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Abstrat

Feedbak of the ative galati nuleus (AGN) to the ambient intraluster medium (ICM) leads

to omplex strutures in the enter of a galaxy luster and is of ruial importane for solving

the ooling-�ow problem. Dynamis of AGN-in�ated underdense bubbles provide an important

soure of heating as they buoyantly rise through the luster atmosphere. The evolutionary e�ets

and heating of the ICM thereby ritially depend on the bubble morphology. Ideal invisid

hydrodynamial simulations annot reprodue the observed oherent morphology, beause the

arti�ial bubbles beome unstable to Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz

instability (KHI) and dissolve into the ICM on muh shorter time-sales than their observed

lifetimes. Therefore, additional physis have been onsidered to be important to preserve the

bubble stability, inluding magneti �elds and visosity. Sine the ICM is a weakly ollisional,

magnetized plasma, where the ollision mean free path of the ions is muh larger than their

Larmor radius, mirosopi transport of momentum and heat beomes highly anisotropi. Hene,

we perform Braginskii-magnetohydrodynami simulations in an isothermal luster ore employing

the moving-mesh ode AREPO while applying adaptive mesh re�nement. For the �rst time, we

quantify parallel visous heating rates of buoyantly rising bubbles to larify whether visous

heating an o�set radiative ooling and study the signi�ane of Braginskii visosity on the

bubble dynamis. We show that Braginskii visosity mainly suppresses RTI and KHI parallel to

the magneti �eld lines, while having minor e�ets on modes perpendiular to the �eld. We �nd

that anisotropi visous dissipation of turbulent motions is not very e�ient in heating the ICM

in a volume �lling fashion. Sine the visous heating rate is sensitive to pressure anisotropy,

it an be suppressed if mirosopi plasma instabilities are triggered, whih pin the pressure

anisotropy down to ertain limits for marginal stability. Simulating luster atmospheres with

magneti �elds having β = 100 reveals an invariane in bubble evolution in terms of mixing

e�ieny and visous heating rates regardless of whether pressure anisotropy is limited or not.

If so, miro-sale instabilities are rarely triggered e�etively resulting in unsuppressed Braginskii

visosity. If however the magneti tensions are negligibly weak (β = 106) the bubble evolution

is drastially altered depending on whether the pressure anisotropy is bounded within levels of

marginal stability. If so, visous stresses are highly suppressed by the miroinstabilities suh that

they an no longer prevent the bubbles from disruption, resembling the invisid ase.
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Zusammenfassung

Die Rükkopplung eines aktiven galaktishen Kerns (AGN) zum umgebenen Intraluster-Medium

(ICM) führt zu komplexen Strukturen im Zentrum eines Galaxienhaufens und ist von wesentliher

Bedeutung um das Abkühlungs�uss -Problem zu lösen. Die Dynamiken von AGN-aufgeblähten

Blasen geringer Dihte stellen eine wihtige Quelle zur Wärmeentwiklung bereit, während diese

in der Atmosphäre des Haufens auftreiben. Dabei hängen die evolutionären E�ekte und das Er-

wärmen des ICMs kritish von der Gestalt der Blase ab. Ideale, niht-viskose, hydrodynamishe

Simulationen können die beobahtete, einheitlihe Form niht reproduzieren, weil die synthetis-

hen Blasen aufgrund von Rayleigh-Taylor (RTI) und Kelvin-Helmholtz Instabilität (KHI) ge-

stört werden und sih bereits innerhalb von Zeitskalen kleiner als ihre beobahtete Lebensdauer

im ICM au�ösen. Daher werden zusätzlihe physikalishe Eigenshaften angenommen, unter an-

derem Magnetfelder und Viskosität, um die Blasenstabilität zu gewährleisten. Da das ICM ein

shwah kollisionsgetriebenes, magnetishes Plasma ist, wo die mittlere freie Weglänge zwishen

Ionenkollisionen viel gröÿer ist als deren Larmorradius, werden der mikroskopishe Transport

von Impuls und Wärme anisotropish. Darum führen wir Braginskii-magnetohydrodynamishe

Simulationen in einem isothermishen Clusterkern aus unter Einsatz des dynamishen Meshodes

AREPO und Anwendung einer adaptiven Meshverfeinerung. Erstmalig quanti�zieren wir viskose

Wärmeraten von auftreibenden Blasen um zu klären, ob viskose Erwärmung das Abkühlen durh

Strahlung ausgleihen kann und um heraus zu �nden, welhe Signi�kanz Braginskii-Viskosität auf

die Blasendynamiken hat. Wir zeigen, dass Braginskii-Viskosität vorrangig RTI und KHI entlang

der Magnetfeldlinien unterdrükt, jedoh vershwindenden Ein�uss auf die Moden senkreht zum

Feld hat. Wir stellen fest, dass anisotropishe, viskose Dissipation von turbulenten Bewegungen

niht sehr e�zient ist, um das ICM in einer volumenfüllenden Weise zu erwärmen. Da die viskose

Wärmerate stark mit der Drukanisotropie korreliert, kann diese unterdrükt werden, sobald mi-

kroskopishe Plasmainstabilitäten getriggert werden, welhe wiederum die Drukanisotropie auf

bestimmte Grenzen der Randstabilität festsetzen. Die simulierten Clusteratmosphären mit Mag-

netfeldern der Stärke β = 100 zeigen eine Invarianz der Blasenevolution auf bezüglih der Ver-

mishungse�zienz und der viskosen Wärmeraten unabhängig des Falles, ob die Drukanisotropie

begrenzt gehalten wurde oder niht. Gesetzt diesen Fall, werden die mikroskopishen Instabi-

litäten nur sehr selten getriggert, was e�ektiv in eine niht unterdrükte Braginskii-Viskosität

resultiert. Falls die magnetishen Kräfte allerdings vernahlässigbar shwah sind (β = 106),

wird die Blasenentwiklung drastish verändert, je nahdem ob die Drukanisotropie innerhalb

der Randstabilität begrenzt wurde. Dies vorausgesetzt, werden die viskosen Spannungen stark

unterdrükt und können niht länger verhindern, dass die Blasen zerrissen werden, was wiederum

den niht-viskosen Fall widerspiegelt.
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7 Chapter 1. Introdution

Chapter 1.

Introdution

Deep images of Chandra and XMM-Newton observations of galaxy lusters have revealed omplex

strutures in their ores suh as avities in X-ray surfae brightness maps (Birzan et al., 2004).

These avities are in�ated by the interation of powerful radio jets, whih are driven by an

areting super-massive blak hole (SMBH) in the entral brightest luster galaxy (BCG), with

the ambient intraluster medium (ICM) (Worrall, 2009). The ICM is a di�use, hot plasma,

whih radiates thermal bremsstrahlung in X-rays (Voit, 2005) on time-sales onsiderably shorter

than the Hubble time in the very enters of then so-alled ool-ore lusters (CCs) (Fabian and

Sanders, 2007). Suh expeted ooling �ows are not observed in form of signi�ant levels of

star formation (Peterson and Fabian, 2006). Feedbak of the ative galati nuleus (AGN) to

the ICM might be the most promising mehanism for solving the ooling �ow problem in CCs

(MNamara and Nulsen, 2012). Dynamis of AGN-in�ated underdense, high entropy bubbles

provide an important soure of heating as they buoyantly rise through the luster atmosphere

(Fabian, 2012), beause inferred heating rates are apable of balaning radiative ooling of the

ICM (Ra�erty et al., 2006). Numerial simulations of AGN feedbak have been used in order

to study the underlying physis needed to reprodue the observed evolution of buoyant bubbles

(Soker, 2016; Ehlert et al., 2018). Suh bubbles, like the northwest avity of the Perseus luster,

remain oherent and avoid being shredded by Rayleigh-Taylor instability (RTI) and Kelvin-

Helmholtz instability (KHI) over the bubble lifetime, . 100Myr (Fabian et al., 2011). However,

ideal invisid hydrodynamial simulations annot reprodue the observed morphology as the

bubbles beome unstable to RTI and KHI and dissolve into the ICM on muh shorter time-sales

(Sannapieo and Brüggen, 2008; Brüggen and Sannapieo, 2009). Therefore, additional physis

have been onsidered to be important to preserve the bubble stability, inluding magneti �elds

(Ruszkowski et al., 2007; Dursi and Pfrommer, 2008), visosity (Reynolds et al., 2005; Gardini,

2007) or both (Dong and Stone, 2009; Kingsland et al., 2019).

Sine the ICM is weakly magnetized (Carilli and Taylor, 2002), a magnetohydrodynamial

(MHD) desription of the plasma might be inevitable. Ideal MHD simulations with simplisti �eld

topologies show that buoyant bubbles an be su�iently stabilized suppressing �uid instabilities

at the interfae if the magneti �eld lines are aligned parallel to the bubble surfae (O'Neill

et al., 2009; Dong and Stone, 2009). Real luster atmospheres however likely ontain a turbulent

magneti �eld (Shekohihin and Cowley, 2007), whih enhanes mixing of bubble material with

the ambient gas ompared to a quiesent ICM. Hene, visous e�ets might also be important

for the bubble dynamis, whih is also indiated by the low estimates of the Reynolds number

of the intraluster gas, Re ≈ 50-100, if assuming the standard Spitzer oe�ient of visosity

(Spitzer, 1962). Although hydrodynamial simulations inluding visosity show that visous

stresses an quenh the growth rates of RTI and KHI perturbations and maintain the observed

bubble morphology (Reynolds et al., 2005), these studies su�er from the simpli�ed assumption

that momentum transport in the ICM is isotropi. In fat, the ICM is a weakly ollisional,

magnetized plasma, where the ollision mean free path of the ions is muh larger than their

Larmor radius (Kunz et al., 2012). Thus, mirosopi transport of momentum and heat beomes

highly anisotropi as the ions are basially tied to the magneti �eld lines and are only sattered

in between at eah Coulomb ollision. To aount for these fundamental property hanges, ideal

MHD is extended by anisotropi heat ondution and visosity to beome so-alled Braginskii-

MHD (Braginskii, 1965).
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So far, there have not been many studies of AGN-in�ated buoyant bubbles inluding the e�ets

of Braginskii-MHD. Dong and Stone (2009) onsidered Braginskii visosity along magneti �eld

lines and studied the dynamis and lifetimes of initially stati bubbles depending on di�erent

(uniform) �eld topologies. They �nd that models using isotropi versus anisotropi visosity pro-

due quite di�erent results. The latter only suppresses RTI and KHI parallel to the magneti �eld

lines on marosopi sales, while having minor e�ets on interhanging modes perpendiular to

the �eld. Kingsland et al. (2019) studied anisotropi visosity of self-onsistently jet-in�ated a-

vities in a turbulent environment. They �nd that the evolutionary dynamis drastially depend

on whether the anisotropi visous dissipation of momenta is suppressed by plasma instabilities

on mirosopi sales. Suh miroinstabilities are triggered where pressure anisotropies aused

by turbulent stresses and onomitant hanges in magneti �eld strength exeed ertain thres-

holds for marginal stability (Shekohihin et al., 2005). If the prodution of pressure anisotropy

is pinned down to these limits, whih is motivated from kineti theory (Rosin et al., 2011), ef-

fets due to Braginskii visosity might also be limited and onsiderably overstimated otherwise

(Shekohihin et al., 2008).

The two previous simulation studies by Dong and Stone (2009) and Kingsland et al. (2019) did

not estimate the parallel visous heating rates arising from the pressure anisotropy with respet to

the loal diretion of the magneti �eld. As theoretial studies �nd, visous heating is assumed

to be omparable with radiative bremsstrahlung ooling in a weakly ollisional, magnetized

ICM (Kunz et al., 2011). Furthermore, this heating-ooling balane is thermally stable in a

probably self-regulating manner. Therefore, we study parallel visous heating as a promising

heating mehanism for quenhing ooling �ows and preventing luster ore ollapse. For the

�rst time, in this thesis we estimate visous heating rates for simulations of buoyantly rising

bubbles in a luster atmosphere. We perform a number of di�erent simulations designed to have

omprehensible initial onditions (ICs) with a ontrollable set of parameters in order to study

the signi�ane of pressure anisotropy. This allows us to isolate the e�ets of Braginskii-MHD

in our simulations. Our �rst set of ICs aims to reprodue the �ndings of Dong and Stone (2009)

by employing the moving-mesh ode AREPO (Springel, 2010) while applying adaptive mesh

re�nement (AMR). Thereby, we study both a weak and a strong magneti �eld, and whether

pressure anisotropy is limited or unlimited by kineti instabilities. Our seond set of ICs is

idential to the �rst one, now enhaned by introduing a turbulent magneti �eld. This allows

us to advane to more and more sophistiated luster properties, while studying the impat of

Braginskii visosity on the bubble dynamis and quantifying whether visous heating rates an

o�set radiative ooling rates.

The struture of this thesis is as follows. In hapter 2 we introdue the basi physis of galaxy

lusters, AGN-in�ated bubbles and the weakly ollisional ICM and give on overview of AREPO,

the numerial ode we have used to perform our simulations. We present our numerial setup

and desribe our treatment of visosity in hapter 3. The subsequent analysis of our simulations

is disussed in hapter 4 inluding the bubble evolution, the mixing e�ieny and estimates of

the visous heating rate for di�erent ICM parameters. We disuss our results in hapter 5 and

onlude our �ndings in hapter 6.
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Chapter 2.

Theoretial Bakground

In this hapter we set the fundamental framework needed in order to be able to understand

the methods used throughout this thesis and to omprehend our obtained results. We start

by desribing basi properties of galaxy lusters and segue from the ooling �ow problem into

AGN feedbak and how AGN-in�ated bubbles theoretially ontribute to solving the ooling

atastrophe. In the next setion we haraterize the physis of the plasma in whih the bubbles

are in�ated into and how anisotropi visosity enters the Braginskii-MHD equations desribing

this ICM. The last setion gives an overview on the numerial ode AREPO we have used to

ompute our set of simulations presented later on.

2.1. Galaxy Clusters

2.1.1. Properties in the optial window

Galaxy lusters are the largest gravitationally bound objets in the Universe. They extend out

to virial radii of R200 ∼ 1-3Mpc (Peterson and Fabian, 2006), where R200 is the radius at

whih the mean luster density equals 200 times the ritial density of the universe ρcrit. They

an have number of member galaxies anywhere from 50 (poor luster) to several thousand (rih

luster). Cluster galaxies are ollisionless traers of the gravitational potential and its dynamial

state. They have to a good approximation a Gaussian veloity distribution with dispersions

around σv ≈ 1000 km/s for a rih luster (Carroll and Ostlie, 2014). For a relaxed luster, using

Maxwell's equipartition theorem, the galaxy dispersion along the line of sight an be related to

the temperature of the luster as T ∝ σ2
v (Voit, 2005).

Approximating the dynamial time-sale of lusters yields tdyn ∼ RG/σv ≈ 1Gyr ≪ tH ,

where RG = GMcl/σ
2
v ≈ 1Mpc is the gravitational radius and tH = 1/H0 is the Hubble time

(Shneider, 2015). The dynamial time-sale is de�ned as the amount of time it takes for a

typial galaxy to traverse the luster along its diameter. Sine tdyn is muh shorter than the age

of the universe, a typial luster an be assumed to be in dynamial equilibrium. This justi�es

using the virial theorem for estimating the mass of a typial galaxy luster, adopting the notation

from Pfrommer (2020),

2Ekin = −Epot ⇒ Mgalσ
2
v =

GMclMgal

rcl
⇒ Mcl ≈ 1015 M⊙ (2.1)

In fat, a typial mass range for lusters is 1013-1015M⊙ (Shneider, 2015). However, adding

up all the luminous stellar mass within the galaxies only unveils a fration of the luster mass

(M⋆ = 1/50Mcl). This was the original tehnique used by Fritz Zwiky in 1933 to arrive at a large

mass-to-light ratio of the Coma luster (M⊙/L⊙ ≈ 400, Zwiky 1933). From this he onluded

that lusters must ontain onsiderably more mass than indiated by their individual galaxies,

otherwise they would have been dispersed long ago. This disrepany of the gravitating and

luminous mass in galaxy lusters led Zwiky to the postulation of the existene of dark matter.

The question arises as to whether the appliation of the virial theorem is still justi�ed onsidering

that the main fration of mass is not ontained in the luminous galaxies themselves. The mass

derivation skethed in equation (2.1) remains valid as long as the spatial distribution of galaxies

follows the total mass distribution. If the latter is non-spherial or the veloity distribution of
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member galaxies is anisotropi, projetion e�ets need to be onsidered (Shneider, 2015).

2.1.2. Properties in the X-Ray window

A portion of Zwiky's postulated missing mass was disovered with the Einstein Observatory

(HEAO-2) in 1978 (Giaoni et al., 1979). They revealed that lusters of galaxies ontain an

intraluster medium (ICM) emitting X-rays from muh of the luster's volume and not just by

individual point soures. In fat, galaxy lusters are the brightest, extended extragalati X-

ray emitting soures with luminosities around LX ∼ 1043-1045 erg/s (Shneider, 2015). This

radiation an be deteted throughout the luster out to several megaparses. The ICM an

be desribed as a hot (T ∼ 107-108 K), dilute (ne ∼ 10-3-10-2 cm-3
) intraluster gas that

is distributed homogeneously and �lling the luster's gravitational potential well (Shneider,

2015). The observed X-ray spetrum resembles the harateristis for optially thin thermal

bremsstrahlung emission. Desribing the gas temperature in terms of partile energies, kBT ≈
1-10 keV, most of the elements of the ICM are fully ionized, exept for reombination lines of

highly-ionized metals like iron (Fe XXV at 8.8 keV and Fe XXVI at 9 keV), silion and neon

(Carroll and Ostlie, 2014). We will neglet the line emissions and treat the ICM further on

as a fully ionized, pure hydrogen plasma, where number densities and temperatures (Hitomi

Collaboration et al., 2018) of the eletrons and the ions are the same. The emissivity via thermal

bremsstrahlung (free-free radiation) is de�ned as (Shneider, 2015)

ǫffν =
32πZ2e6nine

3mec3

√

2π

3kBTme
exp

(

− ~ω

kBT

)

gff(T, ν) ∝ n2, (2.2)

where Ze is the eletrial harge of the ion speies with Z = 1 for hydrogen, ni,e are the number

densities for the ions and eletrons, T is the gas temperature and gff is the Gaunt fator depending

on the ollision frequeny ν. The Gaunt fator is usually of order unity in lassial physis and

only varies from one if quantum e�ets play an important role (Dopita and Sutherland, 2003).

The remaining quantities are onstants with their usual meaning, me is the eletron mass, c

is the speed of light, kB is the Boltzman onstant and ~ is Plank's onstant, whih are also

summarized in table A.1. The right-hand side of equation (2.2) lari�es the proportionality of

bremsstrahlung emission to be ǫffν ∝ nine = n2
. Sine these emission proesses are ollisional,

the power radiated per unit volume sales with the number density squared, projetion e�ets by

measuring surfae brightness beome irrelevant. In addition, the gas temperature seems to be a

very good measure for the luster mass, meaning that it is equal to the virial temperature of the

luster potential. We an now estimate the mass for a typial, relaxed galaxy luster following

Pfrommer (2020),

Eth = Epot ⇒ 3

2
kBT = µmp

GMcl

rcl
⇒ Mcl ≈ 1015 M⊙, (2.3)

where mp is the proton mass and µ = 0.5 is the mean moleular weight for a pure hydrogen

plasma. Integrating equation (2.2) over all frequenies and along the line-of-sight through the

luster results in X-ray surfae brightness maps, from whih the mass density pro�le an be

inferred (Longair, 2011). Integrating the latter over the luster volume yields the total gas

mass, whih is approximately Mgas ≈ 1/7Mcl (Voit, 2005). Hene, some of Zwiky's postulated

dark matter is found in the form of the hot ICM, observed via its eletromagneti emission by

looking at a di�erent waveband. This beomes more lear in �gure 2.1, where we ompare the

observed X-ray and optial images of the Perseus luster ore. Sine no signi�ant amounts of

the remaining missing matter an be diretly seen in any other waveband, this matter must be
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non-baryoni, only interating gravitationally. Summarizing the omponents of the luster mass

shows, that around 2% is made up of stars, around 13% is due to hot gas and the remaining 85%

is ontributed by dark matter (Carroll and Ostlie, 2014).

Figure 2.1.: Left : Deep Chandra X-ray surfae brightness map of the Perseus luster showing its inner 260 kp

in both dimensions. The highly-resolved di�use X-ray emission reveals bulk gas motions and distint

substrutures at the luster ore. Regions of displaed emissivity are alled X-ray avities. Right :

Mathed optial image with Hα line-emitting �laments around the entral giant elliptial galaxy

NGC 1275. Both �gures are taken from Fabian et al. (2011).

2.1.3. Modelling the X-ray emission

By using numerial simulations astrophysiists are interested in how to infer the gas and mass

distribution of the luster, whih is to model, to math with the properties of the ICM from

the observed X-ray radiation. The derivations presented in this setion are following Shneider

(2015). Consider the adiabati speed of sound in the luster gas to be

cs ≈
√

γ
p

ρg
=

√

γ
kBT

µmp
≈ 1000

km

s

(

T

108 K

)1/2

(2.4)

for a typial gas temperature of T = 108 K, where γ = 5/3 is the adiabati index, p = nkBT is

the gas pressure and ρg = nµmp is the gas density. The sound-rossing time of the luster is thus

tsc ≈ 2RG/cs ≈ 1Gyr, whih is onsiderably shorter than the lifetime of the luster, whereas

the latter an be approximated by the age of the universe. tsc is also roughly the time-sale

on whih deviations from the pressure equilibrium are evened out. Therefore, the gas an be

in hydrostati equilibrium, under the premise that the last major merger happened longer ago

than the sound-rossing time itself and the AGN has not injeted energy into the ICM via jet

feedbak during suh a time period (see setion 2.2.4). Under these onditions, the galaxy luster

is alled to be relaxed. The appliation of hydrostati equilibrium requires to assume that the

net aeleration dv/dt of the gas at any point is zero and that we an neglet external fores.

