitude factor 1{𝑟K, all are necessary to compute the
absolute field value relative to the magnitudes at the aperture but do not affect the
relative intensity distribution on the observation plane, i.e., the form of the image.
Therefore, they were dropped in Eq. (B.7) and an energy conservation argument
can always be applied later to normalize the field. If a parameters substitution is
now introduced as

𝑘𝑥1 �
𝑘𝑥1

𝑟K
, (B.8a)

𝑘𝑦1 �
𝑘𝑦1

𝑟K
, (B.8b)

the field at the observation plane can simply be written as the Fourier transform of
the aperture function 𝐴p𝑥, 𝑦q.

𝐸p𝑘𝑥1 , 𝑘𝑦1q �
�8¼
�8

𝐴p𝑥, 𝑦q𝑒𝑖𝑘p𝑘𝑥1𝑥�𝑘𝑦1 𝑦qd𝑥d𝑦 � F t𝐴p𝑥, 𝑦qu , (B.9)

where F p�q denotes a Fourier transform. A special case of particular importance
is the Fraunhofer diffraction of a plane wave at a circular aperture since most
telescopes have round primary mirrors and observe distant point sources. Switching
to cylindrical coordinates with

𝑥 � 𝜌 cos 𝜙, 𝑦 � 𝜌 sin 𝜙 (B.10a)

𝑥1 � 𝜌1 cos 𝜙1, 𝑦1 � 𝜌1 sin 𝜙1, (B.10b)

and using Eq. (B.7) instead of the Fourier transform since an analytical solution
exists for this case

𝐸p𝜌1, 𝜙1q � 𝐴𝑒𝑖p𝜔𝑡�𝑘𝑅q

𝑟K

» 𝑎

0

» 2𝜋

0
𝑒𝑖p𝑖𝜌𝜌

1{𝑟Kq cosp𝜙�𝜙1q𝜌d𝜌d𝜙. (B.11)

Axial symmetry suggests that the field at the observation plane must be independent
of 𝜙1. Setting 𝜙1 � 0, the inner integral
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» 2𝜋

0
𝑒𝑖p𝑘𝜌𝜌

1{𝑅q cos 𝜙d𝜙, (B.12)

is, apart from a factor of 2𝜋, recognized as the Bessel function of the first kind of
order zero 𝐽0p𝑘𝜌𝜌1{𝑅q. Equation (B.11) is then

𝐸p𝜌1, 𝜙1q � 2𝜋𝐴𝑒𝑖p𝜔𝑡�𝑘𝑅q

𝑟K

» 𝑎

0
𝐽0

�
𝑘𝜌𝜌1

𝑟K



𝜌d𝜌. (B.13)

Using the recurrence property of Bessel functions,

» 𝑢

0
𝑢1𝐽0p𝑢1qd𝑢1 � 𝑢𝐽1p𝑢q, (B.14)

and substituting with 𝑤 � 𝑘𝜌𝜌1{𝑟K, this becomes

𝐸p𝜌1, 𝜙1q � 𝐴𝑒𝑖p𝜔𝑡�𝑘𝑟Kq

𝑟K
2𝜋

�
𝑟K
𝑘𝜌1


2 » 𝑘𝑎𝜌1{𝑅

0
𝐽0p𝑤q𝑤d𝑤

� 𝐴𝑒𝑖p𝜔𝑡�𝑘𝑟Kq

𝑟K
2𝜋𝑎2

�
𝑟K
𝑘𝑎𝜌1



𝐽1

�
𝑘𝑎𝜌1

𝑟K



. (B.15)

The intensity distribution associated with this field is given by p1{2q𝐸𝐸� as

𝐼p𝜌1, 𝜙1q � 2𝐴2p2𝜋𝑎2q2
𝑟K2

�
𝐽1p𝑘𝑎𝜌1{𝑟Kq
𝑘𝑎𝜌1{𝑟K

�2
. (B.16)

This is the Airy pattern. It has a central circular lobe, i.e., the Airy disk, surrounded
by an infinite succession of bright rings of ever-decreasing intensity. The radius of
the Airy disk is of importance since 84% of the light falls within that disk and for
most applications, the resolution and quality of the formed images are conventionally
determined by the disk rather than the surrounding rings. The Bessel function in
Eq. (B.16) can be evaluated numerically or using mathematical tables. One finds
that the first zero is at a distance

𝜌1 � 1.22
𝑟K𝜆
2𝑎

, (B.17)

from the center.
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To derive the formula for the Strehl ratio, the Fresnel-Kirchhoff diffraction integral
is required (Born et al., 2013).