The Euler equation for onservation of momentum for an ideal, inompressible �uid then reads

dv

dt
= −∇p

ρg
+ g = 0 (2.5)

where P is the gas pressure, ρg is the gas density and g is the gravitational aeleration whih

is related to the gravitational potential Φ by g = −∇Φ. This relation desribes how the gravi-

tational fore is balaned by the pressure fore. In a spherially symmetri ase equation (2.5)
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beomes

1

ρg

dp

dr
= −dΦ

dr
= −GM(r)

r2
, (2.6)

where M(r) is the total mass ontained within radius r from all forms of matter. Plugging in

p = ρgkBTg/(µmp) from the ideal gas law yields

M(r) = −kBTgr
2

Gµmp

(

d ln ρg(r)

dr
+

d ln Tg(r)

dr

)

. (2.7)

Assuming that the gas temperature is spatially onstant, equation (2.7) simpli�es using T (r) =

Tg, and the mass pro�le of the luster an be determined solely from the density pro�le of the

gas. Considering suh an isothermal gas distribution, a ommonly used method of �tting the

X-ray data is the so alled β-model (Cavaliere and Fuso-Femiano, 1976).

ρg(r) = ρg,0

[

1+

(

r

r0

)2
]

-3β/2

(2.8)

Here, ρg,0 is the entral gas density and r0 is the ore radius, the harateristi length sale

within whih the density pro�le �attens out. The index β is the ratio of the kineti energies of

traers of the gravitational potential and the mean thermal energies of the ICM gas partiles:

β = σ2
gal/σ

2
gas. Using β ≈ 2/3 is a good �t for the X-ray emission of many lusters (Shneider,

2015). However, espeially for ool-ore lusters (see setion 2.1.5) a better �t for the density

distribution is given by the double β-model (Xue and Wu, 2000; Santos et al., 2008).

2.1.4. Dark matter halos

Galaxy lusters form where waves of primordial density �utuations interfere onstrutively after

the Big Bang (Kravtsov and Borgani, 2012). Most of the lusters mass is ontained in form of

dark matter (DM), whih lumps in dark matter halos. These halos assemble in �lamentary

strutures throughout the universe. Aording to this hierarhial struture formation model,

lusters form at the intersetion of these �laments through mergers of smaller groups of galaxies

and in�owing gas. The rihest lusters are formed the latest and are generally found in the

densest regions of the osmi web (Longair, 2011). The evolution of the osmi web is highly

non-linear and must be modeled by numerial simulations.

The primordial gas ollapses following the DM potential. The di�use and relatively old-

in�owing gas is then areted and shok-heated. The higher temperature of the gas slows down

the gravitational ollapse and the gas starts to virialize. Although the gas is heated by the

aretion shoks, they alone are not su�ient to reah the observed temperatures of the ICM of

about 108 K. Seondary aretion shoks develop if substrutures merge at the inner region of

a luster that was already heated. The ollisional shoks propagate through the dense hot gas

and heat it to the observed values (Dolag et al., 2008; Ha et al., 2018).

In 1997, Navarro, Frenk & White (NFW) showed that old dark matter halos in N-body

simulations have a universal density pro�le, well �t by a double power-law (Navarro et al., 1997).

This is the so alled NFW pro�le, whih is the most popular parametrization model of dark

matter halos. Its density pro�le is given by

ρ(r) =
ρcritδc

r
rs

(

1 + r
rs

)2 , (2.9)
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where ρcrit = 3H2
0/(8πG) is the ritial density of the universe, rs = r200/c is the sale radius, δc

is the harateristi overdensity of the halo and c is the so alled onentration, whih is higher

the earlier halos form. H0 is the Hubble onstant given by H0 = 100h km/s/Mpc, where h is

the dimensionless Hubble parameter. Beyond radii rs the pro�le falls o� ∝ r−3
and within rs it

�attens onsiderably proportional to r−1
.

The virial radius r200 is enlosing a mean overdensity of 200 times the ritial density. This

implies for the total halo mass M200 that

M200

(

4π

3
r3200

)−1

= 200 × ρcrit (2.10)

and the mean density of the halo is given as

ρhalo =
M(< r200)

V200
=

∫ r200
0 4πr2ρ(r)dr
(

4π
3 r3200

) . (2.11)

2.1.5. Cooling Flow Problem

By modelling the ICM in setion 2.1.3, we assumed hydrostati equilibrium, but negleted that

the gas ontinuously looses internal energy due to its emission. Therefore we need to onsider

the ooling time-sale tcool, de�ned as the time the gas would need until all of its thermal energy

Eth = 3
2nkBT is radiated away by equation (2.2) (Shneider, 2015),

tcool(r200) =
Eth

ǫff
≈ 7.5 × 1010 yr,

where ǫff is the emissivity integrated over all frequenies, whih is alulated in equation (2.13)

below. Hene, tcool(r200) > tH ≈ 13.8Gyr is larger than the age of the universe, whih allows

a hydrostati equilibrium to be established throughout the luster. However, sine ǫffν ∝ n2
,

the density may beome su�iently large in enters of lusters to yield tcool < tH at a ertain

threshold, where the gas is able to ool quite e�iently. We an estimate the ooling time-sale

at the luster ore, normalised to quantities in our ICs (see setion 3.1) to

tcool(r0) ≈ 0.96 × 109 yr
( n

0.03 cm−3

)−1
(

Tg

3.88× 107 K

)1/2

(2.12)

Therefore, after exeeding the threshold, the hydrostati equilibrium annot be maintained in

those luster ores. This means, that the luster gas has to �ow inwards, where it gets om-

pressed. By this, the in�owing masses build a ounterpart to the gravitational fore due to the

inreased gas pressure. A new hydrostati equilibrium is set up with higher ore density but lower

temperature (Shneider, 2015). But the inreased density will further aelerate the desribed

ooling proess one again, leading into a ooling atastrophe.

These so-alled ooling �ows (CFs) have indeed been observed in the enters of massive lusters,

in the form of a sharp entral peak in X-ray emission. Those lusters are alled ool-ore lusters

(CCs). CCs are haraterized by low ooling times tcool . 1Gyr (Hudson et al., 2010; Voigt

and Fabian, 2004) and low entropies S0 = kBTn
−2/3 ∼ 10 keV cm2

(Voit and Donahue, 2005;

Pfrommer et al., 2012) in their inner ore radius r0 ∼ 10 kpc. However, the expeted high star

formation rates and mass deposition rates




M, at whih the gas should ool and �ow inwards due

to this ooling, have not been measured observationally on large-sales by Chandra or XMM-

Newton and are signi�antly overestimated. Aording to the standard ooling �ow model, one

also expets to �nd gas at ever dereasing gas temperatures down to Tg & 0 keV. Instead, as
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revealed spetrosopially, a minimum temperature seems to exist, below whih the gas annot

ool (Peterson et al., 2003). This threshold is usually at one half to one third of the luster's

virial temperature at around 1 keV (Fabian and Sanders, 2007; Blanton et al., 2010).

These �ndings point to a loal heating proess, whih prevents the gas temperature to fall

below a ertain threshold, while not dominating the ooling proess. In fat one observes a

quasi-balane between heating and ooling (MNamara and Nulsen, 2012). Sine the ooling

�oor is kept onstant over long periods (Bauer et al., 2005), we are looking for a relatively gentle,

quasi-ontinuous distributed heat soure. This is pointing towards a self-regulated feedbak loop

via ative galati nulei (AGNs) (see setion 2.2.4).

To see how muh feedbak is needed to ounter the ooling atastrophe in the ore region, we

onsider the total X-ray luminosity as a proxy for the ooling luminosity. In order to do that we

rede�ne the volume emissivity ǫff as an energy ooling rate by integrating equation (2.2) over all

frequenies, whih yields

ǫff =

∫ ∞

0
ǫffν dν =

∫ ∞

0

Cn2

√
kBT

e−hν/kBTdν = Ch-1n2
√

kBT = Λ(T )n2, (2.13)

where Ch-1k
1/2
B is a onstant and Λ(T ) is a ooling funtion depending on the temperature of

the gas. It is dominated by bremsstrahlung above T ∼ 1 keV and by metal lines below T ∼ 1 keV.

In our isothermal luster model, we have

Λ(T ) = 8.9 × 10-24 erg cm3 s-1
(

T

3.88 × 107 K

)1/2

. (2.14)

For a more sophistiated ooling funtion of the ICM, we refer to Kunz et al. (2011) and referenes

therein. Now we an estimate the ooling luminosity LX by integrating the ooling rate ǫff over

the luster volume assuming spherial symmetry. By following the derivations by Pfrommer

(2020) and normalising the ooling luminosity to quantities in our ICs (see setion 3.1), we get

LX =

∫

V
ǫffdV = Λ0

√

kBT

kBT0
4π

∫ ∞

0
n2(r)r2dr

≈ 4× 1044
(

r0
80 kpc

)3
( n0

0.03 cm-3

)2
(

kBT

3.34 keV

)1/2

erg s-1, (2.15)

where Λ0 is the ooling funtion with T0 at the very luster enter and n2(r) is adopted by a

β-pro�le (see equation 2.8). Hene, we are looking for a heating proess with an average rate of

∼ 1044 erg/s in order to balane the ooling losses in the ICM.
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2.2. AGN feedbak

As already desribed phenomenologially in setion 2.1.5, hydrodynami simulations modelling

the gas dynamis of DM halos inorporating solely radiative ooling and gravitational heating

annot reprodue the entral gas densities, temperatures and baryon frations of the hot ICM

(MNamara and Nulsen, 2012). Baryons respond to more omplex proesses like energeti feed-

bak from supernova explosions and AGNs. Multiple studies of observational X-ray data by

XMM-Newton and Chandra have shown that radio AGN are probably the prinipal driving me-

hanism heating the hot atmospheres of galaxy lusters and suppressing ooling rates (see Soker

(2016) and referenes therein). Other heating mehanisms have been suggested over the years

and are brie�y disussed in setion 2.2.5.

As the luster atmosphere ools and ondenses into moleular louds and old lumps, stars

are able to form and the ambient gas is areted by a super-massive blak hole (SMBH) found

in the entral brightest luster galaxy (BCG) of almost all CCs. From a simpli�ed point of view,

the aretion �ow onto the blak hole launhes ollimated out�ows whenever the areted gas

has a large enough spei� angular momentum (Soker, 2016). More spei�ally, these out�ows

are relativisti jets powered the entral AGN. The jets are omposed of osmi rays and toroi-

dal magneti �elds, whih auses non-thermal radio-synhroton and γ-ray emission via partile

aeleration. At some point the momentum of the relativisti out�ow slows down due to the

ram pressure of the ambient ICM. The luster gas gets pushed away by the jet �uid, thereby

in�ating large radio-emitting lobes on either side of the nuleus. These lobes oinide with a-

vities observed in the X-ray band, as in e.g. Hydra A (MNamara et al., 2000), Perseus (Fabian

et al., 2000) or Abell 2052 (Blanton et al., 2001). We will further on use the terms avity and

lobes, referring to bubble observations in the X-ray or the radio regime, respetively. The whole

piture is shown in �gure 2.2 for the Perseus luster. As the jets terminate, the bubbles detah

and are now injeted at the bottom of the gravitational luster potential. The bubbles are hotter

(Tbub ≈ 100×Tamb estimated observationally (Soker, 2016)) and underdense (ρbub ≈ 0.01×ρamb

used numerially (Dong and Stone, 2009)) ompared to the ambient gas of the ICM. Hene, the

bubbles are not stati and start to rise buoyantly and subsonially up the luster atmosphere

(Pfrommer, 2020). Subsonially, beause the bright rims surrounding many ative avities are

observed to be ooler than the ambient ICM. This implies that they have been uplifted without

being strongly shoked (Boetther et al., 2012).

2.2.1. Jet-in�ated bubble properties

In order to reprodue a proper evolution of bubbles, numerial simulations show that jet in�ation

an su�iently stabilize the bubbles (Sternberg and Soker, 2008) in order to math their longevity

with observations (see setion 2.2.2). The morphology and geometry of the bubbles is strongly

a�eted by the properties of the jets in�ating them. The primary parameter thereby is jet power

(Ehlert et al., 2018).

Cavity systems show a large spread in terms of their sizes. Typial observed radii have values

of rbub ∼ 10-15 kpc (Ra�erty et al., 2006), but an go up to 200 kp in diameter for the Hydra

A luster or MS0735.6+7421 (Nulsen et al., 2005; MNamara et al., 2005). The distribution

of the ratio between the projeted distane R between avity enter and the nuleus and the

avity radius rbub shows a strong peak at R/rbub ≃ 2. Meaning that jet-in�ated bubbles travel

their own diameters after they have detahed from the jet and before they will dissipate into the

atmosphere and will not be detetable any longer (MNamara and Nulsen, 2007).

Looking at the buoyany time-sale, avities have typial ages of tbuoy ∼ 107 − 108 yr. The

time taken between single injetions of bubbles is of the same order of magnitude, e.g. in Perseus
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Figure 2.2.: Large-sale Chandra �nal omposite residual surfae brightness map of the Perseus luster in the

X-ray band taken from Fabian et al. (2011) . Overlaid are low-frequeny radio ontours taken from

data of the Very Large Array (VLA) (Weeren et al., 2020). The beam size is shown on the top-right

orner. In the enter lies the giant elliptial galaxy NGC 1275, whose SMBH powers bipolar jets

into the ICM, whih are in�ating under-dense bubbles. Those are simultaneously visible as X-ray

avities and radio lobes (labeled inner avities). As the bubbles rise buoyantly outwards the luster

atmosphere, they beome disonneted from the feeding jets (labeled outer or ghost avities).

(MNamara et al., 2000). This implies that there are periods of time where no jets are launhed,

e.g. in Ophiuhus (Werner et al., 2016). The so-alled ylial jet feedbak mehanism (JFM)

(Soker, 2016) is based on the fat, that CCs with two or more bipolar pairs of bubbles are seen,

like in Perseus (Fabian et al., 2000) or Hydra A (Wise et al., 2007). In addition, even lusters

inhabiting very powerful AGNs like MS0735.6+7421 show large-sale symmetry in their avities,

whih is visible at times after multiple outburst yles have happened (MNamara and Nulsen,

2012). Simulations also show (O'Neill and Jones, 2010; Mendygral et al., 2012) that a ylial

JFM is able to make the lobes more spherial, as observed. Instead, a steady, ontinuous jet

support produes highly elongated fronts (Vernaleo and Reynolds, 2007).

Nevertheless, some properties of bubbles annot be determined yet from observations like the

temperature or the general ontent of the �lling gas, beause of the very low densities inside

the bubbles (Soker, 2016). Magneti �elds are assumed to be sub-dominant within the bubbles

and small-sale vorties ould dominate their energy ontent (Hardastle and Croston, 2005;

Hardastle and Krause, 2014). The alignment of magneti �elds in radio lobes an be derived

from the degree of polarization of synhroton radiation. For FR-type I jets, whih are onsidered

throughout this thesis, the magneti �eld lines are found to be typially perpendiular to the jet

axis (Hawley et al., 2015).

2.2.2. Bubble stability

While theoretial studies suggest that bubbles should be rapidly disrupted in a CF environ-

ment, observations indiate that they live for a long time, meaning that the lobes sustain their

morphology with a spherial front over ∼ 100Myr, analysed observationally (Ra�erty et al.,

2008) and numerially (Bourne et al., 2019). However, some development of RTI are seen at the

enter-front of some bubbles, e.g. in Abell 2052 (Blanton et al., 2001, 2003) or in the northwest
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bubble in Perseus (Fabian et al., 2002; Soker et al., 2002). Advanes in numerial simulations

have been showing that buoyantly rising bubbles are disrupted through KHI or RTI. Disruption

an be delayed if the instability is suppressed by either turbulent di�usion (Sannapieo and

Brüggen, 2008), magneti draping (Ruszkowski et al., 2007; Dursi and Pfrommer, 2008; O'Neill

et al., 2009), favorable dynamis (Pizzolato and Soker, 2006), or CRs (Ehlert et al., 2018). This

thesis will fous on the suppression of instabilities by visosity and investigate whether visosity

an preserve oherene of rising bubbles by damping the small-sale perturbations, whih was

espeially studied by Reynolds et al. (2005) and Dong and Stone (2009). Thus, the model setup

for the ICs, desribed in setion 3.1, follows the ones used by those two papers.

As long as the lobes remain intat, they will maintain approximate pressure balane with their

surroundings while rising buoyantly. As their pressure dereases with time, their enthalpy will

also derease, whih releases energy into the ICM, mostly as kineti energy in the �ow around

rising bubbles (MNamara and Nulsen, 2007).

2.2.3. Cavity power

Sine almost every CC with tcool . 1Gyr hosts an ative radio soure in their BCG (Mittal

et al., 2009), su�ient amount of energy ould have been also generated via synhroton radiation.

The synhroton emission, whih is visible in the radio, is due to CR-eletrons gyrating around

magneti �eld lines. Comparing avity power with bolometri radio power reveals that the

mean mehanial power is 100-1000 times larger than the synhroton power (Bîrzan et al., 2008;

O'Sullivan et al., 2011), making the synhroton radiation highly ine�ient for heating the ICM.

Hene, the AGN's energy required depends on its mehanial power and not its radio luminosity.

If we assume that the rising avities are governed by buoyany, their ages and mean jet power

an be estimated (Churazov et al., 2002; Birzan et al., 2004). As the X-ray avities are in�ated,

they do pV work (mehanial energy) against the ICM. At the same time, as the relativisti jets

displae the ICM at the loation of the avities, they provide the pressure supporting the latter

in form of internal energy Eth. Hene, the total energy required to reate the avity is equal to

its enthalpy, (Gitti et al., 2012)

H = Eth + pV =
γ

γ − 1
pV =

{

2.5 pV, for γ = 5/3,

4 pV, for γ = 4/3,
(2.16)

where γ is the ratio of spei� heats of the avity plasma, whih depends on whether the pressure

support is supplied by relativisti or non-relativisti plasma. Looking at the measured synhroton

emission, one has to assume equipartition between the energy of the partiles and the energy of

the magneti �eld of the bubbles. From this, one an infer the pressure of the bubbles, whih

is only ∼ 10% of the pressure of the surrounding ICM (Worrall, 2000; Croston et al., 2008). In

order to keep the bubbles stabilized, either a very hot thermal gas (whih is not observed) or a

non-thermal omponent has to be present (MNamara and Nulsen, 2012). If the radio emitting

lobes were �lled with a non-relativisti thermal plasma, the temperature would need to exeed

≈ 20 keV in order to be undetetable by its thermal X-ray emission (Blanton et al., 2003; Gitti

et al., 2007). Therefore, it is more likely to assume that the bubbles are �lled with relativisti

plasma, giving γ = 4/3 and H = 4pV per avity. The avities may be �lled with more omplex

gas (with a non-thermal omponent to stabilize the bubble (MNamara and Nulsen, 2012)), but

observations seleted for large, fully-grown bubbles are roughly onsistent with MHD simulations

using 4 pV per avity (Mendygral et al., 2011). However, in our simulations we assume that the

bubble interior is non-relativisti and we will neglet the e�ets of CRs in the rest of the thesis.

In order to estimate the AGN heating rate based on the avity power, we need to obtain the
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ratio between work done by the two bubbles and the buoyany time. The derivations overed

hereafter are following the leture notes from Pfrommer (2020). The avity power is the produt

of the volume of the bubble and the surrounding pressure. Normalizing it to quantities in our

ICs (see setion 3.1) yields

pV = 2× nambkBT × 4

3
πr3bub ≈ 3× 1059 erg

(

rbub
20 kpc

)

( namb

0.03 cm-3

)

(

kBT

3.34 keV

)

. (2.17)

Subsripts amb and bub are abbreviations for the ambient and bubble omponent of that quan-

tity, respetively. The expression is multiplied by two to aount for both of the bipolar aligned

bubbles. The buoyany rise time an be omputed by balaning the buoyany fore Fbuoy ating

upon the bubble with the drag fore Fdrag exerted by the ram pressure on the bubble, yielding

the terminal veloity vt (MNamara and Nulsen, 2007)

‖Fbuoy‖ = −gVbub(ρamb − ρbub) = −Cd

2
σρambv

2 = ‖Fdrag‖

vt =

√

2gVbub

σCd

ρamb − ρbub
ρamb

≈
√

2gVbub

σCd
, (2.18)

where σ is the ross-setion of the bubble, g is the gravitational aeleration and Cd is the drag

oe�ient, whih depends on the bubble geometry and the Reynolds number (see setion 2.3.4).

For a Mah number of M ≈ 0.7 the drag oe�ient is Cd ≈ 0.6 (Churazov et al., 2001). In

the last step we assumed ρbub ≪ ρamb. As a last step it is also useful to introdue an estimate

for the sound-rossing time tsc normalised to quantities in our ICs (over the gravitational radius

RG), whih is given by

tsc
(2.4)

=
RG

cs
≈ 3× 108 yr

(

RG

240 kpc

)

( cs
800 km s-1

)

-1
.

Together with the rise veloity from equation (2.18) we an now dedue the buoyany time tbuoy
for a bubble at distane R from the avity enter to the SMBH,

tbuoy =
R

vt
≈ 0.6× tsc

(

R

2rbub

)1/2

≈ 4× 1015 s ≈ 1.3× 108 yr, (2.19)

where the �rst approximation is derived in Birzan et al. (2004). Our estimate is in agreement

with observations (see setion 2.2.1). The buoyany time gives a reasonable estimate for the

later stage of a avity system, long after it was injeted by its AGN (MNamara and Nulsen,

2007). We an �nally ombine equations (2.19) and (2.17) to obtain the AGN heating rate,

LAGN ≈ 2.5 pV

tbuoy
≈ 7.5× 1059 erg

4× 1015 s
≈ 2× 1044 erg s-1 ≈ 0.5× LX . (2.20)

Hene, the AGN heating rate based on avity power is omparable to the X-ray ooling lumino-

sity, obtained from equation (2.15), whih is supported by observational analysis of the ooling

region in CCs (Ra�erty et al., 2006; Gitti et al., 2012). This suggests that heating via AGN

feedbak is the primary mehanism providing roughly enough energy (in synergy with additional

heating soures) to substantially prevent ooling �ows in ool-ore lusters (MNamara and Nul-

sen, 2012). How muh energy is ontributed by other proposed heating hannels is an ongoing

�eld of studies (see setion 2.2.5).
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2.2.4. Heating by AGN feedbak

As desribed in setion 2.2.3, the overall energetis between jet-indued power and ooling lu-

minosity seem to be �tting. Neither ooling nor heating is dominating. Even the most powerful

AGNs with the shortest ooling times in CCs (e.g., MS0735.6+7421 (MNamara et al., 2005))

show stable and long-lived CFs. Additionally, as pointed out in setion 2.2.1, AGNs trigger out-

bursts on time-sales shorter than the ooling time-sales in their enter. In fat, tbuoy . tcool,

meaning that generally avities are younger than the time needed for the ambient gas to ool.

This implies that jets are launhed frequently enough to prevent runaway ooling (MNamara

and Nulsen, 2012). Steep abundane gradients show that there is no large-sale mixing taking

plae (Fabian, 2012). This gentle, quasi-ontinuous (on time-sales . 108 yr, (Ra�erty et al.,

2008)) heating proess is shown as a �attening of the entral entropy pro�les (Voit and Donahue,

2005).

The general heating mehanism works as follows. As a buoyant avity rises, it displaes gas,

whih must fall inward to �ll the low-density wake. There, kineti energy is generated from

gravitational potential energy, whih is then dissipated loally (MNamara and Nulsen, 2007).

The energy reated this way by the avity is equal to the onomitant loss of enthalpy thermalized

in its wake (Churazov et al., 2002). However, it is still under debate, how the thermal energy

is supplied, distributed and dissipated on the right spatial sales to balane radiative ooling

throughout the ore of the luster. The exat oupling mehanism has not been identi�ed yet.

(MNamara and Nulsen, 2012; Fabian, 2012; Soker, 2016) Di�erent theories are brie�y mentioned

in setion 2.2.5.

X-ray observations by Hitomi of the Perseus luster ore reveal low veloity dispersions (Hitomi

Collaboration et al., 2018). Hillel and Soker (2017) onlude, that heating by small-sale mixing

of hot bubble plasma with the ICM is very likely. The mixing is taking plae in the wake where

vorties have formed. These vorties also exite sound waves and turbulene, but they only

make up . 20% to the heating proess. Shoks ontribute even less Hillel and Soker (2017). The

mixing is depositing CRs and magneti energy as well.

Looking at the ICM as a whole, no single heating proess seems to be dominant over all

radii (MNamara and Nulsen, 2007). Many of them are probably relevant. At the innermost

part, weak shoks are likely to be most signi�ant. At radii where the lobes are formed, avity

heating takes over and on larger sales, sound damping may beome dominant. At the outermost

sales, thermal ondution is the most e�ient. All in all, heating by AGN feedbak seems to

be dominating from the inside, while ondutive heating is working from the outside of a CC

(MNamara and Nulsen, 2007).

2.2.5. Other Heating Mehanisms

We desribed how the AGN-in�ated avities theoretially inhibit roughly enough energy to ba-

lane radiative ooling via bremsstrahlung while preventing the ooling atastrophe. As already

mentioned, there is no onsensus how this AGN energy is atually thermalized and whih pro-

esses are key for transfer the energy from the jet-in�ated bubbles to the ambient ICM. Many

di�erent heating mehanisms have been proposed over the years and disussing all of them will

be far beyond the sope of this thesis. Therefore, we only list reent studies of the most ommon

disussed heating models, whih inlude AGN-initiated weak shoks (Li et al., 2016; Guo et al.,

2017), dissipation of sound waves (Fabian et al., 2017; Bambi and Reynolds, 2019), dissipation

of internal waves (Zhang et al., 2018), dissipation of turbulene (Zhuravleva et al., 2014), mixing

of hot bubble gas with the ICM (Hillel and Soker, 2017), gas sloshing (Ueda et al., 2020), CRs

(Jaob and Pfrommer, 2017b; Ehlert et al., 2018) and thermal ondution (Yang and Reynolds,
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2016b).

In this work, we will fous on visous heating in setion 4.1.3.
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2.3. Plasma Physis

2.3.1. Plasma Parameters

We have treated the ICM as a ompletely ionized, ideal gas in the previous setions, but it an

also be well desribed as a plasma �uid if the partile mean free path, λmfp, is muh shorter

than the harateristi system size, L (Pfrommer, 2020). To hek whether this an be taken for

granted, we need to introdue some plasma parameters. Consider a non-relativisti hydrogeni

plasma with equal ion and eletron number densities, n = ni = ne, and temperatures, T =

Ti = Te. The mean mass per partile is then mp/2 and the (iso-)thermal speed of the ions

is vth = (p/ρ)1/2 = (2kBT/mp)
1/2

(see equation (2.4)). Together with the ion-ion ollision

frequeny, νii = 0.06 × lnλ× niT
−3/2 s−1

(see equation (2.29)), the value of the mean free path

in a luster atmosphere an be estimated as (see ZuHone and Roediger (2016))

λmfp =
vth
νii

≈ 0.5 kpc
( n

0.03 cm−3

)

-1
(

kBT

3.34 keV

)2

, (2.21)

where lnλ ∼ 30 is the Coulomb logarithm. The harateristi system size an be estimated via

the thermal pressure sale height H (Kunz et al., 2012) by onsidering g = ρ-1dp/dr as the

gravitational aeleration (see equation (2.6)).

H =
v2th
g

≈ 130 kpc
( n

0.03 cm−3

)

(

kBT

3.34 keV

)

( g

10−8 cm s−2

)−1
. (2.22)

Hene, λmfp ≪ H and the �uid desription of the ICM is appliable and the plasma is said to

be weakly ollisional. This an be expressed in terms of the Knudsen number, Kn = λmfp/H,

whih is a dimensionless measure for ollisionality. Sine Kn ∼ 0.004, the intraluster plasma is

not purely ollisional, but rather weakly ollisional. Plasmas with Kn & 1 would be e�etively

ollisionless. The ion-ion ollision frequeny νii an also be related to the ion gyrofrequeny

Ωi = qiB/mpc of a partile gyrating around a magneti �eld line of onstant strength B due to

the Lorenz fore. Ωi is also alled the Larmor frequeny and the orresponding Larmor radius

(or ion gyroradius) ri is de�ned by

ri =
vth
Ωi

≈ 2npc
( n

0.03 cm−3

)

(

kBT

3.34 keV

)(

B

1µG

)−1

. (2.23)

The ratio of the Larmor radius to the harateristi length sale of the system is alled the

plasma magnetization parameter δi (Hazeltine and Waelbroek, 2004). Thus as δi = ri/λmfp ≈
10−14 ≪ 1, the ICM is magnetized, meaning that a partile gyrates around a magneti �eld

line so many times before it ollides with another partile, that we an say it is tied to the �eld

line. In other words, the ollision frequeny is muh smaller than the gyrofrequeny. Putting all

relations together, we get that ri ≪ λmfp < H.

Furthermore, turbulene an exite three MHD waves, of whih two are similar to sound waves

(the fast and slow ompressive modes) and one is solenoidal (the Alfvén mode). For the latter

the Alfvén veloity for ions is given by

vA =
B√
4πρ

≈ 13
km

s

( n

0.03 cm−3

)−1/2
(

B

1µG

)

. (2.24)

Studies �nd that turbulent gas motions in CCs have veloity dispersions of several hundred km/s

at the outer sale of several tens of kp, whih is shown both observationally with Hitomi in



2.3. Plasma Physis 22

Perseus (Hitomi Collaboration et al., 2018) and numerially with simulations of luster formation

(Miniati, 2014). This means that ICM turbulene is super-Alfvéni on the largest sales initially.

Therefore, magneti �elds are probably not very important dynamially on suh sales and the

plasma is well shaped by �uid motions (Donnert et al., 2018). The ratio of thermal gas pressure

pth = nkBT to magneti pressure pB = B2/8π is desribed by the so-alled plasma-β, whih is

a dimensionless parameter for the e�etive strength of the magneti �eld.

β =
2kBT

mpvA
=

8πnkBT

B2
≈ 4000

( n

0.03 cm−3

)

(

kBT

3.34 keV

)(

B

1µG

)−2

. (2.25)

Sine β is typially quite high (Carilli and Taylor, 2002) it is interesting to investigate whether

weak magneti �elds are dynamially important at all in luster atmospheres. One goal of this

thesis is to study how suh a weakly magnetized medium a�ets the evolution of buoyantly rising

bubbles.

2.3.2. ICM as a weakly ollisional plasma

Therefore, the ICM an be treated as a weak ollisional plasma with a weak magneti �eld

with ‖B‖ ∼ 1µG. In enters of CCs magneti �eld strength of tens of mirogauss have been

inferred, whih sale with thermal density, while onsidering that the plasma-β is onstant

(isothermal) (Clarke et al., 2001; Bonafede et al., 2010). Both the Coma and the Perseus luster

host a turbulent magneti �eld onsistent with a Kolmogorov power spetrum (Shueker et al.,

2004; Subramanian et al., 2006). Evidene for magneti �elds omes from Faraday rotation

measurements and synhroton emission of radio soures in galaxy lusters (Ferrari et al., 2008;

Govoni et al., 2010).

In addition, if the ICM would be governed by Coulomb ollisions, transport properties would

be isotropized. But sine the plasma is only weakly ollisional, the partiles are oupled to the

magneti �eld lines, making transport of heat and momentum anisotropi. In turn, the magneti

�eld lines are frozen into the plasma �uid and adveted with the bulk motions of the ambient

medium (Kulsrud and Ostriker, 2006). In other words, motions of the intraluster gas auses

hanges in the magneti �eld strength as the �eld is dragged along with the gas �ow. This

aspet is related to the magneti Prandtl number Prm = ν/η, whih is the ratio of momentum to

magneti di�usivity. For galaxy lusters we get Prm ≈ 1029 ≫ 1, hene the visous-sale motions

dominate (Shekohihin and Cowley, 2007). Suh onditions indue a small-sale dynamo, whih

ampli�es the magneti �utuations by random strething of the �eld lines on time-sales of 108 yr

(Shekohihin et al., 2005).

All this together fundamentally hanges the stability properties of the ICM, whih di�er from

those expeted from the Shwarzshild riterion. This riterion states that an atmosphere is sta-

ble to onvetion if the entropy, S, inreases with height as dS/dr > 0 (Carroll and Ostlie, 2014).

As pointed out in setion 2.1.5, a positive entropy gradient is indeed observed for CCs (Pi�aretti

et al., 2006). Although the ICM is stable against onvetion aording to the Shwarzshild

riterion, it is not appliable beause the ICM is a weakly ollisional and weakly magnetized

plasma. So the aforementioned anisotropi transport needs to be onsidered, whih means that

e.g. the gas pressure perpendiular and parallel to the loal magneti �eld beome unequal,

resulting in anisotropi visous stresses. Partile motions perpendiular to the magneti �eld are

suppressed and motions parallel to the �eld are either unonstrained or limited by λmfp ≪ ri.

Collisions between ions do not our frequently enough to ounterat the pressure anisotropy.

These e�ets make the ICM subjet to fast growing instabilities on mirosopi sales (between

ri and λmfp) where their desription by Braginskii-MHD beomes invalid (see setion 2.3.6).
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2.3.3. Turbulene

Turbulene aording to Kolmogorov (Kolmogorov, 1941) desribes how the energy of a nonlinear

proess is asaded from large sales of vortial �uid motion to small sales of length l at a rate

kv, where k = 2π/l is the wave vetor, v is the veloity dispersion (the root-mean-square of the

power spetrum at sale k) and l is the eddy size. For subsoni turbulene (v < vth) the veloity

�utuations are adiabati, whih is implied by assuming an inompressible �ow, ∇ · v = 0. At

the marosopi injetion sale, L, energy is fed into the turbulent asade by induing �uid

motions manifesting as eddies of size of the outer sale. This is also alled the driving sale of

the turbulent system, where in the ase of galaxy lusters the driver might be a major merger or

an AGN jet. The largest eddies break up into smaller ones due to the onvetive term, v · ∇v,

in the �uid equations. Energy is being transferred at eah smaller length sale until the loal

kineti energy gets dissipated by visosity at the mirosopi inner sale, lvisc. Here, at sales of

order of λmfp, visous shear stresses dissipate the vortial motions into thermal energy and the

Lorentz fore dissipates the loal kineti energy into magneti energy in ase of a dynamo. Note

that the dissipation sale is loally isotropi while the injetion sale is highly anisotropi. The

intermediate range of sales l, where L > l > lvisc, is alled the inertial range. At eah sale,

the asading time-sale is the eddy turnover time, tl = l/vl, where vl is the typial rotational

veloity aross the eddy. The asading itself is not depending on the driving sale (Shekohihin

and Cowley, 2007). In the inertial range, energy asading sales as ǫkin ∝ v2l /tl ∝ vL(l/L)
2/3

and the turbulent veloity sales as vl ∝ l1/3. This implies that the largest eddies have the

highest veloities and kineti energies, while the smallest eddies have the highest vortiity. In

other words, the turbulent system is driven by energy at the outer sale, but dominated by

visous fores at the dissipative inner sale. The hierarhy of eddies an be desribed by the

energy power spetrum E(k) (Shekohihin and Cowley, 2007),

v2l ∼
∫ ∞

k
E(k′)dk′ ∼ ǫ2/3k−2/3 ⇒ E(k) ∼ ǫ2/3k−5/3. (2.26)

The harateristi time-sale for turbulene of a typial galaxy luster to be established during

a major merger is tL = L/vL ∼ 300 kpc/(1000 km s−1) ≈ 300Myr (Brunetti and Lazarian,

2007), where vL is the veloity dispersion of the largest eddy at the outer sale L. In ase

that AGN-in�ated bubbles are driving turbulene in a relaxed ICM, the harateristi time-

sale an be estimated as tL ∼ 20 kpc/(400 km s−1) ≈ 50Myr (see setion 3.1). Observationally,

these sales are in agreement with turbulene measures using pressure maps, i.e. in the Coma

luster (Shueker et al., 2004). Additionally, the visous sale of an AGN-driven luster an

be approximated as lvisc ∼ LRe-3/4 ∼ 1 kpc (Shekohihin et al., 2005), where Re = 50 is the

Reynolds number based on typial values of the ICM (see setion 2.3.4). Comparing lvisc with

λmfp from equation (2.21) shows that both at on length sales of roughly the same order of

magnitude.

Turbulent �uid motions in a luster atmosphere an be indued by stresses of tangled mag-

neti �eld lines permeating the luster. Conomitantly, the magneti �eld power spetrum is

also onsistent with a Kolmogorov power spetrum as observations (Shueker et al., 2004) and

simulations (Gaspari and Churazov, 2013; ZuHone et al., 2016) �nd for the Coma luster. Also

the Perseus CC (Subramanian et al., 2006) and Hydra A (Kuhar and Enÿlin, 2011) seem to

host a turbulent magneti �eld. Bonafede et al. (2010) and Kuhar and Enÿlin (2011) �t their

models to Faraday rotation measurements to onstrain the magneti �eld strength and to �nd

the magneti power spetrum. They �nd a magneti �eld dependene on the eletron number
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density as

〈

B2(r)
〉

∝ n2α
e (r) (2.27)

with α = 0.4− 0.7 (Bonafede et al., 2010). These �ndings are onsistent with a onstant plasma

beta throughout the luster gas, sine β = 8πnkT/B2
.

2.3.4. Reynolds Number

As introdued in the previous setion, a turbulent �uid asades large sale motions to progres-

sively smaller sales until visous fores beome important to dissipate the kineti energy. At

larger sales the �uid motion is undamped. To indiate at what sale the visous dissipation

takes over, the Reynolds number, Re, is introdued. The Reynolds number is a dimensionless

quantity to show whether a �uid is governed by laminar �ow or turbulene. It is de�ned as

the ratio between inertial and visous fores in a �uid. Hene, for Re ≫ 1, visous fores are

not important at all at the inertial sales and vortial motions will be produed. Considering

the kinemati visosity ν = µ/ρ = λmfpvth, whih has units of cm2 s−1
, we an also de�ne the

Reynolds number as the ratio of dissipative to advetive time-sales (see Pfrommer (2020)),

Re =
tdiss
tadv

=
LvL
ν

=
L

λmfp

vL
vth

, (2.28)

where tdiss = L2/ν and tadv = L/vL. Here, L and vL are harateristi length and veloity

sales of system size. Therefore, Re an be expressed as the produt of the ratios of marosopi

to mirosopi length and veloity sales. Again, for Re ≫ 1, advetion is dominating and

dissipation annot stabilize the growth of the turbulent modes.

As pointed out in setion 2.3.2, due to the pressure anisotropy in the ICM, heat and momentum

are transported along the magneti �eld lines with unit vetor b = B/‖B‖. So, the kinemati

visosity (also alled momentum di�usivity) parallel to b is ν‖ = µ/ρ = µ/nimp, where µ is the

dynami visosity, ρ is the density of the �uid, ni is the number density of the ions and mp is

the mass of one partile. An upper limit for the kinemati visosity has been found from X-ray

observations for the Coma luster of ν‖ . 3× 1029 cm2 s−1
on sales of 90 kp (Shueker et al.,

2004). In numerial simulations, a eiling has been applied, i.e. by modelling the Perseus luster

with ν‖ . 1030 cm2 s−1
(Kingsland et al., 2019).

Further, µ = 0.96 × pi/νii = 0.96 × nikBT/νii (Kunz et al., 2012), where pi is the ion ther-

mal pressure, νii is the ion-ion ollision frequeny, kB is the Boltzmann onstant and T is the

temperature of the �uid. Considering the value of νii for fully ionized plasmas (Rihardson,

2019),

νii =
4
√
πe4ni ln Λ

3
√
mpk

3

2

BT
3

2

= 6.0× 10-2
ni ln Λ

T
3

2

s-1, (2.29)

to be Spitzer if kB = 1.381 × 10-16 erg/K (Spitzer, 1962). This yields for the dynami visosity,

µsp = 2.2 × 10-15
T

5

2

ln Λ
g cm-1 s-1, (2.30)

where T is measured in Kelvin. We an now write for the Reynolds number

Re =
LvL
ν‖

=
LvLnimp

µsp
= 2.3× 10−8 ×

(

vL
vL,0

)(

L

L0

)(

n

n0

)(

T

T0

)− 5

2

× vL,0L0n0T
− 5

2

0 , (2.31)

where we used lnλ = 30 in the prefator (see e.g. Dong and Stone (2009) or Kingsland et al.
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(2019)). We an use this notation to ompute the Reynolds number from the ratios of four easily

aessible variables. Typial values for the ICM in CCs yield Reynolds numbers of order . 102

(Shekohihin and Cowley, 2007; Brunetti and Lazarian, 2007) if we assume Spitzer visosity.

The Reynolds number an be estimated for the ICM of the Perseus luster ore region if vL
and L are inferred from Hitomi Collaboration et al. (2016) and n and T are inferred from Fabian

et al. (2017):

Re ≈ 50

(

vL
164 km/s

)(

L

10 kpc

)

( n

0.04 cm−3

)

(

T

3.87 × 107 K

)−5/2

(2.32)

2.3.5. Braginskii-MHD

Ideal magnetohydrodynamis (MHD) is a ontinuum theory that ombines the equations of �uid

dynamis with Maxwell's equations to desribe the behavior of a magnetized onduting medium.

It is only appliable as a �uid approximation and does not desribe the individual motions of

partiles diretly, whih would be subjet to kineti theory. Instead, the distribution funtions,

f(~x,~v, t), are replaed with plasma moments suh as density, mean veloity and mean energy.

These moments are taken from the Vlasov equation extended by a ollisional term. We refer to

Baumjohann and Treumann (1997) for a full derivation.