𝐸p𝑃q � � 𝑖𝐴𝑎
2

𝜆𝑟K2 exp
�
𝑖𝑢

�
𝑟K
𝑎

	2
�

» 1

0

» 2𝜋

0
𝜌d𝜌d𝜃 exp

�
𝑖

�
𝜓p𝜌, 𝜃q � 𝑣𝜌 cosp𝜃 � 𝜓q � 1

2
𝑢𝜌2


�
, (B.18)

where 𝑢 � 𝑘p𝑎{𝑟Kq2𝑧 and 𝑣 � 𝑘p𝑎{𝑟Kq𝜎 (Hardy, 1998). For a circular aperture,
the Strehl ratio is

SR � 𝐼p0, 0q
𝐼0p0, 0q �

1
𝜋2

����» 1

0

» 2𝜋

0
𝜌d𝜌d𝜃𝑒𝑖𝑘Λp𝜌,𝜃q

����2 , (B.19)

where Λp𝜌.𝜃q is the aberration function in OPD units. 𝐼p0q and 𝐼0p0q are the
central intensities of the seeing-limited and diffraction-limited PSFs, respectively.
The central intensity is given by integrating the OTF since the OTF is the Fourier
transform of the PSF

𝐼0p0, 0q �
»

d ®𝑓 𝑇telep ®𝑓 q. (B.20)

Using Eq. (2.46)

SR � 𝐼p0, 0q
𝐼0p0, 0q �

³
d ®𝑓 𝑇telep ®𝑓 q𝐵𝜓p ®𝑓 q³

d ®𝑓 𝑇telep ®𝑓 q
�

³
d ®𝑓 exp

�
�
�
𝐷𝜙

2

	�
𝑇telep ®𝑓 q³

d ®𝑓 𝑇telep ®𝑓 q

�
³

d ®𝑓 exp
�
�𝐵𝜙p0q � 𝐵𝜙p ®𝑓 q

�
𝑇telep ®𝑓 q³

d ®𝑓 𝑇telep ®𝑓 q

� exp
��𝐵𝜙p0q�

³
d ®𝑓 exp

�
𝐵𝜙p ®𝑓 q

�
𝑇telep ®𝑓 q³

d ®𝑓 𝑇telep ®𝑓 q
. (B.21)

An approximation is possible for wavefronts with small variance 𝐵𝜙p ®𝑓 q ! 1. The
quotient becomes close to unity, and since 𝐵𝜙p0q is by definition the ensemble
average of the square variations in phase, i.e., the phase variance over the aperture
𝜎2
𝜙
.
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When 𝜓 is random and only its statistics are known, the following approximation

SR � 𝑒
�𝜎2

𝜙 , (B.22)

known as the extended Maréchal approximation (Maréchal, 1947; Ross, 2009) holds
for rms phase errors 𝜎𝜙 � xp𝜙 � 𝜙q2y   2 rad. The phase rms, 𝜎𝜙, is related to the
rms OPD error by 𝜎𝜙 � 𝑘𝜎𝜓 . The Strehl ratio, therefore, takes values SR P r0, 1s.
For a plane wavefront with 𝜙 � const., SR � 1. Equation B.22 shows how the
image quality degrades exponentially with the mean square error of the phase.
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A p p e n d i x C

MAXWELL’S EQUATIONS

In the electromagnetic theory of light, the field is described by two temporally
and spatially varying vector fields, i.e., the electric ®Ep®𝑟, 𝑡q and the magnetic ®Hp®𝑟, 𝑡q
fields. Maxwell formulated four partial differential equations that relate the functions
of these fields in space and time to each other. In free space

∇ �H � 𝜖0
BE
B𝑡 , (C.1)

∇ � E � �𝜇0
BH
B𝑡 , (C.2)

∇ � E � 0, (C.3)

∇ �H � 0, (C.4)

where 𝜖0 and 𝜇0 are the electric permittivity and the magnetic permeability of
free space, respectively. For electromagnetic waves, E and H are the oscillating
quantities in time and space. Taking the curl of Eq. (C.2) one gets

∇ � ∇ � E � �𝜇0
Bp∇ �Hq

B𝑡 , (C.5)

where the order of the two differential operators could be interchanged as one is
acting on space while the other is acting on time. Applying the identity ∇�∇�𝑢 �
∇p∇ � 𝑢q � ∇2𝑢 yields

∇p∇ � Eq � ∇2E � �𝜇0
Bp∇ �Hq

B𝑡 . (C.6)

Substituting for ∇ � E and ∇ �H from Eq. (C.3) and Eq. (C.1), respectively

∇2E � 1
𝑐02

B2E
B𝑡2 � 0, (C.7)

where E is any of the three components of ®E and 𝑐0 � p𝜖0𝜇0q�1{2 is the speed of
light in free space. A similar approach will produce the wave equation of H in
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free space. In a source-free medium, the electric and magnetic properties of the
medium play a role in shaping the fields, and two additional fields are required, i.e.,
the electric flux density Dp®𝑟, 𝑡q and the magnetic flux density Bp®𝑟, 𝑡q. Maxwell’s
equations in such media are

∇ �H � BD
B𝑡 , (C.8)

∇ � E � BB
B𝑡 , (C.9)

∇ �D � 0, (C.10)

∇ � B � 0. (C.11)

The types of media of interest in waveguide optics are linear, nondispersive, homo-
geneous, and isotropic. Maxwell’s equations, in this case, are similar to those in
free space except that the free space permittivity and permeability are replaced by
the relative permittivity 𝜖 and the relative permeability 𝜇. The scalar wave equation
of the electric field, therefore, is