As pointed out in setion 2.3.2, the ICM is highly ondutive (Pm ≫ 1), so that its resistivity

is negligibly small. Thus aording to the indution equation, the magneti �eld lines are frozen

into the plasma �uid, known as Alfvén's theorem (Alfvèn, 1942). In addition, as desribed

in setion 2.3.1, the ICM must be modelled as a weakly ollisional, magnetized plasma, where

λmfp ≫ ri. Therefore, on marosopi sales (greater than λmfp), the transport of momentum and

heat beomes highly anisotropi along the diretion of the loal magneti �eld lines, making the

ideal MHD approximation inadequate. Aounting for anisotropi visosity and heat ondution

in form of di�usion terms leads to an extended MHD model, the so-alled Braginskii-MHD

(Braginskii, 1965). At frequenies below the Larmor frequeny Ωi and at sales above the ion

gyroradius ri, the fundamental equations of motion (mass ontinuity, momentum, indution,

energy) an be given in onservative form and in Gaussian units as (see e.g. Kunz et al. (2012);

ZuHone and Roediger (2016))

∂ρ

∂t
+∇ · (ρv) = 0, (2.33)

∂(ρv)

∂t
+∇ · (ρvv +P) = ρg, (2.34)

∂B

∂t
= ∇× (v ×B) = −∇ · (vB −Bv), (2.35)

∂(ρǫ)

∂t
+∇ · [(ρǫI +P) · v +Q] = ρg · v, (2.36)

where ǫ is the energy per unit mass, so that ρǫ is the energy per unit volume with γ = 5/3 and

ρǫv is the internal energy �ux. The total energy density (kineti, internal, magneti) is given by

ρǫ =
1

2
ρv2 +

p

γ − 1
+

B2

8π
. (2.37)
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The pressure tensor is given by

P =

(

p⊥ +
B2

8π

)

I −
(

p⊥ − p‖ +
B2

4π

)

bb

= pI +Π+
B2

8π
I − BB

4π
, (2.38)

with total thermal pressure:

p =
2

3
p⊥ +

1

3
p‖, (2.39)

where p⊥ (p‖) is the pressure term perpendiular (parallel) to the loal magneti �eld with

b = B/B as the unit vetor and bb as a dyadi produt. The terms B2I/8π and BB/4π an

be reognized as magneti pressure and magneti tension, respetively. The additional terms

in equations (2.34) and (2.36) extending ideal MHD are the anisotropi heat �ux Q (whih we

neglet) and the anisotropi visosity tensor

Π = −∆p

(

bb− 1

3
I

)

, (2.40)

where the pressure anisotropy is de�ned as ∆p = p⊥ − p‖. It arises from the onservation of

the �rst and seond adiabati invariants for eah partile (Chew et al., 1956). Visosity and

heat break these onservation laws. The so-alled Chew, Goldberger & Law (CGL) equations

an be derived from the Vlasov-Landau equation by taking the moments mv2⊥/2 and mv2‖ (see

Shekohihin et al. (2010) and referenes therein). If visosity and heat are negleted, then the

CGL equations redue to

p⊥
d

dt

(

ln
p⊥
ρB

)

= 0, p‖
d

dt

(

ln
p‖B

2

ρ3

)

= 0, (2.41)

where d/dt = ∂/∂t+v ·∇ is the Lagrangian time derivative. We refer to Berlok (2014) for a full

derivation. The �rst (seond) adiabati invariant in equation (2.41) arises from the onservation

of angular (longitudinal) momentum. The non-redued CGL equations together with ollionality,

inluding visosity and heat ondution, an be ombined to get an expression for the evolution

of the Braginskii pressure anisotropy:

∆p = p⊥ − p‖ = 0.96
p

νii

d

dt
ln

B3

ρ2
(2.42)

Hene, in a weakly ollisional plasma like the ICM the prodution of pressure anisotropy is

being relaxed by ollisions, whereas would be quikly isotropized in a ollisional plasma (having

a Maxwellian distribution) (Shekohihin et al., 2005). As the �rst adiabati invariant µ =

mv2⊥/2B is only weakly broken by ollisions (sine λmfp ≫ ri), any hange in B leads to a

proportional hange in p⊥ suh that p⊥/B = onst (Shekohihin and Cowley, 2007). We an

rewrite expression (2.42) by using the ontinuity equation (2.33) and the indution equation

(2.35) to replae the time derivatives of ρ and B with veloity gradients. We may also use the

identity relating the evolution of magneti �eld strength with the rate of strain, assuming that

motions in the inertial range are subsoni (see setion 2.3.3),

1

B

dB

dt
= bb : ∇v, (2.43)

where : is de�ned as the trae of a matrix produt, suh that bb : ∇v = ΣiΣjbibj∂ivj . The
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anisotropi pressure from equation (2.42) now reads

∆p =
p

νii
(3bb − I) : ∇v = ρν‖(3bb : ∇v −∇ · v), (2.44)

where νii is the ion-ion Coulomb ollision frequeny. The prefator µsp = p/νii = ρν‖ is the

dynami visosity oe�ient, or simply alled Spitzer visosity in terms of ions (see setion

2.3.4). ν‖ is the kinemati visosity parallel to the loal magneti �eld line. This shows that

the pressure anisotropy is e�etively working out as an anisotropi visous �ux and the visosity

tensor from equation (2.40) beomes (Braginskii, 1965)

Π = −3µsp

(

bb− 1

3
I

)(

bb− 1

3
I

)

, (2.45)

whih is implemented in AREPO by Berlok et al. (2019) (see setion 2.4.1). While modelling a

weakly ollisional, magnetized plasma like the ICM, it is inevitable using the Braginskii extension

of ideal MHD, if one is interested in studying the e�ets of thermal ondution and/or visosity.

However, e.g. the visous stress tensor does not neessarily have to take an anisotropi form as

in equation (2.45). In the presented thesis, we are also interested in how Braginskii visosity

a�ets the transport proesses of the plasma and thus the morphology of the rising bubbles if

the visosity tensor is in fat isotropi and not depending on an pressure anisotropy. In this ase

the isotropi visous stress tensor is simply given by (Kingsland et al., 2019) as

Πiso = −fνµsp∇v. (2.46)

This form is justi�ed if the weak magneti �eld is turbulent throughout the volume of a simulated

luster and isotropially tangled (ZuHone and Roediger, 2016). Then fν beomes a suppression

fator aounting for redued visosity (below the Spitzer value) due to averaging over the random

diretion of the magneti �eld. Not all of our simulations have an initially turbulent magneti

�eld setup, espeially not our �duial run (see setion 3.1). Therefore, we use a more elaborated

version where the isotropi visosity tensor is derived from the Navier-Stokes equations for a

visous �ow (Muñoz et al., 2013),

Πiso = −η

(

∇v + (∇v)T − 2

3
I(∇ · v)

)

− ζI(∇ · v), (2.47)

where η = ρν0 = µsp is the shear visosity and ζ is the bulk visosity. The former is re-

ferring to onstant-volume shear deformations and the latter is orresponding to isotropi ex-

pansions/ontrations. Note, that the bulk visosity vanishes for an inompressible �uid �ow

(∇ · v = 0) or for an ideal monoatomi gas, whih has no internal degrees of freedom if interpre-

ted as hard spheres interating only through elasti ollisions. Hene, the isotropi Navier-Stokes

visosity implemented in AREPO by equation (2.47) assumes that ζ = 0.

2.3.6. Miro-sale Instabilities

We an infer from equation (2.42) that an inreasing magneti �eld strength will yield a positive

pressure anisotropy and regions with a dereasing �eld strength will have a negative anisotro-

pi pressure, if the density is onstant. Additionally, equation (2.44) shows that the pressure

anisotropy ontrols the rate of visous dissipation down to the dissipation sale (order of λmfp)

and thus a�ets the �uid dynamis at larger sales. Therefore, the Braginskii visosity only

dissipates suh veloity gradients that hange the strength of the magneti �eld. (Shekohihin
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and Cowley, 2007) The remaining motions not a�eting B an in priniple exist below the dissi-

pation sale with their fastest growing modes down to the Larmor sale (ri ≪ λmfp), where they

at as miro-sale instabilities in a weakly magnetized, high-β plasma. These rapidly growing

instabilities are not yet resolved in simulations modelling galaxy lusters sine it would require

numerial resolutions ranging from several nano- to kilo-parse sales and resolving

∼ 1012 orders

of magnitude is numerially not ahievable. Nevertheless, theoretial studies (Shekohihin et al.,

2008; Rosin et al., 2011) and partile-in-ell simulations (Kunz et al., 2014; St-Onge et al., 2020)

show that the miro-sale instabilities, namely the �rehose and the mirror instability, at suh

that they regulate the pressure anisotropy bak to values within its stability boundaries. This is

also supported by diret solar wind observations (Chen et al., 2016). So, whenever ∆p exeeds

ertain thresholds (see e.g. Kunz et al. (2012)),

− B2

4π
. p⊥ − p‖ .

B2

8π
, (2.48)

the miro-sale �rehose (left-hand side) and mirror (right-hand side) instability are triggered and

drive ∆p to marginal stability, where they saturate. In other words, the pressure anisotropy (and

thus parallel visosity) beomes unphysially large in weakly ollisional, magnetized plasma �uid

simulations, if no miro-physial limits are implemented, whih would aount for isotropizing

the plasma to marginally stable levels. We desribe both miro-instabilities shematially in

�gure 2.3. It shows that if the magneti �eld strength gets enhaned via strethed or ompressed

�eld lines, the perpendiular pressure omponent beomes dominant, whih exites the mirror

instability. On the other hand, if B dereases loally due to turbulent veloities, the parallel

pressure dominates and an trigger the �rehose instability. We an rearrange the inequality

(2.48) in a way, that we get an expression, where the pressure anisotropy is pinned at marginal

stability (Kunz et al., 2011). Dividing by the total thermal pressure while onsidering the plasma

beta β = 8πp/B2
yields

− 2

β
.

∆p

p
.

1

β
⇒

(

∆plim
p

)

=

(

ξ

β

)

, (2.49)

where ξ = −2 for the �rehose instability or ξ = 1 for the mirror instability.

Figure 2.3.: Sketh how �rehose and mirror instabilities emerge by bending the magneti �eld lines. (adopted

from Shekohihin and Cowley (2007)).
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The limits from inequality (2.48) are also neessary to avoid unphysial results sine the �uid

desription of the ICM by Braginskii-MHD beomes invalid at sales < λmfp (Shekohihin

et al., 2005). Kunz et al. (2012) show that indeed the �rehose �utuations (whih are resolved in

their simulations to some extent) grow fast enough to ompensate the negative exess in pressure

anisotropy to retain marginal stability and self-onsistently provide a lower bound to ∆p. But the

mirror instability exited by Braginskii-MHD grows substantially slower than the kineti mirror

�utuations, meaning that positive pressure anisotropies are not e�iently regulated. Either

way, Kunz et al. (2012) �nd that in general both miro-sale instabilities do not grow as fast

using Braginskii-MHD as they would otherwise grow using kineti theory sine the fastest modes

an not be resolved. For example, in Braginskii-MHD the �rehose instability has a maximum

growth rate ourring at k‖H, whereas in kineti theory the �rehose instability atually has a

maximum growth rate ourring at k‖ri, where H is the thermal pressure sale height and ri
is the Larmor radius (see setion 2.3.1). Therefore, the e�ets of Braginskii ondutivity and

visosity are probably overestimated by a fator H/ri ∼ 1010-1011 (Shekohihin et al., 2008) in

a weakly ollisional, magnetized plasma.
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2.4. AREPO

The osmologial MHD ode AREPO (Springel, 2010) has been designed in order to ombine

the advantages of both Lagrangian smoothed-partile hydrodynamis (SPH) methods and �nite

volume Eulerian �xed Cartesian mesh odes. AREPO is based on a moving unstrutered Voronoi

mesh, whih allows for a quasi-Lagrangian desription while retaining better numerial onver-

gene of Eulerian odes (Pakmor et al., 2016). In fat, AREPO uses a seond-order aurate

Runge-Kutta method to estimate the �uxes at eah time step. The Voronoi mesh is generated

from a set of points suh that for eah generator point there is a orresponding ell of volume

ontaining ell points whih are losest to that generator point. This spatial disretization is

alled Voronoi tessellation and uniquely onstruts a mesh, whih moves with the �uid �ow and

is updated over time aordingly. AREPO solves the hyperboli onservation laws on the moving

Voronoi mesh using a �nite volume approah. In ase of ideal MHD, the set of Euler equations

an be written in ompat form by introduing a state vetor of onserved quantities U and the

�ux funtion F (U) for the �uid as (Pakmor et al., 2011)

∂U

∂t
+∇ · F = 0, (2.50)

where U and F (U) are given by

U =







ρ
ρv
ρǫ
B






, F (U) =







ρv
ρvv +P −BB/4π

Bv − vB
ρǫv +Pv −B(v ·B)/4π






, (2.51)

where P = pI +B2I/8π is the pressure tensor, p is the total thermal pressure and ρǫ = 1
2ρv

2 +

p/(γ−1)+B2/8π is the total energy density in Gaussian units. Note the notation and orrelation

with ontinuity, momentum, indution and energy equations (2.33)-(2.36) of extended Braginskii-

MHD. The �uid state is omputed by taking the ell averages of the onserved quantities U for

eah ell by integrating the �uid over the �nite volume Vi of a ell i,

Qi =

∫

Vi

UdV. (2.52)

yielding the total mass, momentum, energy and magneti �eld strength ontained in eah ell.

The introdued �uxes F are only valid for a stati grid, but sine AREPO uses a moving mesh,

the �ux over a stati interfae has been added by an additional advetion term UwT
owing for

the movement of the interfae with veloity w (Pakmor et al., 2011). The geometry is illustrated

in �gure 2.4. By using Gauss' theorem we an get the rate of hange in time of Qi as

dQi

dt
= −

∫

∂Vi

[

F (U)−UwT
]

den = −
∑

j

AijFij, (2.53)

where en is a normal vetor of an interfae between two Voronoi ells and w is the normal veloity

of this interfae. en andw desribe the motion of the fae, whih is fully spei�ed by the veloities

of the mesh-generating points of the two ells next to the interfae (Springel, 2010). Note, that

in Eulerian odes w = 0 where the mesh beomes stati. All the �uxes over an interfae are

omputed in the rest frame of the moving interfae, whih means that the interfae veloity is

subtrated from the equations of motion. Only the relative veloity between the two Voronoi

ells enters the �ux estimation and not the dynamial �ow of the moving mesh. This has the

advantage that the �ux solutions beome Galilean-invariant, whereas in Eulerian methods using
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�xed Cartesian meshes the numerial trunation error grows with the �uid veloity (Springel,

2010). The Riemann problem is solved by using the approximative HLLD solver in ase of ideal

MHD (Pakmor et al., 2011).

The right-hand side of equation (2.53) resembles the Euler equations in �nite-volume form and

is derived by alulating the averaged �ux aross the interfae between ells i and j as

Fij =
1

Aij

∫

Aij

[

F (U)−UwT
]

dAij, (2.54)

where Aij is the oriented area of the fae between ells i and j. The �uid state is then evolved

in time by disretization of equation (2.53) in time to �nally yield (Springel, 2010)

Q
(n+1)
i = Q

(n)
i −∆t

∑

j

AijF̂
(n+1/2)
ij , (2.55)

where F̂ij is a time-averaged approximation of the true �ux Fij . The supersript (n) is denoting

the state of the system at time step n.

Furthermore, the evolving magneti �eld has to ful�ll the onstraint ∇ · B = 0 to stay

divergene-free. However, as the moving mesh is spatially disretized, numerial errors an

signi�antly amplify the magneti �eld and lead to unphysial results (Pakmor and Springel,

2013). Hene, AREPO adopts the divergene-leaning method by Powell (Powell et al., 1999),

where a passive advetion term of the �ow of the magneti �eld is added to the Euler equations.

This method has been implemented into the ode by Pakmor and Springel (2013), where the

divergene of the magneti �eld in a ell i is then alulated as

∇ ·Bi =
1

Vi

∑

faces

Bface · enAface, (2.56)

where Bface is the magneti �eld strength on the interfae and Vi is the volume of the ell.

There are numerous other features implemented into AREPO to aount for the novelty of

having a moving mesh and we refer to Springel (2010) and Weinberger et al. (2020) for further

details. In thesis we desribe only those speial treatments that we atually have inluded in

our simulations in setion 3.1, inluding i.e. the mesh regularization, de-/re�nement riteria and

boundary onditions.

Figure 2.4.: Sketh showing the geometry of the �ux alulation. An unsplit sheme is used where the �ux aross

eah fae is estimated based on a one-dimensional Riemann problem. The �uid state is expressed

in a frame whih moves with the normal veloity w of the fae, and is aligned with it. Taken from

(Springel, 2010).
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2.4.1. Braginskii Module

Braginskii visosity is numerially implemented into the moving-mesh ode AREPO by Berlok

et al. (2019) as a subsequent module to already existing extensions to non-ideal MHD physis like

isotropi visosity (Muñoz et al., 2013) and anisotropi heat ondution (Kannan et al., 2016).

Operator splitting is used to solve the equations of motion (2.33)-(2.36), whih means that

AREPO internally alternates between a MHD time step ∆tMHD and a Braginskii visosity time

step ∆tBrag. Sine the visosity tensor Π only enters the momentum and the energy equation

(see setion 2.3.5), only suh visous terms need to be solved by the algorithm, whih redue to

ρ
∂v

∂t
= −∇ ·Π, (2.57)

ρ
∂ǫ

∂t
= −∇ · (Π · v) , (2.58)

while the density and the magneti �eld are kept onstant during the Braginskii time step. In

order to solve equations (2.57) and (2.58) in AREPO, Berlok et al. (2019) de�ne a loal oordinate

system with basis vetors en, em and ep at eah interfae between two Voronoi ells for the non-

trivial spatial disretization on a moving mesh. Additionally, both equations an be rewritten

by taking the volume average over a ell of volume V , suh that

1

V

∫

V

∂(ρv)

∂t
dV = − 1

V

∫

V
∇ ·ΠdV = − 1

V

∫

∂V
Π · endA, (2.59)

1

V

∫

V

∂(ρǫ)

∂t
dV = − 1

V

∫

V
∇ · (Π · v) dV = − 1

V

∫

∂V
(Π · v) · endA, (2.60)

where the surfae integrals on the right-hand side are derived by applying the divergene theorem

with ∂V as the surfae of the volume and dA as an in�nitesimal area. en is the unit vetor of

the loal oordinate system and is orientated to be the normal to the interfae between the two

Voronoi ells. The right-hand side of both equations (2.59) and (2.60) is then approximated as

a disrete sum of �uxes through the faes of the Voronoi ell (Berlok et al., 2019). Thereby, a

quantity φ or its derivative is estimated at eah interfae of a Voronoi ell by taking a weighted

harmoni mean of its values at all the orners of this ell,

∂φface

∂x
=

(

∑

i

wi

∂φi/∂x

)

-1

, (2.61)

where wi is the weight of the orner i. In turn, the gradients ∂φi/∂x at eah orner are estimated

with the orresponding values for neighbouring ells by taking i.e. a least-squares �t of the values

of the four adjaent ell enters (Pakmor et al., 2016).

The anisotropi �uxes for all Voronoi ells are alulated at eah Braginskii time step ∆tBrag,

whih is onstrained for an expliit update of visosity as (Berlok et al., 2019)

∆tBrag ≤ C
(∆x)2

2dν‖
, (2.62)

where ∆x = V 1/3
is the minimum size of the ells, d = 3 is the number of spatial dimensions

being solved, ν‖ = µ/ρ is the visosity oe�ient and C = 0.3 is the Courant number, whih is

de�ned as the ratio of the applied time step to the allowed time step (Courant et al., 1928). We

an ompare the Braginskii time step with the MHD time step onstraint given by (Springel,
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2010)

∆tMHD ≤ C
∆x

vmax
, (2.63)

where vmax is the maximum signal speed, whih is the sum of the adiabati sound speed and the

Alfvén speed, ergo e�etively the �ow veloity. Sine ∆tMHD ∝ ∆x and ∆tBrag ∝ (∆x)2, we an

infer that the MHD time step onstraint will generally satisfy ∆tMHD ≫ ∆tBrag. The di�erent

salings beome espeially ruial for highly resolved simulations, where the expliit Braginskii

time step beomes very small. This makes the numerial omputations very expensive, beause

the operator splitting requires that ∆tMHD = ∆tBrag in order to advane in time. Therefore,

Berlok et al. (2019) implemented a seond-order aurate super-time-stepping (STS) method for

Braginskii visosity. STS aelerates the Braginskii visosity update suh that the omputational

ost sales down to ∆tSTS ∝ (∆x)3/2. However, we have deided for another approah instead

by using sub-yled time steps, whih means that the Braginskii visosity is updated n times per

global MHD time step: ∆tMHD = n×∆tBrag. Using sub-yling has the advantage that it works

with loal time stepping and is thus faster than than STS in our luster simulations. We have

hosen the number of sub-yles to be n = 10, whih is the same as in Kunz et al. (2012). By

restriting sub-yling properly, we avoid that hanges in the system between two onseutive

global MHD time steps beome too large, beause Braginskii visosity has been updated too many

times, whih would ause unphysial behaviour following through the remaining time steps.
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Chapter 3.

Methods

In this work we intentionally fous on the Braginskii-MHD e�ets in an isothermal luster at-

mosphere. The signi�ane of pressure anisotropy an be better understood if testing ertain

parameters in our simulations is based on a ontrollable setup. Our �rst set of simulations, in-

troduing a uniform horizontal magneti �eld, aims to reprodue the �ndings of Dong and Stone

(2009), this time applying adaptive mesh re�nement (AMR) on a moving Voronoi mesh. The

seond set of simulations is based on the same simplisit setup as the �rst, now enhaned by

introduing a turbulent magneti �eld. Having di�erent levels of omplexity allows us to better

assess the qualitative impat of anisotropi visosity at eah step while advaning to more and

more realisti luster properties.

3.1. Model Setup

In order to numerially study the evolution and stability of buoyantly rising bubbles in the ICM,

we model an idealized, isothermal, relaxed galaxy luster ore. To investigate the e�ets of

Braginskii visosity, some limitations need to be established as a ompromise between a realisti

environment and a manageable setup where the underlying physis are more omprehensible.

This allows us to isolate the results of Braginskii-MHD in our simulations. Thereby, we follow

the luster setup by Reynolds et al. (2005) and Dong and Stone (2009). The ICM atmosphere is

given a density pro�le desribed by a beta-pro�le using β = 1/2 as its index,

ρ(r) = ρ0

[

1+

(

r

r0

)2
]

-

3

2
β

. (3.1)

Assuming that the ICM stays in hydrostati equilibrium, the gravitational potential of the dark

matter is �xed by ∇p = -ρ∇Φ. Further assuming spherial symmetry and using p = c2sρ (see

setion 2.1.3), we an rewrite equation (2.6) by plugging in the derivative of equation (3.1) to

yield
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Finally, by performing the integral we get an expression for the gravitational potential for our

luster model (Reynolds et al., 2005)

Φ(r) =
3

4
c2s log

(

r′2 + r20
)

∣

∣

∣
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r

0

=
3

4
c2s log

[

1 +

(

r

r0

)2
]

. (3.2)

The gravitational fores (dominated by dark matter) ating on eah grid ell in our ICs are �xed

by using this analytial potential throughout the simulations presented in table 3.3.

We hoose units of mass, length and veloity suh that ρ0 = 1, r0 = 1 and v0 = 1 in the

ode. Our simulations have been run in a ubi box that spans a spatial domain of 6 r0 in
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eah dimension. The origin of the gravitational potential oinides with the enter of the box

at r/r0 =
√

x2 + y2 + z2 = 0. We onsider an ideal gas with adiabati equation of state with

γ = 5/3. The initially stati luster atmosphere gets arved out by two underdense spherial

regions, symmetrially aligned along the vertial y-axis. Suh a bubble is displaed from the

enter of the dark matter potential by a distane R = 0.3 r0 with radius rbub = 0.25 r0 and

density ρbub = 0.01 ρ0. Hene, our ratio R/rbub = 1.2 is in good agreement with statistial data

from observations (Ra�erty et al., 2006). The bubble pro�le smoothly hanges from the redued

values inside the bubbles to the quiesent ambient gas for all number of ells N via an analytial

pro�le given by

ρi = ρbub +
1

2

(

1 + tanh

(

ri − rbub
a

))

(ρi − ρbub) ∀ i ∈ [0, N), (3.3)

where ri = ‖ri − rbub‖ is the distane of the i-th grid ell to the losest bubble enter, rbub =

‖rbub‖ is the bubble radius, a is a smoothing parameter and ρi is the density of the i-th ell.

Loal pressure equilibrium is maintained by setting the initial pressure of the bubbles to the

initial pressure of the ICM at that radius, meaning that the bubbles beome hotter than their

surroundings by a fator of Tbub = 100Tamb. This results in an ICM with onstant internal

energy. The radially averaged pro�les for density, thermal pressure and temperature are plotted

in �gure 3.1.

Figure 3.1.: Radial pro�les of our ICs for a uniform magneti �eld at t/t0 = 0. Plotted from left to right are

the volume-weighted density ρ, the volume-weighted thermal pressure Pth and the mass-weighted

temperature T . The arti�ially arved out low-density, hot bubbles are set in pressure equilibrium

and an be learly seen entered at r = ±0.3 r0.

The evolution of the bubbles is omputed by solving the equations of three-dimensional

Braginskii-MHD (see setion 2.3.5) using the moving-mesh ode AREPO (Springel, 2010), see

setion 2.4 for implementation details.

We are going to relate our ode units to quantities of real lusters in order to be able to assess

our �ndings with physial meaning and to make the following in analysis more quantitative.

Therefore, we adopt �duial values for length, mass and time following Dong and Stone (2009).

We �x the unit of length to r0 = 80kpc being equivalent to the ore radius, the unit of density

to a proton number density of ρ0 = 0.03mp cm
-3

and the unit of veloity to v0 = 800 km s-1

being equivalent to the isothermal sound speed. Having �xed these units already implies setting

the units of mass and time. Additionally, physial units allow us to derive general harateristis

of our luster model like the virial mass M200, virial radius r200, the sound rossing time tsc or

the thermal pressure sale height H. Those are presented in table 3.1. A ore radius of 80 kpc

was hosen as a ompromise between staying lose to the setup by Dong and Stone (2009) while

initializing the bubble radius to 20 kpc to be omparable with the jet-in�ated bubbles simulated

by Ehlert et al. (2018). Other studies with numerial simulations of buoyantly rising bubbles

based on an isothermal (double) beta pro�le use ore radii with i.e. 200 kpc (Brüggen and Kaiser,
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2001), 50 kpc (O'Neill and Jones, 2010) or 100 kpc (Gilkis and Soker, 2012).

The total mass of a luster within the virial radius an be alulated using the expression for

M(r) derived from hydrostati equilibrium in equation (2.7). There, the gradient in temperature

vanishes assuming an isothermal luster pro�le. Sine the gas density is well desribed by a β-

model, we an simply derive d ln ρg(r)/dr = −3βr/(r2+ r20) and plug in r = r200 to get the total

mass enlosed within the viral radius:

M(r200) =
3βkBTr200
Gµmp

(r200/r0)
2

1 + (r200/r0)
2 (3.4)

In setion 2.1.4 the virial radius r200 has been de�ned as the radius, within the mean gas density

equals 200 times the ritial density of the universe, ergo M(r200)/V (r200) = 200× ρc, where ρc
is given by ρc = 3H2

0/8πG ≈ 1.88 × 10−29h2 g cm-3
. Here, H0 is the Hubble time and h is the

Hubble parameter. With this relation we an alulate r200 as

r200 =

√

200ρc
3βkBT

Gµmp

3

4π
− r20. (3.5)

The only term remaining unknown in equations (3.4) and (3.5) is the temperature, whih an

be expressed as kBT = v20µmp = 3.34 keV. The resulting quantities desribing a pseudo-realisti

galaxy luster are shown in table 3.1. They are in agreement with the properties whih have

been disussed throughout hapter 2. The simulations presented in this thesis span a ubi box

with size (480 kpc)3 and the target mass of the ells of the ambient gas is about 6× 105 M⊙. For

our �duial run the numerial resolution of the ells inside the bubble region is about 0.5 kpc,

whih is about equal to the mean free path of the ions λmfp we estimated in equation (2.21). The

latter in turn is omparable to the visous dissipation sale lvisc ∼ 1 kpc for a Reynolds number

of Re = 50 (see setion 2.3.3). Thus, we have established the following relation,

V
1/3
target,0 ∼ λmfp ∼ lvisc. (3.6)

r0 80 kpc
ρ0 0.03mp = 5× 10-26 g cm-3

v0 800 km s-1

t0 98Myr
domain spae (480 kpc)3 = (6 r0)

3

resolution number of ells

highest res 7× 107

�duial res 2× 107

lower res 7× 106

V
1/3
target,0 0.48 kpc = 6× 10-3 r0

mtarget,0 5.9 × 105 M⊙

kBT0 3.34 keV = 3.88 × 107 K
r200 1.5Mpc

M(< r200) 3.3× 1014 M⊙
H 107 kpc

g(r0) 2× 10-8 cm s-2

Table 3.1.: Fixing physial parameters that haraterize

the ICM.

tsc(r200) 1.8Gyr
tsc(3 r0) 0.3Gyr
tbuoy 130Myr
tcool 1.8Gyr
ν0 ν‖ Re

0.01 1.98 × 1029 cm2 s-1 50

0.001 1.98 × 1028 cm2 s-1 500

Spitzer 4.6× 1028 cm2 s-1 420

β ‖B‖ kinj
106 0.1µG -

100 9.0µG 37.5-1 kpc-1

Table 3.2.: Fixing physial parameters that haraterize

the ICM, ontinued.

We study two di�erent initial magneti �eld on�gurations, �rstly a uniform horizontal �eld

B = (B0, 0, 0) and seondly a turbulent �eld with onstant plasma beta. For eah �eld geometry
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we study two di�erent magneti �eld strengths, one with a weak �eld given by β = 106 and one

with a strong �eld given by β = 100. Calling the latter setup strong might be a bit misleading

sine the magneti pressure is still 100 times weaker than the thermal pressure, but it is onvenient

to do so in order to learly distinguish both. The plasma beta an be onverted into physial �eld

strength ‖B‖ in terms of Gauss using equation (2.25), whih are presented in table 3.2. Field

strengths ranging between 0.1− 9µG are representing reasonable luster properties (Carilli and

Taylor, 2002). For the turbulent magneti �eld an injetion sale is introdued, kinj, suh that

the oherene length is of order the bubble size, suh that 2π/kinj ∼ L. This is quite important

sine whether the magneti �elds is able to stabilize a buoyantly rising bubble depends on the

oherene length of the �eld (Ruszkowski et al., 2007). They �nd that if the oherene length

is smaller than the bubble radius, no useful draping layer an form at the bubble front and the

bubble is getting dissolved by KHIs and RTIs.

Furthermore, we study two di�erent values for the anisotropi di�usion oe�ient of Braginskii

visosity, whih are also shown in table 3.2. Following Dong and Stone (2009), the dynami

visosity is �xed as a di�usion onstant µ = ν0 (see setion 2.3.4) to give a Reynolds number

Re = v0r0ρ0/2ν0 = 50, where in ode units v0 = r0 = ρ0 = 1 suh that ν0 = 0.01. Here, the

harateristi veloity is v0/2. Using the same value for ν0 allows for diret omparison later on.

The physial units of this di�usion onstant are then simply ahieved by an unit onversion as

ν‖ = ν0(r
2
0/t0). For our �duial simulations we take ν0 = 0.01, whih yields ν‖ ≈ 2×1029 cm2 s-1.

It is insightful to ompare the Reynolds number of our isothermal setup to the Reynolds number

of a CC having the Spitzer value of visosity. The temperature dependent Spitzer value an be

derived from equation (2.30),

ν‖ =
2.2 × 10−15

ln Λ

(

T

T0

)5/2 ρ0
ρ

cm2s-1,

where we substitute

(

T

T0

)

=
mp

2

(p/p0)

(ρ/ρ0)
,

whih yields ν‖ ≈ 1.4 − 7.8× 1028 cm2 s-1 at the very luster enter (r/r0 = 0) and at the outer

radii (r/r0 = 3), respetively. From this we an estimate the Spitzer Reynolds number with

quantities in aordane with our presented setup at the luster ore:

Resp

(

r

r0
= 0

)

≈ 720

(

vL = v0/2

400 km/s

)(

L = r0
80 kpc

)

( n0

0.03 cm-3

)

(

T0

3.88 × 107 K

)

-5/2

(3.7)

Looking at radii further out with lower density, the luster atmosphere beomes less turbulent

and the Reynolds number dereases aordingly down to Resp(r/r0 = 3) ≈ 130, whih implies a

naive mean Reynolds number of Resp ≈ 420. Our estimated range of Reynolds numbers inferred

from Spitzer visosity is not in good agreement with estimates of Reynolds et al. (2005); Dong

and Stone (2009) modelling the hot bubble gas for the Perseus luster ore region,

Re ≈ 62

(

vL
390 km/s

)(

L

20 kpc

)

( n

0.03 cm-3

)

(

T

5.81 × 107 K

)

-5/2

, (3.8)

neither with estimates of Rosin et al. (2011) modelling the plasma in the ore of Hydra A,

Re ≈ 60

(

vL
250 km/s

)(

L

6.5 kpc

)(

vth
700 km/s

)

-1( λmfp

0.04 kpc

)

-1

, (3.9)
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nor with the estimate we derived based on reent observational data from Hitomi in equation

(2.32). However, the Reynolds number varies onsiderably i.e. with the hoosen length sale

and therefore with the set of �xed units. So for instane, if we would just double the initial

temperature, we would get a new mean Spitzer Reynolds number of Resp ≈ 75 aording to

equation (3.7), whih is already in good agreement with the above estimates of other studies.

We study the results of a set of simulations listed in table 3.3. The �duial run is highlighted in

boldfae, whih runs a model using a uniform horizontal magneti �eld throughout the domain,

initially with a very weak magneti �eld strength of β = 106 and in turn a reasonable strong

(ompared to the Spitzer value) anisotropi visosity oe�ient of ν0 = 10-2, whih results in an

ICM about 8 times as visous as the mean Spitzer value. We have also run a similar simulation

with the same magneti �eld on�guration, but with a ten times smaller visosity oe�ient,

ν0 = 10-3, yielding an ICM whih is about ∼ 80% as visous as the mean Spitzer value.

Label B-�eld β ν0 Re
hydro ... ... ... ...

xB6mhd Horizontal 1e6 ... ...

xB2mhd Horizontal 100 ... ...

tB2mhd Turbulent 100 ... ...

xB6N2 Horizontal 1e6 1e-2 50

xB6N3 Horizontal 1e6 1e-3 500

xB6N2lim Horizontal 1e6 1e-2 lim 50

xB6N2iso Horizontal 1e6 Iso 1e-2 50

xB6N3iso Horizontal 1e6 Iso 1e-3 500

xB2N2 Horizontal 100 1e-2 50

xB2N2lim Horizontal 100 1e-2 lim 50

xB2N2iso Horizontal 100 Iso 1e-2 50

tB2N2 Turbulent 100 1e-2 50

tB2N3 Turbulent 100 1e-3 500

tB2N2lim Turbulent 100 1e-2 lim 50

tB2N2iso Turbulent 100 Iso 1e-2 50

Table 3.3.: Parameter study of the simulations presented in this thesis. The �rst letter of eah label indiates the

magneti �eld geometry: uniformly, horizontally aligned (x) or turbulent (t). The seond letter refers

to the magneti �eld strength: weak, β = 106 (B6) or strong, β = 102 (B2). The third letter refers to

the visosity oe�ient: strong, ν0 = 10-2 (N2) or weak, ν0 = 10-3 (N3). The last syllable indiates

whether the Braginskii visosity is limited (lim) or isotropi (iso).

3.1.1. Magneti Field Con�guration

The �rst magneti �eld on�guration simply ontains a �eld horizontally aligned (x-diretion)

throughout the domain (within both the bubbles and the atmosphere), whih sets �eld lines

initially perpendiular to the (y-)diretion of the rising bubbles. It is expeted that this setup

shows a more oherent bubble morphology over time if anisotropi visosity is inluded. This is

expeted beause Braginskii visosity suppresses RTI and KHI along the �eld lines, thus having

Braginskii-MHD should show less instability at the bubble surfae in the x-y plane, parallel

to the �eld. For the strong �eld simulations the magneti �eld strength sales with density as

B(r) = B(0)(ρ(r)/ρ(0))1/2 as studies suggest (see setion 2.3.3). This means that the ratio of

gas to magneti pressures, β = 8πPth/B
2
, is kept onstant with height away from the luster

enter. Hene, the ambient magneti �eld strength generally dereases outwards in the ICM.

The seond magneti �eld on�guration aims for a more realisti approah in modelling the

ICM. Here, we generate a Gaussian-distributed, turbulent magneti �eld in aordane with the

proedure used in Ehlert et al. (2018). We will only desribe its most important aspets in this

thesis. For further details, we refer to the Appendies of Ehlert et al. (2018) and Ruszkowski
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et al. (2007). The initial magneti �eld B is Fourier transformed based on a Cartesian mesh,

while meeting some fundamental onstrains. B must be divergene-free, suh that ∇ ·B = 0.

Eah of the three �eld omponents Bi independently follows a one-dimensional power spetrum

PBi(k) of the form

PBi(k) ∝
{

k2, k < k
inj

k−5/3, k
inj

≤ k
(3.10)

where the power spetrum is de�ned by PBi(k) ∝ k2‖B̃i(k)‖2 with the Fourier transform of

eah �eld omponent B̃i(k). So, B follows a random white noise power spetrum on the largest

sales for wave numbers smaller than the injetion sale and a Kolmogorov spetrum in the

inertial range for k ≥ kinj. The average �eld strength is zero (〈B〉 = 0). In order to maintain a

onstant magneti-to-thermal pressure ratio, B2
is saled at eah radius aordingly. The result

is plotted in the left panel of �gure 3.2. The power spetrum governs the entire omputational

domain, meaning that also the bubbles ontains tangled magneti �eld lines instead of a more

realisti toroidal on�guration. However, the bubble region is magnetially isolated, whih an

be seen in the right panel of �gure 3.2. After reating the turbulent magneti �eld, the Cartesian

�eld omponents are then interpolated onto the adaptive Voronoi mesh of our initial onditions.

Therefore, all ell sizes of the Cartesian mesh need to be smaller than the smallest ell size of

our IC at any point. Sine the spatial domain is quite large, it is not omputationally feasible

to maintain the highest resolution of the smallest ell for the entire simulation box. Hene, it

beomes neessary to ombine multiple (in our ase two) nested meshes with adaptive mesh

resolution in order to be able to perform the individual Fourier transformations.

To ensure pressure equilibrium, the temperature is resaled adopting temperature �utuations

of the form nkBδT = −δB2/8π. The new IC is then relaxed using Lloyd's algorithm (see setion

3.2.1). In fat, relaxing the IC damps some remaining magneti divergenes, but at the same time

leads to a redution of the amplitude of the magneti �eld. Although we set the initial veloities

to zero, a small random veloity �eld will be generated soon after the simulation starts due to

the Lorentz fore of the tangled magneti �eld (Yang and Reynolds, 2016b). These indued

turbulent gas motions should gradually dissipate over time, thereby deaying magneti power.

Hene, the temperature and B2
of our IC are resaled again to the desired magneti-to-thermal

pressure ratio β-1
. We show the �nal radial pro�les of the turbulent on�guration in �gure 3.3.

The small bump at r/r0 = 1.8 ours beause there is the transition area from the �rst mesh to

the seond oarser nested mesh.

3.2. Initial Conditions

3.2.1. Mesh Relaxation

We relax the meshes of our ICs by using Lloyd's method (Lloyd, 1982) implemented in AREPO.

The algorithm iteratively onstruts a entroidal Voronoi tessellation starting from our Cartesian-

like tessellation. This is ahieved by moving the mesh-generating points to the enter-of-masses of

their ells until both oinide after reonstruting the Voronoi tessellation. After some iterations

the initial ubi ells are relaxed towards a honeyomb-like on�guration, while remaining the

same mass density pro�le, whih is shown in �gure 3.4. This mesh regularization has been

applied as it reates a non-degenerate tessellation, whih is omputationally more e�ient in

AREPO and it smoothes some of the remaining magneti divergenes. Having ells where the

enter-of-mass stays lose to the mesh-generating point minimizes numerial errors and limits

the rate at whih mesh faes turn their orientation during mesh motion (Springel, 2010). Hene,

an unrelaxed mesh would slow down the numerial omputation signi�antly.
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Figure 3.2.: Projeted slies of the x-y midplane for our model tB2N2 at t/t0 = 0 with mean magneti �eld

strength ‖B‖ = 0.5B0. Left : The initial x-omponent of the turbulent magneti �eld in units of

B0 = 18µG for β = 100 . The panel spans a spatial domain orresponding to dimensions x ∈ [±3 r0]
and y ∈ [±3 r0] Right : Radial omponent of the turbulent magneti �eld, ‖Br‖ = r ·B/‖r‖ in units

of B0, where the radial origin lies at the enter of the upper bubble and the magneti isolation of

the bubble region is learly visible. The panel spans a spatial domain orresponding to dimensions

x ∈ [±1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0 entered

at z = 0.

Figure 3.3.: Mass-weighted radial pro�les of the initial turbulent magneti �eld after resaling and relaxing the

mesh but before setting the bubbles. Left : On average onstant magneti-to-thermal pressure ratio

β-1
throughout the luster. Middle: Amplitude of the magneti �eld ‖B‖ in units of B0 = 18µG

with dependene on density suh that B ∝ ρ1/2. Right : On average onstant internal energy (ergo

isothermal temperature) throughout the luster.

Figure 3.4.: Highly zoomed-in slies of the luster ore with olor-oded density in units of ρ0. Left : The initial
non-relaxed grid at t/t0 = 0 onsists of nearly perfet ubi ells, whose perpendiular edges would be

numerially hallenging in AREPO. Right : After applying the Lloyd's algorithm for some time (t/t0 =
0.1), the relaxed mesh looks muh more optimized while its Voronoi ells try to retain a honeyomb-

like shape. Both slies span a spatial domain orresponding to dimensions x ∈ [-0.1 r0, 0.1 r0] and
y ∈ [-0.1 r0, 0.1 r0].
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3.2.2. Passive Salars and Re�nement Criteria

In order to be able to identify the bubble during its evolution, a passive salar, Xbub, is used. It

traes the �uid motions by reording the mass fration of the bubble material in eah Voronoi ell.

Xbub is initially set to one witihin the bubble region and zero everywhere else in the simulation

domain suh that Xamb = 1 − Xbub. The transition layer between bubble and ambient gas is

given a smoothly varying analytial pro�le for all number of grid ells N ,

Xbub,i =
1

2

(

1 + tanh

(

−ri − rbub
a

))

∀ i ∈ [0, N ], (3.11)

where ri = ‖ri − rbub‖ is the distane of the i-th grid ell to the losest bubble enter, rbub =

‖rbub‖ is the bubble radius and a is a smoothing parameter. We have tested several values

for a of otherwise unhanged simulations and ould infer that our ICs are quite sensitive to

this parameter (see �gure A.1 in the appendix). It kind of determines how well the density

gradients at the bubble surfae are resolved. From this small parameter study we onlude

that a = 0.1 rbub has yielded the best results in terms of Xbub mixing. As the bubble evolves,

subsequent advetion and mixing ensure that ells in�uened by the rising bubble an then have

frations of the initial passive salar values. We treat a Voronoi ell as bubble material if the

traer mass fration exeeds a ertain threshold, Xbub > 10-3, whih is plotted in the left panel

of �gure 3.5. Throughout this thesis, we refer to a mass fration of passive salars and passive

traers interhangeably.

Figure 3.5.: Slies of the x-y midplane showing the evolved state of the buoyantly rising bubbles at t/t0 = 4 for the
hydrodynamial setup of our highest resolution. Both the passive salars (left) and the volume of the

grid ells (right) are illustrating that the analysis of the bubbles an be niely traed while minimizing

the omputational osts by only using higher resolution where it is most needed numerially. Both

slies span a spatial domain orresponding to dimensions x ∈ [-3 r0, 3 r0] and y ∈ [-3 r0, 3 r0].