∇2E � 1
𝑐2
B2E
B𝑡2 � 0, (C.12)

where 𝑐 � p𝜖 𝜇q�1{2 is the speed of light in the medium. To proceed further, one
needs to restrict one’s self to the monochromatic case where the components E
and H are harmonic in time and can be factored into a space-dependent part and a
time-dependent part, i.e.,

Ep®𝑟, 𝑡q � Re
 
𝐸p®𝑟q𝑒𝑖𝜔𝑡( (C.13)

Hp®𝑟, 𝑡q � Re
 
𝐻p®𝑟q𝑒𝑖𝜔𝑡(, (C.14)

where the space-dependent factors 𝐸p®𝑟q and 𝐻p®𝑟q are the electric field and magnetic
field complex amplitudes, respectively. The partial time derivatives are simplified in
this case, and the monochromatic Maxwell’s equations of the complex amplitudes
are
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∇ � 𝐻 � 𝑖𝜔𝜖𝐸, (C.15)

∇ � 𝐸 � �𝑖𝜔𝜇𝐻, (C.16)

∇ � 𝐷 � 0, (C.17)

∇ � 𝐵 � 0. (C.18)

Differentiating Eq. (C.13) twice with respect to time and substituting in the wave
equation Eq. (C.12), the Helmholtz equation (Born et al., 2013) is obtained

∇2𝑈p®𝑟q � 𝑘2𝑈p®𝑟q � 0, (C.19)

where𝑈p®𝑟q can be the complex amplitude of any of the components of ®𝐸 or ®𝐻 and
𝑘 � 𝜔

?
𝜖 𝜇 � 𝑛𝑘0 is the wavenumber in the medium. The factor by which light

slows down in a medium, 𝑛 � 𝑐0{𝑐, is recognized as the refractive index of that
medium.

In Cartesian coordinates, the transverse fields distributions 𝑈p𝑥, 𝑦q propagates in
the 𝑧 direction with propagation constant 𝛽 without change (Buck, 2004)

𝑈p𝑥, 𝑦, 𝑧q � 𝑈p𝑥, 𝑦q𝑒�𝑖𝛽𝑧 . (C.20)

The Helmholtz equation applies to both transverse components

∇2𝑈𝑥,𝑦 � 𝑘2
0𝑛

2𝑈𝑥,𝑦 � 0 (C.21)

For the ansatz in Eq. (C.20), the 𝑧 derivative is

B𝑧𝑧𝑈𝑥,𝑦 � 𝛽2𝑈𝑥,𝑦 (C.22)

Substituting in Eq. (C.21) yields

∇2
𝑇𝑈𝑥,𝑦 �

�
𝑘2

0𝑛
2p𝑥, 𝑦q � 𝛽2�𝑈𝑥,𝑦 � 0, (C.23)

where∇2
𝑇
� B𝑥𝑥�B𝑦𝑦 is the transverse Laplacian. The weak guidance approximation

Δ ! 1 and the requirement for 𝛽 to lay between the core and cladding wavenumbers
yield |𝑘2

0𝑛
2 � 𝛽2 | ! 𝛽2 with 𝛽 � 𝑘0𝑛eff where 𝑛2   𝑛eff   𝑛1.
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For the weakly guiding fiber, only knowledge of two of the six field components is
required to know the rest. If 𝑒𝑥 and 𝑒𝑦 are known, Maxwell equation Eq. (3.4) can
be used to obtain ℎ𝑧 as follows

ℎ𝑧 � � 1
𝑖𝜔𝜇0

�B𝑥𝑒𝑦 � B𝑦𝑒𝑥
�

(C.24)

Now utilizing Eq. (3.3), 𝑒𝑥 and 𝑒𝑦 can be determined from

𝑒𝑥 � 1
𝑖𝜔𝜖0𝑛2

�B𝑦ℎ𝑧 � 𝑖𝛽ℎ𝑦� (C.25)

𝑒𝑦 � 1
𝑖𝜔𝜖0𝑛2 p�B𝑥ℎ𝑧 � 𝑖𝛽ℎ𝑥q . (C.26)

Note that B𝑧ℎ𝑦 and B𝑧ℎ𝑥 were directly calculated from Eq. (C.20). Furthermore,
from the weak guidance condition, |∇2

𝑇
| ! 𝛽2 yielding |B𝑥 |, |B𝑦 | ! 𝛽. Therefore,

B𝑦ℎ𝑧 and B𝑥ℎ𝑧 can be dropped from Eq. (C.25) and (C.26), respectively, to get

𝑒𝑥 � 𝛽

𝜔𝜖0𝑛2 ℎ𝑦 (C.27)

𝑒𝑦 � �𝛽
𝜔𝜖0𝑛2 ℎ𝑥 . (C.28)

Again by means of Maxwell equation Eq. (3.3) and the weak guidance approxima-
tion

𝑒𝑧 � 1
𝑖𝜔𝜖0𝑛2

�B𝑥ℎ𝑦 � B𝑦ℎ𝑥
� � 1

𝑖𝛽

�B𝑥𝑒𝑥 � B𝑦𝑒𝑦
�
. (C.29)

Thus knowledge of the two transverse components of one field is enough to determine
all six components for a weakly guiding fiber.
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