Di�erent re�nement riteria for the mesh are used to ensure we resolve the relevant bubble

physis on the one hand and to make the omputation muh more e�ient on the other hand. In

the default ase, the mass of eah ell is maintained at a ertain spei�ed target mass mtarget,0

(Vogelsberger et al., 2012). If a ell beomes a fator of two less massive than this threshold, this

ell will be dere�ned (and vie versa). We use the standard riterion in ells belonging to the

ambient gas. This reates large Voronoi ells at the luster outskirts, where the density dereases

onsiderably, whih minimizes the omputational ost. However, we do not want to have the

same re�nement riterion for the low-density bubble ells. Here, the default re�nement would

result in very poorly resolved bubble dynamis. Therefore, we use a volume-based re�nement

riterion for grid ells, whose traer mass fration satis�es Xbub > 10-3, whih is plotted in the
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right panel of �gure 3.5. If a ell's volume exeeds two times a �xed target volume Vtarget,0,

this ell gets re�ned. Due to the high density ontrast (ρbub/ρamb∼10
-2
), the boundary layer

between bubble and ambient ells needs a third re�nement riterion, whih is based on the

steepness of the density gradient ‖∇ρ‖ as V
1/3
i ‖∇ρ‖ > 0.5ρi. The latter two riteria replae the

default re�nement riterion whenever appliable (see Weinberger et al. (2017) for details). To

prevent runaway re�nement, a minimum ell volume Vmin is used to restrit eah ell's volume

to Vmin = Vtarget,0/2. The values of mtarget,0 and Vtarget,0 are summarized in table 3.1 for our

simulations with �duial resolution.

3.2.3. Boundary Conditions

Instead of simple periodi or re�etive boundary onditions, we use in-/out�ow boundaries at

radii r/r0 & 3. In AREPO, these speial boundary onditions requires using two types of

boundary ells: �uid and solid. The solid boundary ells are implemented into the Voronoi mesh

of the spatial domain as a thin spherial shell with width dr at radii 3r0−dr/2 < r < 3r0+dr/2.

The �uid ells are built up of boundary ells at radii greater than those of the solid boundary

layer. Throughout this thesis, we will refer to grid ells belonging to the spatial domain if they

are having radii smaller than r/r0 < 3 for simpliity. We have hosen this type of boundary

onditions in order to better maintain hydrostati equilibrium, whih we have had trouble with

establishing otherwise (see also setion 4.5). Furthermore, using in-/out�ow boundaries has the

advantage that the �uid state of the �uxes is not simply mirrored at the boundary interfae but

replaed with a prede�ned state desribing the in-/out�ow onditions (Weinberger et al., 2020).

At the solid state, i.e. the vertex veloities are set to zero to guarantee a �xed layer of ells. Both

states ensure that on the one hand no de-/re�nement riterion will be heked and on the other

hand no physial �uxes will be alulated for these ells. The number of ells belonging to our

boundary region onstitute for ≈ 27% of the total number of ells of the entire ubi box. This

makes our ICs numerially muh more e�ient sine splitting and merging of ells in a Voronoi

mesh is omputationally quite ostly and we avoid unneessary omputational time on solving

�uxes for ells, whih have no physial relevane.
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Chapter 4.

Analysis

In this hapter we analyse the simulations of our models summarized in table 3.3. We start

with our �duial run xB6N2, where we present its bubble evolution in detail by analysing the

global morphology in terms of emerging RTI and KHI in setion 4.1. Additionally, we disuss

its energy ontents, the mixing e�ieny and how omparable the ooling and heating rates are.

Next, we proeed by showing the results of the other simulations we have run. Basially after

disussing variations of speial interest for the model having uniform magneti �eld lines and a

very high plasma beta in setion 4.2, we move on to the next ase where we keep the uniform

alignment but inrease the magneti pressure to satisfy β = 100. This orresponds to analysing

run xB2N2 in setion 4.3. Afterwards, we present model tB2N2 in setion 4.4, where β = 100

is kept but now a turbulent magneti �eld is introdued. In the last setion 4.5, we perform a

ouple of sanity heks and a onvergene test in order to verify numerial reliability.

4.1. Bubble Evolution

The general evolution of the rising bubble is desribed in this setion for the �duial run xB6N2

omprising a very weak magneti �eld with β = 106, horizontally aligned �eld lines, and a relati-

vely high visosity oe�ient with ν = 10-2 without limiting the anisotropi pressure. The �gure

4.1 shows, from left to right, the traer mass fration Xbub, the density ρ, the veloity in units

of the sound speed cs, the kineti-to-thermal pressure ratio Xkin = Pkin/Pth and the magneti-

to-thermal pressure ratio β-1 = PB/Pth. As pointed out in setion 2.3.2, the luster atmosphere

is stable against onvetion aording to the Shwarzshild riterion, but introduing an under-

dense bubble lose to the enter of the gravitational potential will not keep the system stati as

the bubble represents a high entropy onentration with dS/dr < 0 at these radii. Furthermore,

the Shwarzshild riterion only applies to small disturbanes of a given equilibrium, whih is not

the ase for an underdense bubble of several kiloparses in size. So instead, a simpler argument

an be given onsidering the buoyany fore ‖Fbuoy‖ = −gVbub(ρamb − ρbub). Sine we have

ρamb > ρbub the buoyany fore is stronger than the gravitational fore ‖Fgrav‖ = gVbubρbub and

the bubble starts rising buoyantly upwards the luster potential and ambient gas starts strea-

ming inwards to �ll its wake. Thereby, the bubble will adiabatially expand to maintain pressure

equilibrium with its surroundings. The shear of veloity �ow, whih is the veloity di�erene

between bubble and ambient ICM, indues the KHI along the edges of the bubble sine the rise

veloity is subsoni, v/v0 < 1. The motions via KHI are evident in quikly forming vorties.

In addition, at the top of the bubble the RTI emerges by tearing the bubble front apart. Both

instabilities an already be notied at t/t0 = 4, whih later on highly distort the bubble interfae.

Those lead to turbulent mixing of the bubble material with the surrounding luster gas until all

of it will be di�used into the ICM. The perturbations indued by instabilities grow exponentially

with time suh that the amplitude A ∝ exp(t/τ). The time-sales for hydrodynamial RTI and

KHI, τRT and τKH respetively, are given by Chandrasekhar (1981) or by taking the inverse of it
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growth rates, e.g. from equation (4.15) for the KHI:

τKH =
ρbub + ρamb

2
√
ρbubρamb

1

∆vk

τRT =

∣

∣

∣

∣

ρbub + ρamb

ρbub − ρamb

1

gk

∣

∣

∣

∣

0.5 (4.1)

where ρamb is the density of the ambient gas, ρbub is the density of the bubble, ∆v is the

di�erene of the shearing veloities at the interfae, g is the gravitational aeleration and k is

the wavenumber of the perturbed length sale. The bubble is expeted to survive until . τ and

starting to dissolve after that. ∆v is su�iently lose to the terminal upward veloity vt, whih

we derived in setion 2.2.3 by balaning the drag fore with the buoyant fore. O'Neill et al.

(2009) show that equation (2.18) an be written to su�ient auray as vt ≈ cs,0
√

rbub/H ,

where cs,0 is the sound speed at the luster enter, rbub is the bubble radius and H is the sale

height. They also study the evolution of buoyant bubbles in a three-dimensional MHD simulation

with arti�ial bubbles. Applying the initial bubble onditions from O'Neill et al. (2009) into

their simpli�ed expression for the terminal veloity yields vt ≈ 0.4 cs. Using the relevant values

presented in this work (see setion 3.1) gives vt ≈ 0.44 cs ≈ ∆v. If we plug-in typial values

for our �duial simulation into equation (4.1), suh that ρbub/ρamb ≈ 10-2, ∆v ≈ 0.44 cs and

g ≈ 3 × 10-3 kpcMyr-2, we get the following time-sales ating on length sales omparable to

the bubble size:

τKH ≈ 280 (k 20 kpc)−1 Myr

τRT ≈ 77 (k 20 kpc)−0.5 Myr
(4.2)

Based on the time-sales the RTI should evolve

∼3.5 times faster than the KHI. If we are

interested in wavelengths of perturbations lose to the size of the bubble, i.e. the KHI should

emerge after

∼300Myr ≈ 3t/t0. By looking at our hydrodynamial runs in �gure 4.24 (at the

end of this hapter) we �nd that this is approximately the ase as the bubbles are already

disrupted into two relatively symmetrial eddies at t/t0 = 4. In fat, the RTI indues irulatory

motions within the bubbles, whih then get further mixed by seondary KHI along the ontat

disontinuity. The bubbles show a high level of vortiity and transform into a torus-like struture.

This is in aordane with previous �ndings of simulations with an unmagnetized and invisid

luster model (Reynolds et al., 2005; Gardini, 2007). The distorted bubbles do not resemble the

morphology of X-ray and radio observations of (ghost) avities and our hydrodynamial model

an therefore be exluded from further disussion. However, generally e.g. hanging the density

ontrast or the way the bubble is in�ated an substantially alter the outome of hydrodynamial

simulations. That the �duial run xB6N2 shows suppressed instabilities in diret omparison is

related to the e�ets of visosity on the buoyant evolution sine stresses from the magneti �eld

an be negleted. For instane, there are no profound, fully formed vorties visible at t/t0 = 4 as

in the hydrodynamial ase, but the bubble is still shredded in a omplex manner, although with

muh less vortiity in its wake. Therefore if the instabilities are not suppressed, the disruption

of the bubble ours muh earlier as the vortex �ows disturb the entral bubble region and push

material to either side of it as the bubble is moving upwards the luster atmosphere. However,

the anisotropi visosity suppresses instabilities only in the diretion parallel to the magneti �eld

lines (Dong and Stone, 2009; Suzuki et al., 2013; Berlok et al., 2019). Hene, we also examine the

e�ets on morphology in the y-z plane perpendiular to the �eld presented in �gure 4.2. Here,

the bubble remains less oherent as in the x-y plane and gets shredded into distint piees. This

results in stronger mixing at later times, where small sale strutures develop. After a ertain

time the bubble is not able to on�ne itself any longer as there is not any surfae tension exept
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for the very weak magneti �eld. The bubble splits into two, while parallel to the �eld the

bubble stays more intat. These are lear indiations of anisotropi suppression of RTI and KHI.

Note that it is ambiguous to de�ne a disruption time of the bubble, whih ould for instane

just depend on the oherene of the bubble front or on the maximum energy deposition into the

ICM.

The �uid motions are traked by the veloity vetor �eld in the middle olumns in �gure

4.1. At early times the streamlines visualize how the initially stati luster gas starts to �ow

inwards along the edges of the bubble towards its wake. At later times, t/t0 = 8, the streamlines

signal a more turbulent �ow, showing that the uplifted gas is being disintegrating into the ICM.

Looking at both of the outer olumns, where the magneti vetor �eld is plotted, we see that the

initially uniform magneti �eld lines get bended and dragged along with the rising bubble. As

desribed in setion 2.3.2, the �uid is oupled to the magneti �eld lines, whih are adveted with

the gas �ow. Although the magneti �eld is very weak with β = 106, it gets loally ampli�ed

(damped) where the �eld lines are getting ompressed (strethed). This is shown in the last

olumn in �gure 4.1, where the inverse β is plotted. After some time, the magneti �eld strength

is being ampli�ed by three orders of magnitude espeially at the wake, traing the rising bubble

upward the gravitational potential. Here the �eld lines get strethed the most, thus having the

highest magneti tension fores. In addition, we see bending of �eld lines at the bubble front via

magneti draping (Dursi and Pfrommer, 2008). But sine the magneti �eld is so weak, draping

e�ets are not strong enough to stabilize the bubble and suppress RTI. The fourth olumn shows

the kineti-to-thermal pressure ratio, whih is of order unity in the quiesent luster atmosphere

and heavily enhaned for the bubble material, meaning that the bubble dynamis are kinetially

driven. The blue shell at the top of the panels looks like a shok front, but it is atually just the

boundary layer of our IC, whih remains at the same loation throughout the simulation (see

setion 3.2.3). The same quantities are plotted in �gure 4.2 for the projeted y-z midplane. At

a �rst glane, they show basially the same piture besides the deomposing morphology of the

faster disrupted bubble. If we look for instane more arefully at t/t0 = 2 for Xbub and ρ, we

an infer that the bubble slies perpendiular to the uniformly magnetized ICM already show

signs of KHI starting to take plae, whereas the parallel bubble slie at t/t0 = 2 in �gure 4.1

looks very symmetri, only modi�ed by ram pressure. So Braginskii visosity does suppress the

growth rates of KHIs, but not enough to prevent these maro-sale instabilities from emerging.

One detail is also worth mentioning. The trail the rising bubble left behind in its wake is no

longer bipolar due to the gas moving with the magneti �eld and is probably not a projetion

e�et.
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Figure 4.1.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines showing the

traer mass fration Xbub, the density ρ, the veloity in units of the sound speed cs, the kineti-to-
thermal pressure ratio Xkin = Pkin/Pth and the magneti-to-thermal pressure ratio β-1 = PB/Pth

for our �duial run xB6N2. Eah panel spans a spatial domain orresponding to dimensions x ∈
[-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0 entered
at z = 0. For the traer mass fration and the magneti-to-thermal pressure ratio, the streamlines

show the magneti vetor �eld. For the other three quantities the streamlines show the veloity vetor

�eld. Eah vetor �eld is presented as a thin projetion as well. The olor-oding is logarithmially

saled where the olorbar tiks are labeled in power of tens and linear otherwise. The olorbar is

�xed for the di�erent times shown.
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Figure 4.2.: Same quantities as in �gure 4.1, but now showing projeted slies of the y-z midplane perpendiular

to the initially uniform magneti �eld lines. Eah panel spans a spatial domain orresponding to

dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in x-diretion have width

dr = 0.066 r0 entered at x = 0.

4.1.1. Energy Content

The evolution of the energy omponents for our �duial run are shown in �gure 4.3, where we

plot eah mean energy density as its ratio to the total energy density, ǫtot = ǫkin+ǫth+ǫB, whih

is exluding ǫg in order to see the ratios in more detail as the amount of gravitational energy is

lose the total energy. The gravitational energy is thus plotted separately in the fourth olumn

as the di�erene to its initial value ∆ǫg = ǫg(t) − ǫg(0). We refer to an energy omponent as

an energy by taking Ekin =
∫

V ρv2dV/2 for the kineti energy, Eth =
∫

V ρu dV for the thermal

energy, EB =
∫

V B2dV/8π for the magneti energy and Eg =
∫

V Φρ dV for the gravitational

potential energy. To get the mean energy densities we divide those energy terms by the total

volume V =
∫

V dV = 36π r30.

As previously disussed the magneti energy gets enhaned at the rim of the bubble but is still

negligibly small ompared to the other energy terms. Hene, the magneti �eld is energetially

subdominant in the bulk of the ICM, espeially sine β = 106. The gravitational energy is

subtrated by the bakground potential energy. It an be seen that the bubble front is buoyantly

rising upwards the luster potential, while the bubble interior is not experiening a gravitational

net fore. With time the bubble adiabatially expands and mixes with the ambient ICM. This

is slowing down the terminal speed of the lobe due to loss of momentum to the ambient gas and
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due to loss of buoyany fore beause of the inreased density. The thermal and kineti energy

ratios look quite similar, although being inverse to eah other. The kineti fration just provides

up to about 12% of the total energy, while ontribution of thermal energy never falls below

88%. The kineti energy ontribution dereases with time throughout the bubble material. We

expet the kineti energy being onverted into thermal energy on time-sales that are resolved

by our simulation. This an not be learly inferred by looking at the panels in �gure 4.3, but

is beoming more evident by omparing the left and right sub�gures of 4.4 though. For the

former, we plot the energies volume averaged over the entire spatial domain as a funtion of

time. We do the same for the latter, but restrit the energy averages to Voronoi ells identi�ed

as bubble material. A ell is lassi�ed as a bubble ell if the traer mass fration exeeds a

ertain threshold: Xbub > 10-3. We an see that after t/t0 ≈ 2 the bubble starts loosing kineti

energy ontinuously while the thermal energy inreases. This is an indiation for heating, whih

will be disussed later on in setion 4.1.3. However, the onversion only appears in the bubble

itself sine the bulk of the ICM stays relatively una�eted from a energeti point of view (see

�gure 4.4).

Figure 4.3.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines for our

�duial run xB6N2 showing from left to right the magneti energy density, thermal energy density

and kineti energy density normalised to the total energy density, whereas the latter is exluding the

gravitational energy density omponent, whih is shown in the fourth olumn as the di�erene to its

initial value ∆ǫg = ǫg(t) − ǫg(0). Eah panel spans a spatial domain orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0
entered at z = 0.
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(a) Left : Evolution of total energy Etot and its energy

omponents volume-averaged over time overing the

entire spatial domain within r/r0 < 3. Right :

Relative energy hanges at eah time t suh that

∆E(t) = E(t)−E(0) is the energy omponent sub-

trated by its initial value.

(b) Same as in the left sub�gure, now limited to the bub-

ble region, where the latter is de�ned as the number

of ells exeeding Xbub > 10-3.

Figure 4.4.

4.1.2. Mixing

As disussed in a previous setion, a buoyantly rising bubble is going to get distorted and

eventually mixed with the quiesent ambient gas sooner or later depending on the level of visosity

or the strength of the magneti �eld. One way to quantify the fration of mixed gas is to ompute

the volume overing fration, whih we will show in �gure 4.25 for the onvergene study in

setion 4.5. Another way to estimate mixing is to ompute the gas lumping fator Cρ, whih is

a measurement of how density varies within a gaseous medium. The peaks of a lumping fator

distribution represent gas lumps and an be interpreted as perturbations from the smooth gas

density pro�le. The gas lumping fator is de�ned by averaging the luster density pro�le within

radial shells of onstant width from the luster enter (Vazza et al., 2013):

Cρ(r) =

∫

Ω ρ2(r)dΩ
(∫

Ω ρ(r)dΩ
)2 =

〈

ρ2
〉

Ω

〈ρ〉2Ω
≥ 1, (4.3)

where Ω is the solid angle of a sphere. A homogeneous ICM with a smooth gas density distribution

is onsidered to be not lumpy (Cρ = 1). However, X-ray analyses of galaxy lusters show that

the gas density inferred from the X-ray surfae brightness is overestimated by

∼
√

Cρ if the ICM

is lumpy. We note that averaging within spherial shells in our model setup might not be

a good approximation sine introduing bubbles in a homogeneous ICM breaks the spherial

symmetry in the luster. As Vazza et al. (2013) point out, a high gas lumping fator does

not neessarily imply an inreased presene of dense gas lumps, espeially sine we are not

investigating distributed gas lumps whih have formed due to aretion or mergers. However,

we an rewrite equation (4.3) as a measure of the density variation of the ICM suh that Cρ is

related to the variane and mean of the density as

Cρ =

〈

ρ2
〉

〈ρ〉2
=

〈

ρ2
〉

− 〈ρ〉2

〈ρ〉2
+ 1 =

〈

(ρ− 〈ρ〉)2
〉

〈ρ〉2
+ 1 =

Var(ρ)

E(ρ)2
+ 1, (4.4)



4.1. Bubble Evolution 52

where we omit Ω for brevity. The mass-weighted gas lumping fator is shown on the left in

�gure 4.5. We plot Cρ of the entire luster for our �duial run xB6N2 at several times and

ompare it with the hydrodynami simulation. Based on the peaks, we an infer until whih

radius the bubble has risen at eah time given. The width of eah distribution indiates how

spread the bubble has beome. We see that the bubble of the Braginskii run slows down due to

anisotropi visosity and only reahes out to r/r0 ≈ 2.5 with its bubble front at time t/t0 = 8

while most of the bubble gas lies at r/r0 ≈ 1.8. In the hydrodynamial ase, the bulk of the

bubble material reahes out to r/r0 ≈ 2.5 after the same time. Overall, Cρ stays lose to one

at all times. The amplitudes of both samples peak roughly at the same lumping fators at

eah time, shifted to larger radii for hydro. We expeted a slightly di�erent result with xB6N2

having higher lumpiness throughout the simulation, beause Braginskii visosity should damp

some �uid motions from being mixed with the quiesent ICM. Instead, the left panel of �gure

4.5 suggests that our visosity driven run displays approximately the same amount of mixing

as the invisid ontrol run. Visual omparison of �gures 4.24 and 4.1 however indiate that

there is less mixing in the Braginskii run than in the hydrodynamial run. Hene, using the gas

lumping fator to assess the amount of mixing for an unstable rising bubble might not be very

reliable and we will not ontinue with a deeper analysis. That the �nal lumpiness does not

di�er muh is probably related to the anisotropi suppression of instabilities as the bubble rises.

We have already desribed that the bubble is less oherent in the y-z plane perpendiular to the

magneti �eld for our �duial run (see �gure 4.2). That is possibly why our overall piture of

lumpiness is relatively vague to interpret, beause the torus-like shape of an evolved bubble in a

hydrodynamial environment and e�ets due to anisotropi visosity might result in omparable

gas lumping fators when averaging over radial shells. Furthermore, hanges in density do not

have to neessarily our due to mixing. In fat, the luster density is also a�eted by soundwaves

and adiabati expansion or ompression of gas.

Therefore, we quantify mixing next by avoiding using a method based on averaging radial

shells. We ahieve this by plotting the entropy of the traer mass fration Xbub as a funtion of

time on the right in �gure 4.5. This method is desribed by Leoanet et al. (2016), where they

introdue a dye onentration in their simulations, whih is analogous to passive salars used in

this thesis. Both quantities range from 0 to 1. So the loal fration of dye partiles is similar

to our traer mass fration Xbub, exept that Leoanet et al. (2016) add a di�usion term in the

equation for the evolution of the dye onentration. Although we do not have suh a term in our

set of Braginskii-MHD equations, we an still take advantage of using the dye sine we are only

interested in the volume-integrated dye entropy S =
∫

ρs dV . The dye entropy per unit mass is

de�ned as s = −Xbub lnXbub (Leoanet et al., 2016) and the total dye mass is given by

MX =

∫

V
ρXbubdV. (4.5)

To make the total entropy unitless, we divide S by its maximum entropy Smax = −X∗
bub lnX

∗
bub

∫

ρ dV ,

where X∗
bub =

∫

ρXbubdV/
∫

ρdV = MX/M . The maximum entropy represents the �uid state

where the dye onentration is fully mixed within the �uid. We �nd that a fully mixed luster

would have X∗
bub = 0, while a ompletely unmixed �uid with Xbub = 0 or Xbub = 1 everywhere

has zero dye entropy. We show the evolution of S/Smax in the right panel of �gure 4.5. We infer

that our hydrodynamial model shows higher entropy ompared to our Braginskii run, whih

indiates higher level of mixing. The ICM of xB6N2 beomes to 33% fully mixed at t/t0 = 8,

while the invisid run reahes 37 perent of its maximum dye entropy. It beomes muh learer

now that anisotropi visosity suppresses mixing of a buoyantly rising bubble by evaluating the

dye entropy budget of the luster than by plotting the lumping fator. Note that S/Smax is not
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zero at t/t0, beause our bubble has an analytial pro�le for the traer mass fration initially,

whih smoothly transitions from Xbub = 0 to Xbub = 1 (see equation (3.11)).

Figure 4.5.: Left : Mass-weighted gas lumping fator Cρ averaged over thin radial shells, evaluated at di�erent

times for both the �duial simulation (solid lines) and the hydrodynamial run (dashed lines). Right :

Volume-integrated dye entropy S as a funtion of time, normalised by the maximum entropy Smax

for a fully mixed dye onentration. A fully mixed luster has S/Smax = 1

4.1.3. Cooling and Heating

While studying the interations of rising bubbles in a luster atmosphere, we are also interested

in measuring the heating rate of the ICM due to MHD transport proesses. As desribed in

setion 2.2.3 the avities provide roughly enough energy to balane the AGN heating rate with

the radiative ooling rate of the entral gas. The probably self-regulating mehanism of heating

and ooling is mitigating ooling �ows in CCs and preventing its ore ollapse. The X-ray ooling

rateQ−
via bremsstrahlung an be estimated from observed X-ray surfae brightness maps and is

approximated by Q− = n2Λ(T ), where n is the number density and Λ(T ) is the ooling funtion

depending on the temperature T . We have already derived Q−
and Λ(T ) in equations (2.13) and

(2.14), respetively, where we have integrated the emissivity over all frequenies. Normalized

to quantities in our ICs, we get a radiative ooling rate (per unit volume) at the luster enter

analogous to Kunz et al. (2011) of

Q− ≈ 8× 10-27
( n

0.03 cm-3

)2
(

kBT

3.34 keV

)1/2

erg s-1 cm-3. (4.6)

In our simulations we need to ompute syntheti X-ray images, where we assume the loal X-ray

emissivity to be proportional to ρ2T 1/2
and integrate along the line of sight (z-diretion) through

the simulation domain (see equation (2.13)). The syntheti X-ray images of our �duial model

xB6N2 are shown in the �rst olumn in �gure 4.7. At the luster enter, the intensity IX is

the highest sine more bremsstrahlung is emitted due to higher number densities ausing more

Coulomb ollisions at the ore. The bubble has very faint emission due to its high temperature

and low density. At early times, the displaement of X-ray emission is learly seen in the uprising

avity and its morphology shows good agreement with observations. However, despite the fat

that we use a relatively high visosity oe�ient (about 8 times the Spitzer value, see setion

3.1), eddies and perturbations form quite fast at the rim of the bubble, whih are atually

not observed. And as already disussed, the avities are even less oherent in the y-z plane

perpendiular to the initial magneti �eld lines. Later on as the avity gets disturbed by KHI

and RTI, more luster gas gets mixed with its interior and more bremsstrahlung is radiated away.
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It is unlear how the AGN energy is atually thermalized. Sine many heating mehanism in

galaxy lusters are proposed (see setion 2.2.5), we will only fous on the one arising from pressure

anisotropies ∆p = p⊥ − p‖, whih enter Braginskii-MHD as an anisotropi visosity tensor (see

setion 2.3.5). Kunz et al. (2011) show that pressure anisotropies regulate visous heating of a

weakly ollisional magnetized plasma. They infer that these lead to loal heating rates whih

are omparable to the radiative ooling rates in the ICM, if there is su�ient turbulent energy

provided, whih an be thermalized. In addition, they show that the balane between visous

heating and radiative ooling is thermally stable, whereas it is not with thermal ondution,

whih arises from an anisotropi heat �ux in the Braginskii-MHD equations (whih we neglet

in this thesis).

We desribed in setion 2.3.5 that the anisotropi pressure arises due to the onservation of

the �rst adiabati invariant for eah partile on time-sales muh larger than the ion ylotron

frequeny: µ = mv2⊥/2B = onst. So, any hange in magneti �eld strength must be aompa-

nied by a proportional hange in perpendiular pressure, suh that p⊥/B ∼
onst. Certainly, a

turbulent ICM will indue time-dependent �utuations in B, but also an initial quiesent ICM

as modelled with xB6N2 will lead to hanges in B, sine the rising bubbles are subjet to non-

linear maro-sale instabilities like KHI and RTI (see setion 4.1). Therefore, regions of positive

(negative) pressure anisotropy will emerge, orresponding to loally inreasing (dereasing) mag-

neti �eld strength, whih is plotted in the latter olumns of �gure 4.6. We an see that most

of the pressure anisotropy is formed at the rim of the bubble, where the primary vorties are

going to be indued. The reason is that ∆p is dependent on the rate of strain (see equation 4.9

below) and therefore is assoiated with turbulent motions. Sine the primary vorties injet the

majority of turbulent energy into the turbulene asade, the highest level of ∆p are reahed at

these eddy regions.

Comparing ‖B‖ of the �rst olumn of �gure 4.6 with the unlimited ∆p in olumn three,

ontraditorily suggests that the pressure anisotropy is not dependent on magneti �eld strength,

whih an be misleading sine xB6N2 is based on an initial β = 106, orresponding to ‖B‖ =

0.1µG. In fat, realling from equation (2.42) shows that we have a magneti �eld strength

proportionality as ∆p ∝ d/dt(lnB3ρ-2) ∝ Ḃ/B. So even if B is small, the frational hange per

unit time, Ḃ/B, an be large. Thus in the �duial run, unlimited ∆p is sensitive to hanges

in �eld strength, beause we see that ∆p ≈ 0 in the trailing region where B is enhaned, but

dB/dt ≈ 0 stays roughly onstant. If we limit ∆p aording to equation (2.48), the pressure

anisotropy is pinned to a very narrow range of possible values due to the extreme plasma beta.

In fat, we �nd that ∆p ≈ 30 ×∆plim in the fourth olumn of �gure 4.6 and we see now, that

the limited anisotropi pressure oinides with ‖B‖ instead of Ḃ. Regions of positive (negative)

∆p orrespond to a stronger perpendiular (parallel) thermal pressure omponent and are olor-

oded in green (brown).

If the pressure anisotropy ∆p beomes omparable to the magneti energy density B2/8π,

miro-sale instabilities will be triggered (see setion 2.3.6), whih are not desribed by Braginskii-

MHD and are not resolved in our simulations. In kineti simulations, these miro-sale instabi-

lities regulate pressure anisotropy suh that they sustain marginal stability (Rosin et al., 2011).

Hene, in order to model visous stresses orretly, ∆p is limited within thresholds for stability

of �rehose and mirror instability (see equation (2.48)),

− 2 <
8π∆plim

B2
< 1, (4.7)

where we abbreviate fplim = 8π∆plim/B
2
for onveniene, whih is plotted in the seond and

third olumns of �gure 4.7. The di�erene between both olumns is that the seond one takes
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Figure 4.6.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines for our �duial

run xB6N2 showing from left to right the magneti �eld strength in miro Gauss, the plasma beta

and the unlimited and limited pressure anisotropy. The last olumn is idential to the third olumn

exept that it shows the projeted y-z midplane. Eah panel spans a spatial domain orresponding

to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width

dr = 0.066 r0 entered at z = 0.

the unlimited fp and lips them to lie within [-2, 1], while the third olumn limits fplim before

plotting it as a projeted slie. The projetion represents a small average in z-diretion of almost

entirely values being either -2 or 1. Therefore, the third olumn appears as if fplim would not

be saturated inside the bubble region, but basially it just shows a shifted mean to smaller

values ompared to olumn two, where fp ranges up to orders of magnitude of ±103. Eitherway,

�rehose-unstable (mirror-unstable) regions appear as saturated red (violet) pathes. We note

that the limiters are just arti�ially implemented in the post-proessing for the presented run

xB6N2. The IC itself has been simulated without limiting ∆p. Thus, sine the pathes in the

seond olumn are over-saturated, it shows that miro-sale instabilities are exited very quikly.

In other words, the pathes indiate regions of departure from marginal stability. This is not

surprising onsidering the very low magneti �eld strength (β = 106), whih shrinks the range

of the limits in equation (4.7) signi�antly.

From equation (2.44) we see that ∆p is proportional to the parallel visosity oe�ient and

an be interpreted as an anisotropi visous �ux. This enables us to alulate the heating rate

due to parallel visous dissipation of motions. Its derivation follows the arguments presented by

Kunz et al. (2011). Starting from the visosity tensor Π, the visous heating rate Q+
is given
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by

Q+ = −Π : ∇v = ∆p

(

bb : ∇v − 1

3
∇ · v

)

. (4.8)

The term in parentheses is the rate of strain, whih is related to the ion-ion ollision frequeny

as

νii∆p = 2.88 p

(

bb : ∇v − 1

3
∇ · v

)

. (4.9)

So, the rate of strain indues pressure anisotropies, whih are relaxed on the ion-ion ollision

time-sale, whenever turbulent motions our. If we assume that νii is independent from miro-

sale instabilities, equation (4.9) states that the prodution of pressure anisotropy by maro-sale

�uid motions is balaned by isotropization via Coulomb ollisions. Using equation (4.9) together

with νii = 0.96 p/(ν‖ρ), we an rewrite equation (4.8) solely in terms of the pressure anisotropy,

Q+ =
1

2.88
νii

(∆p)2

p
=

(∆p)2

3 ν‖ρ
=

(∆p)2

3µ
, (4.10)

whih is always positive (see also Berlok et al. 2019). So, the parallel visous heating rate (per

unit volume) is ahieved by assuming that the pressure anisotropy is a soure of free energy that

is eventually onverted into heat by ollisions (Kunz et al., 2011). Q+
from equation (4.10) is

plotted in the fourth and �fth olumns of �gure 4.7, where the latter is restrited by applying

limiters for ∆p. The fourth olumn shows that the unlimited visous heating rate is the highest

in the wake of the bubble at early times when the bubble is about to break apart. There, the

rate an go up to Q+
max = 3.4Q+

0 , where Q+
0 ≈ 10-25 erg s-1 cm-3

, whih is basially the same

value as alulated by Kunz et al. (2011).. Also the rims of the bubble are quite pronouned

with average heating rates of Q+
avg = 0.01Q+

0 . Converting the ode units of typial heating rates

into physial units yields

Q+
avg = 0.01Q+

0 ≈ 1.1× 10-27 erg s-1 cm-3, (4.11)

Q+
max = 3.4Q+

0 ≈ 3.5 × 10-25 erg s-1 cm-3. (4.12)

The maximum value peaks at about a fator 40 times larger than the radiative ooling rate, whih

we estimated in equation (4.6), whereas the average value only reahes one tenth of the ooling

rate. This means that unlimited Braginskii heating is apable of balaning radiative ooling at

some loal regions, but it is not throughout the entire luster ore and not ontinuously over

time. As the visosity oe�ient is quite high, visous stresses an have an e�et on the �uid

motion and dissipate into thermal energy. At later times the turbulent motions get weaker and

onomitant pressure anisotropy, whih is quadratially proportional to the heating rate. Hene,

the latter dereases aordingly. By looking at the y-z plane (see �fths olumn of �gure 4.6), a

similar piture beomes apparent. Exept for the strong heating rate in the wake at t/t0 = 2,

the values for visous heating perpendiular to the x-y plane lie in the same range and are

pronouned at the rim of the evolving bubble. The last olumn of �gure 4.7 shows again parallel

visous heating, but with hard-wall limited ∆p. The olorbar is saled in a similar interval

as before multiplied by 10. So the limited values are weaker by roughly a fator of 20 overall

ompared to the unlimited ones. In addition, visous heating appears at di�erent regions now,

beause the pressure anisotropy is muh more sensitive to hanges in the magneti �eld strength

in the limited ase. This an be seen in the upper panel at t/t0 = 2, where the very weak

magneti �eld lines have not been muh ompressed or strethed yet ompared to the initial

uniform alignment. Together with equation (4.7), yields that ∆plim beomes muh smaller than
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∆p if B2
stays very weak. Only when B2

is loally inreasing in ompressed regions, ∆plim
beomes notieably larger. It is useful to ompare olumn �ve of �gure 4.7 with olumn four of

�gure 4.6 to infer that both Q+
lim and ∆plim/p oinide with eah other.When the rising bubble

evolves, the �eld lines get ompressed, the magneti �eld gets enhaned and pressure anisotropy

indued in these regions is limited by a smaller fator, whih in turn leads to visous heating.

Figure 4.7.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines for our

�duial run xB6N2 showing the syntheti X-ray surfae brightness map, the departure from marginal

stability for the pressure anisotropy and the parallel visous heating rate (both eah unlimited and

limited aording to equation (2.49)). Eah panel spans a spatial domain orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0
entered at z = 0.

We show the volume-weighted average heating and ooling rate separately over time in �gure

4.8. The left sub�gure shows that the ooling rate averaged over the entire spatial domain stays

nearly onstant at Q− = 10-26 erg s-1 cm-3
, whereas the average unlimited visous heating rate

does not inrease above Q+ = 10-29 erg s-1 cm-3
, whih puts the latter to the same order of

magnitude as the loal (non-averaged) limited heating rate Q+
lim. Instead of looking at the total

luster average, we plot the average heating rate of the bubbles in the right sub�gure, where we

de�ne a bubble ell if the passive traer exeeds 10-3. The ooling rate is now slightly dereasing

over time, sine the bubble rises upwards into lower dense regions of the luster ore. The average

bubble heating rate is only one order of magnitude smaller than ooling at early times, when

maro-sale instabilities indue turbulent motions, whih produes pressure anisotropy. So, with

an initially very weak, non-turbulent magneti �eld, parallel visous heating is not apable of
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balaning ooling throughout the bulk of the ICM. It only beomes quite notieable in the bubble

region itself over a short time-sale. The dependene on the bubble loation beomes lear by

looking at the radial pro�les in �gure 4.9. The region in�uened by bubble motions adiabatially

expands over time and dissipates energy aross a larger range of radial shells. But as already

pointed out, the average visous heating rate nowhere reahes signi�antly high values ompared

to radiative ooling for our �duial model.

Figure 4.8.: Left : Time evolution of the volume-weighted averaged heating and ooling rate in physial units.

Right : Same as left sub�gure, but restrited to bubble ells with Xbub > 10-3.

Figure 4.9.: Left : Mass-weighted radial pro�les of the ratio between heating and ooling rate at spei� times.

Right : Mass-weighted radial pro�les of the heating rate (solid lines) and ooling rate (dashed line) in

physial units at spei� times. The ooling rate stays nearly onstant at all times.
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4.2. Uniform B, β = 10
6

So far, we have desribed and analysed the global evolution of our �duial run xB6N2, whih

models the ICM as an extremely weakly magnetized plasma. We also inferred visous heating

rates from the �uid motions having a Reynolds number of approximately 50, while the pressure

anisotropy was not limited. In setion 4.2.1 we analyse the results when on the one hand the

visosity oe�ient is redued by a fator of ten as in model xB6N3 (yielding Re = 500), and

on the other hand when the visosity is not redued spei�ally, but the pressure anisotropy is

limited as in model xB6N2lim aording to the thresholds given by equation (2.48). In setion

4.2.2 we analyse how an isotropi Braginskii visosity a�ets the evolution of an buoyantly rising

bubble. The initial orientation and the strength of the magneti �eld is kept unhanged in all of

these three ases.

4.2.1. Parameter Study - Reduing and Limiting ν‖

For run xB6N3, the redued visosity oe�ient implies an inreasing Reynolds number to

Re = 500. As pointed out in setion 3.1, this results in a modelled ICM, whih is just about 20

perent as visous as we have estimated for the Spitzer value. So, it should be muh less e�ient

in suppressing KHIs or visous heating than our �duial run. We expet a similar outome

for xB6N2lim, if the limiters are applied to pressure anisotropy sine the interval where ∆p is

not pinned to marginal stability beomes very narrow for a very high plasma beta (see setion

4.1.3). We an see its evolution in morphology in �gure 4.10, where the passive traer mass

fration is plotted for several di�erent Braginskii runs and ompared to the hydrodynamial

run in the �rst olumn. The rising bubbles show no striking di�erenes between runs hydro,

xB6N2lim and xB6N3. This implies that �rstly, the miro-sale instabilities are triggered so

fast in xB6N2lim that atually very little pressure anisotropy an be produed, whih indues

visous stresses. Seondly, the unlimited visous stresses in xB6N3 are not strong enough

to suppress RTI e�etively and the bubble material gets mixed with the ambient medium on

time-sales omparable to the hydro run. Therefore, in order to resemble the oherent avities

observed in X-ray surfae brightness maps, the visosity oe�ient must be at least lose to the

Spitzer value. Furthermore it is interesting to note, if we ompare the wake of xB6N2lim with

xB6N2, we identify just a mono-line of vertially stripped gas in the limited run, whereas in the

unlimited ase there are learly two projeted stripes of gas visible. These stripes also indiate

enhaned magneti �eld strengths due to strethed/ompressed �eld lines. From this point of

view, xB6N3 seems to be an intermediate ase, where the duality is slightly apparent. Also the

bubble front of xB6N2 at t/t0 = 2 is wider ompared to xB6N2lim, where the morphology has

more like a bullet shape.

How well eah model mixes its bubble material with the ambient ICM an be seen in �gure

4.11, where we plot the volume-integrated passive traer entropy S as a funtion of time (see

setion 4.1.2). The two models being disussed in this setion have levels of entropy lose to the

hydro run, implying nearly unsuppressed mixing rates. Thereby, the limited run with ν‖ = 10-2

is slightly less visous than the unlimited run with ν‖ = 10-3. Hene, on�rming our qualitative

analysis. The violet line representing the isotropi model di�ers signi�antly and will be disussed

in setion 4.2.2. We �nd the following ordering

Shydro > Slim > SBrag > Siso, (4.13)

preisely as expeted.
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Figure 4.10.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines showing the

traer mass fration Xbub for several models inluding from left to right hydro, xB6N2lim, xB6N3
and the �duial run xB6N2. Eah panel spans a spatial domain orresponding to dimensions

x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0
entered at z = 0.

Figure 4.11.: Volume-integrated dye entropy S as a funtion of time, normalised by the maximum entropy Smax

for a fully mixed dye onentration. A fully mixed luster has S/Smax = 1. It shows the mixing

e�ieny of the bubble material for the given runs or in other words how visous the evolving bubbles

beome.
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In the �rst three olumns of �gure 4.12 we show the evolution over time of the limited pres-

sure anisotropy, the limited range of marginal stability and the limited visous heating rate for

xB6N2lim. By diretly omparing the "physially" limited ∆plim (�rst olumn) with the "arti-

�ially" limited one of xB6N2 in the fourth olumn of �gure 4.6, we an infer that the bubble

region produes ten times more pressure anisotropy in the former ase.

The parallel visous heating rates for simulation xB6N2lim (third olumn of �gure 4.12) are

fairly of the same order of magnitude than the unlimited rates Q+
for xB6N2 shown in the fourth

olumn of �gure 4.7. In addition, we an infer that the "physially" limited ∆p in xB6N2lim

loally indues about one order of magnitude more visous heating than the "arti�ially" limited

∆p in xB6N2. So, after onsidering both "physially" and "arti�ially" mixing and heating

rates, it beomes lear that it is not su�ient to simply mimi limited pressure anisotropy by

lipping its values during the post-proessing after the simulation has been already run.

The last three olumns of �gure 4.12 show the unlimited results of ∆p, fp and Q+
for run

xB6N3. The unlimited visous heating rates are smaller than about a fator of ten ompared to

xB6N2. This might be quite surprising as Q+
is proportional to 1/ν‖, naively indiating that

lowering the visosity oe�ient would result in an inreased heating rate. But sineQ+ ∝ (∆p)2,

the prodution of the latter must be onsidered more powerful. And indeed, by omparing ∆p of

xB6N3 with xB6N2 (third olumn of �gure 4.6) we infer that ∆p(xB6N2) ≈ 10×∆p(xB6N3),

resulting in a ten times smaller heating rate for xB6N3, onsidering that ν‖(xB6N2) = 10 ×
ν‖(xB6N3).

Nonetheless, xB6N2lim and xB6N3 show di�erent bubble regions where visous heating

emerges. The reason is the same as we have already disussed in setion 4.1.3 and ours

beause of the extremely high plasma beta. If ∆p is limited, it beomes sensitive to hanges in

magneti �eld strength. Where the �eld lines get ompressed, pressure anisotropy is produed

whih enters visous heating quadratially. If it is unlimited, prodution of ∆p is dominated by

the rate of strain of turbulent motions. We do not present radial pro�les of the Q+/Q−
ratio or

the alike, beause the graphs are quite similar to the ones plotted for xB6N2, exept that the

heating rates are even weaker.
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Figure 4.12.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines showing from

left to right the limited pressure anisotropy, departure from marginal stability and visous heating

for xB6N2lim, and the unlimited∆p, fp and Q+
for run xB6N3. Eah panel spans a spatial domain

orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion
have width dr = 0.066 r0 entered at z = 0.
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4.2.2. Isotropi Visosity

Instead of modelling buoyantly rising bubbles a�eted by anisotropi visosities within Braginskii-

MHD, we take the isotropi visosity tensor as introdued in equation (2.47) and disuss in this

setion how the bubbles evolve if the visous stresses are not dependent on the diretion of the

magneti �eld lines. We an see the isotropi result with Re = 50 in �gure 4.13, whih we

an ompare with the isotropi runs "5" from Reynolds et al. (2005) and "H2" from Dong and

Stone (2009). As our traer mass fration and syntheti X-ray image show, Navier-Stokes vis-

osity suppresses KHIs and RTIs and thus prevents mixing quite e�iently. Diretly omparing

xB6N2iso with xB6N2 reveals a drastially altered bubble evolution, where the bubble remains

intat throughout the simulation time. Espeially the bubble front stays oherent and undis-

turbed from maro-sale instabilities. However, a mushroom-like trailing region is forming over

time, whih is in good agreement with the �ndings by Reynolds et al. (2005); Dong and Stone

(2009). The syntheti X-ray surfae brightness map also mathes with observations of X-ray

avities in real galaxy lusters (see �gure 2.2 for Perseus-A). The isotropi mixing rate is plotted

as the violet line in �gure 4.11 indiating that the entropy of the passive traer reahes only

17% of its maximum entropy level for a fully mixed ICM at t/t0 = 8. This value is about one

half of the run xB6N2 with anisotropi visosity at the end of the simulation. Hene, the latter

is not as e�ient as an isotropi visosity at suppressing KHI, beause the e�etive anisotropi

visosity is dependent on the �eld line diretion and therefore its damping e�et on motions is

redued.

From the vortiity map, showing the absolute url of veloity ‖(∇ × v)‖ in units of 1/t0, we

an infer that the bubble interior is relatively quiesent and not driven by turbulent motions.

Although the highest levels of vortiity are indued at the rim of the bubble as it rises upwards

the luster atmosphere, these are not su�iently high to trigger KHI or RTI. In addition, pressure

support might play a role in form of draping of magneti �eld lines at the bubble front, where

magneti pressure is enhaned by nearly a fator of 100. The isotropi morphology and vortiity

generation resembles the �ndings by Dursi and Pfrommer (2008) performing 3D simulations of

overdense bubbles rising in an initially uniformly magnetized medium.

We note that a run with an isotropi Navier-Stokes visosity of νiso = 10-3 (Re = 500) does

not show a oherent bubble surfae. Note that this level of visosity is roughly ∼ 80% νsp the

Spitzer value (see setion 3.1), whih is quite interesting onsidering the following study. Using

deep Chandra observations of the Coma luster, Zhuravleva et al. (2019) �nd from analysing

density �utuations down to the visous dissipation sale that the e�etive isotropi visosity in

the bulk ICM is suppressed by a fator of ∼ 100 by omparing with hydrodynami simulations

based solely on Coulomb ollision rates. This implies that the luster gas appears to be muh

more turbulent with a large e�etive Reynolds number and that their results �t best with hydro-

dynami simulations using level of isotropi visosity with νiso ∼ 0.01 νsp of the Spitzer value. In

�gure 4.13, our isotropi visosity oe�ient is roughly 8 times as visous as the Spitzer value. If

we lower νiso by one order of magnitude (∼ 80% νsp), the evolution of our bubble shows emerging

KHIs resulting in disrupted bubble interfaes. We suppose that if we would have run another

simulation with νiso ∼ 1% νsp (onsistent with Zhuravleva et al. 2019), the bubble would have

been shredded muh sooner not resembling the morphology of observed (ghost) avities. The-

refore, isotropi dissipation of momentum is not very likely the orret physis for suppressing

�uid maro-instabilities. Zhuravleva et al. (2019) onlude that the suppressed e�etive visosity

an be explained by preferring non-hydrodynami models inluding anisotropi transport and

plasma miro-instabilities in order to aount for the enhaned ollision rates.
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Figure 4.13.: Projeted slies of the x-y midplane parallel to the initially uniform magneti �eld lines showing

from left to right the traer mass fration, the line-of-sight integrated X-ray emissivity, the abso-

lute vortiity in units of t0, the plasma beta and the magneti �eld strength in miro Gauss for

run xB6N2iso. The �rst, fourth and �fth olumns show streamlines of the magneti vetor �eld,

while the third olumn shows the vetor �eld of the veloity. Eah panel spans a spatial domain

orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin projetions in z-diretion
have width dr = 0.066 r0 entered at z = 0.
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4.3. Uniform B, β = 100

In this setion we present model xB2N2lim, where we keep the initially uniformly magnetized

medium, but inrease the magneti �eld strength from ‖B‖ = 0.1µG to ‖B‖ = 9µG by setting

the plasma beta to β = 100. Additionally, our modelled B-�eld beomes radially dependent on

the density suh that B(r) = ρ(r)1/2, whih is in aordane with the �ndings by Bonafede et al.

(2010) for �tting an isothermal luster pro�le (see setion 2.3.3). Figure 4.14 shows qualitatively

the mixing e�ieny and the evolution in morphology of the rising bubble of run xB2N2lim

by plotting the traer mass fration Xbub and the line-of-sight integrated X-ray intensity IX =

ρ2T 1/2
. Odd olumns show the projeted x-y midplane, while even olumns show the y-z

midplane perpendiular to the uniformly aligned �eld lines. A striking di�erene between the

two planes beomes immediately apparent. The plasma beta is now four orders of magnitude

greater than in the disussed models before, hene making the anisotropi e�et of magneti

tension pronouned. The magneti �eld is so strong that the maro-sale �uid motions beome

two-dimensionalized with respet to the magneti �eld diretion. In the x-y midplane parallel

to the �eld, RTIs are suppressed by high magneti tensions and visous stresses. Conversely, in

the y-z midplane perpendiular to the �eld, neither Braginskii visosity nor magneti tension is

very e�ient in suppressing RTI and we see elongated �ngers emerging from the rising bubble.

Figure 4.14.: Projeted slies of xB2N2lim alternating between the x-y midplane parallel to the initially uniform

magneti �eld lines and the y-z midplane perpendiular to it. The �rst two olumns show the traer

mass fration Xbub with streamlines of the magneti vetor �eld, the middle olumns the syntheti

X-ray surfae brightness map and the last two olumns the absolute vortiity with streamlines of the

veloity vetor �eld. Eah panel spans a spatial domain orresponding to dimensions [-1.5 r0, 1.5 r0]
and [0, 3 r0]. The thin projetions have width dr = 0.066 r0.

The ourrene of these �ngers might be supported by the fat that the initial bubble region
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has not been magnetially isolated from the ambient uniformly aligned �eld lines. As desribed

in setion 2.3.1 the plasma �uid is tied to the �eld lines. So as the bubble buoyantly rises, it

drags the �eld lines with it, whih inhibits the bubble material to esape due to the relatively

high magneti tension e�ets. Together with the fast-growing RTI, where perturbations are quite

unsuppressed in the perpendiular diretion, the elongated �ngers beome apparent as a physial

onsequene.

The magneti �eld strength and the limited pressure anisotropy an be seen for both midplanes

in �gure 4.15. We �nd that the prodution of ∆plim reahes roughly the same order of magnitude

as the unlimited ∆p in run xB6N2 (see �gure 4.6). Therefore, as long as the magneti pressure of

the ICM is su�iently large ompared to the thermal pressure, the pressure anisotropy lipped to

lie within kinetially motivated thresholds does not shrink notieably and simultaneously mixing

is suppressed by magneti tension. This is in ontrast to a very weakly magnetized ICM where

∆plim indued visous stresses alone are not apable of keeping the bubble material unmixed

(see setion 4.2.1). We have ran both xB2N2 and xB2N2lim, but fous only on the latter

in this setion, beause both look very similar in terms of morphologial evolution and their

derived quantities. They do not di�er muh, beause both ∆p and ∆plim vastly never trigger the

�rehose or mirror miro-instabilities, whih an be seen in the latter two olumns of �gure 4.15

for xB2N2lim. Exept for the y-z midplane at t/t0 = 2 the thresholds for marginal stability are

almost nowhere reahed. Note that we plot fp here without projetion to ensure not to dilute

the panels with a mean omputed from averaging positive and negative values. If the miro-sale

instabilities are never triggered, then implies that the visous stresses an be entirely desribed

by Braginskii-MHD and are not inhibited at some spatial regions. In this ase we do not expet

to see a physially motivated disagreeing outome by omparing xB2N2 and xB2N2lim.

Therefore, we fous on analysing ∆plim of run xB2N2lim in the middle two olumns of �gure

4.15. The bubble interior itself and its trailing region are dominated by the parallel pressure

omponent (olor-oded in brown), whereas the rim of the bubble is dominated by the pressure

omponent perpendiular to the loal magneti �eld lines (olor-oded in dark-green). The

regions where ∆plim is indued oinide quite well with regions of higher levels of vortiity, whih

on�rms that pressure anisotropy is produed where �uid motions generate a non-negligible

amount of rate of strain, whih is not dependent on the strength of the magneti �eld (see

equation 2.44). Whether ∆plim is positive or negative depends partially on the loal diretion

of the �eld line b and also on the gradient and divergene of veloity. So one an tell from

∆p ∝ d/dt(lnB3) ∝ bb : ∇v∇·v) whether the magneti �eld is inreasing in time or dereasing.

It is quite interesting to note that both projeted midplanes do not signi�antly di�er in the

amount of pressure anisotropy they produe.

In order to larify that it physially does not matter for the bubble evolution whether the

anisotropi pressure is limited or not, we plot the visous heating rates for the simulations xB2N2

and xB2N2lim in �gure 4.16. It beomes evident that not only are the buoyantly rising bubbles

evolving quite similar, but also dissipate nearly the same amount of heat, whih is omparable

to the unlimited visous heating rate of xB6N2 with β = 106 in �gure 4.7. Hene, the rate of

visous heat Q+
seems to be not dependent on the initial plasma beta used for modelling the

ICM of an isothermal luster ore, if one ignores the kineti limiters. On the other hand, it does

depend signi�antly if the limiters are onsidered.

If the pressure anisotropy is driven to be at marginal stability of the miro-sale instabilities

aording to equation (2.49), we an rewrite the expression for visous heating (4.10) together
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Figure 4.15.: Projeted slies of xB2N2lim alternating between the x-y midplane parallel to the initially uniform

magneti �eld lines and the y-z midplane perpendiular to it. The �rst two olumns are showing

the magneti �eld strength in miro Gauss ‖B‖, the middle olumns the limited pressure anisotropy

∆plim and the last two olumns departure from marginal stability fp. Eah panel spans a spatial

domain orresponding to dimensions [-1.5 r0, 1.5 r0] and [0, 3 r0]. Exept for the latter two, the thin
projetions have width dr = 0.066 r0.

with the Spitzer visosity of equation (2.30) to

Q+
lim = 7.7× 10-27 ξ2

( ‖B‖
10µG

)4( kBT

3.34 keV

)−5/2

erg cm-3 s-1, (4.14)

where ξ is either -2 (p‖ dominated �rehose unstable) or 1 (p⊥ dominated mirror unstable). In

fat, equation (4.14) assumes that ∆plim reahes marginal stability in the entire spatial domain

suh that there is no spatial region where the miroinstabilities are not triggered. Note the

strong dependene on magneti �eld strength, Q+ ∝ B4
, whih beomes immediately lear here

ompared to equation (4.10). We an infer that loally Q+
lim ≈ Q−

by omparing the limited

heating rate (4.14) with the ooling rate (4.6) if normalised to the same ICs. This is only to

some extent onsistent with the results found by Kunz et al. (2011). In fat our estimate (per

unit volume) in equation (4.14) is equal to the one stated by Kunz et al. (2011), but they laim

that both visous heating and radiative ooling should approximately balane themselves at all

radii inside the luster ore due to turbulent dissipation, Q+
lim(r) ≃ Q−(r). This is not what we

infer from plotting the mass-weighted radial pro�les for the ratio Q+/Q−
at di�erent times of

the bubble evolution for runs xB2N2 and xB2N2lim in the right sub�gure of 4.17. Instead we

see that the ratio only barely reahes 10-2 inside the bubble region at early times. At later times

the ratio shrinks ontinuously down to several 10-4, whih an be also seen in the left sub�gure

of 4.17, where we plot both rates separately restrited to ells lassi�ed as bubble material as
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a funtion of time. Outside the bubble region visous heating rates are negligibly small and

are not even lose to balane radiative ooling. This seems to be in ontrast with Kunz et al.

(2011). However they assume a turbulent ICM with a onstant soure of driving the turbulent

motions, where the prodution of pressure anisotropy triggers the miro-sale instabilities in

order to sustain marginal stability within limits already derived in equation (4.7). These limits

are fp = [-2, 1], where fp = 8π∆p/B2
. In our simulation setup, the bubble does not drive suh

strong motions in a volume �lling fashion.

Figure 4.16.: Projeted slies alternating between the x-y midplane parallel to the initially uniform magneti

�eld lines and the y-z midplane perpendiular to it. The �rst two olumns show the unlimited

parallel visous heating of xB2N2 and the last two olumns the limited parallel visous heating

of xB2N2lim. Eah panel spans a spatial domain orresponding to dimensions [-1.5 r0, 1.5 r0] and
[0, 3 r0]. The thin projetions have width dr = 0.066 r0.

We try to reprodue their assumption by restriting fp for eah ell in our omputational

domain to be exatly either -2 or 1. This allows us to quantify the visous heating rate as a

theoretially maximum averaged over the entire luster ore, whih is plotted in the left sub�gure

of 4.18 as a funtion of time. We infer that indeed the average Q+
beomes omparable to the

radiative ooling rate as the ratio between both stays almost onstantly at one at all radii (see

right sub�gure of 4.18). Therefore, we onlude that the estimated balane by Kunz et al.

(2011) is satis�ed with our ICs onsidering the given assumptions. So on ondition that a
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luster atmosphere has a steady soure of driving turbulene, parallel visous heating in terms

of a spei� heating mehanism among several others an be potentially high enough to not be

negleted in order to solve the ooling �ow problem. In our simulation setup, however, the AGN

bubble on its own is not a su�ient soure. Other soures of driving, e.g. mergers, ould inrease

the heating rate (see disussion in hapter 5).

Figure 4.17.: Left : Time evolution of the volume-weighted averaged heating and ooling rate in physial units,

restrited to bubble ells with Xbub > 10-3. Solid lines show the rates for the unlimited run xB2N2
and dashed lines for the limited run xB2N2lim. Right : Mass-weighted radial pro�les of the ratio

between heating and ooling rate for both models at spei� times.

Figure 4.18.: Left : Volume-averaged visous heating rate and radiative ooling rate for the entire luster domain

as if the pressure anisotropy for eah ell has a value exatly suh that the lower (upper) threshold for

reahing marginal stability by triggering the �rehose (mirror) miro-instability is taken, plotted as

the dashed (dotted) line. The orange solid line represents the ase as if for eah ell fp = 8π∆plim/B
2

is randomly given either the lower or the upper limit value. Right : Similar to left sub�gure but now

plotted as mass-weighted radial pro�les at time t/t0 = 4.
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4.4. Turbulent B, β = 100

After disussing in detail the di�erent models with an uniformly magnetized ICM in previous

setions, we analyse the model tB2N2lim in this setion, where the magneti �eld is initialized

aording to a Kolmogorov power spetrum at an injetion sale slightly larger than the bubble

size (the harateristi length sale). The magneti �eld on�guration is desribed in setion

3.1.1. Its result is a turbulent ICM with a roughly onstant plasma beta and internal energy

throughout the spatial domain with a �eld strength dependene on density as B ∝ ρ1/2 and mag-

netially isolated bubbles. These properties make the turbulent magneti �eld model tB2N2lim

our most sophistiated model presented in this thesis.

In setion 4.3 we showed that simulations with β = 100 display roughly the same behaviour

regardless of whether pressure anisotropi limiters are used or not. Thus, we hoose to solely show

the physially more relevant simulation tB2N2lim where ∆plim is limited. The bubble evolution

is plotted in �gure 4.19 for both the projeted x-y and the y-z midplane. In omparison to the

uniform magneti �eld alignment with β = 100 disussed previously in setion 4.3, we do not

see elongated Rayleigh-Taylor �ngers or mushroom-like vortex-rings emerging in the turbulent

ICM. We do see di�erent patterns in how the bubble gets mixed with the ambient gas between

the two presented midplanes. One spatial diretion seems to be more e�ient in suppressing

maro-sale instabilities than the other. We assume that this observation is simply due to the

Gaussian random distribution of the initial magneti �eld in k-spae.

Figure 4.19.: Projeted slies of tB2N2lim alternating between the x-y midplane and the y-z midplane. The

�rst two olumns are showing the traer mass fration Xbub with superimposed streamlines of the

magneti vetor �eld, the middle two olumns the syntheti X-ray surfae brightness maps ρT 1/2
and

the last two olumns show the veloity �eld v/v0. Eah panel spans a spatial domain orresponding

to dimensions [-1.5 r0, 1.5 r0] and [0, 3 r0]. The thin projetions have width dr = 0.066 r0.



71 Chapter 4. Analysis

Nonetheless, the overall mixing and dissipation rates are relatively high. Neither the magneti

tension e�ets nor the visous stresses are apable of suppressing RTI and KHI on longer time-

sales, not even in the x-y plane where the bubble interior stays most oherent over time. The

turbulent �uid motions beome strongly anisotropi due to the Lorentz fore and the turbulent

eddies dissolve in the turbulent asade and interat between di�erent modes (see setion 2.3.3).

In �gure 4.20 we ompare several quantities, whih are all linked together physially as we

already pointed out by disussing them in previous setions. The pressure anisotropy is pro-

portional to the rate of strain (see equation 2.44), whih in turn depends on turbulent motions

represented by the url of the veloity vetor - the vortiity. ∆p also inreases with an enhaned

magneti �eld (see equation 2.42), indued by ompressed �eld lines and represented by the mag-

neti �eld strength and the plasma beta. Furthermore, the prodution of anisotropi pressure

is an indiator for how muh visous heating dissipates into the ICM. By looking at the fourth

olumn in �gure 4.20, we do see the same levels of ∆plim in the rising bubble and its wake as in

xB2N2lim. Additionally, also the ambient gas beomes anisotropi to relevant amounts due to

the turbulent motions. The ambient pressure anisotropy is mainly negative indiating that on

the one hand the magneti �eld lines get rather strethed than ompressed or on the other hand

the injeted turbulent veloities fade out and their gradients derease. At loally on�ned regions

∆plim triggers the �rehose (mirror) instability as an be seen in the �fths olumn as saturated

red (violet) small pathes. However, the majority of the plasma lies within fp = 8π∆plim/B
2
,

where no lipping is needed in order to keep the MHD desription of the �uid appliable. Note

that fp is not shown in projetion to avoid plotting a smoothed out average value.

The visous heating rate lies in the same order of magnitude as in the other simulations with

a non-turbulent �eld. A notieable di�erene in run tB2N2lim is the fat that at early times

not only the bubble interior itself reahes relevant heating rates, but also the ambient ICM

produes enough ∆plim to indue su�iently high levels of Q+
. Sine there is no driver for

onstantly injeting turbulene into our luster atmosphere, the initial turbulent motions start

to dissipate their kineti energy and the ambient gas beomes quiesent again at later times as

in the uniformly magnetized models. Here, by initial we mean that the turbulent veloities are

entirely introdued by the Lorentz fore due to the tangled magneti �eld, beause they are set

to zero at t/t0 = 0. The additional soure of heat from the turbulent ICM however, is still not

apable of balaning the radiative ooling rate as an be seen in �gure 4.21. We note that we

aount for visous heating from the ambient turbulent motions in the left sub�gure by using

the vortiity map as a new threshold for averaging Q+
instead of the traer mass fration. Even

so, Q+
turb is still about a fator of ten smaller than Q−

at early times and drops down to even a

hundredth of the latter later on, whih is basially repeating the same graph as for Q+
bub of run

xB2N2lim in �gure 4.17.

The mass-weighted radial pro�les in the right sub�gure of 4.21 reveal a similar result. Alt-

hough the limited turbulent run shows slightly higher heating-to-ooling ratios ompared to the

unlimited turbulent simulation tB2N2, the overall piture shows that Q+/Q−
dereases onti-

nuously with time. As in xB2N2lim the ratio barely reahes values of 10-2 at the beginning

of the simulation, where the initially injeted turbulent veloities ontribute most of the ICMs

pressure anisotropy to support visous heating. This beomes apparent as the orange line stays

relatively onstant at Q+/Q− ≈ 2 × 10-3 even at the outer radii, whereas for xB2N2lim in

�gure 4.17 visous heating establishes itself only inside the bubble region and drops down to

Q+/Q− ≈ 2 × 10-6 at the outer radii for the same time t/t0 = 2. At later times the turbulent

motions get dissipated and in turn no new turbulent energy soures are introdued (exept for

RTI and KHI indued turbulent eddies). Hene, the overall Q+/Q−
ratio dereases down to

∼ 10-3 for the bubble region and even lower at the ambient radii. This shows that turbulent
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visous heating as omputed in our isothermal luster model is still too low in terms of being

a neutralising agent for radiative ooling throughout sales of spae and time. Nonetheless, as

we pointed out with �gure 4.18, visous heating has the potential in doing so, if there would be

onstant driving of turbulene in the luster ore suh that pressure anisotropy would steadily

be lying within levels of marginal stability.

Figure 4.20.: Projeted slies of the x-y midplane showing from left to right the magneti �eld strength in miro

Gauss, the plasma beta, the absolute vortiity, the limited pressure anisotropy, the departure from

marginal stability fp and the visous heating rate. The �rst and seond olumns show streamlines of

the magneti vetor �eld, while the third olumn shows the vetor �eld of the veloity. Eah panel

spans a spatial domain orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0] and y ∈ [0, 3 r0]. The thin
projetions (exept for fp) in z-diretion have width dr = 0.066 r0 entered at z = 0.

Figure 4.21.: Left : Time evolution of the volume-weighted averaged heating and ooling rate in physial units,

restrited to grid ells with vortiity levels exeeding ‖(∇ × v)‖ > 5/t0. Solid lines show the rates

for the unlimited run tB2N2 and dashed lines for the limited run tB2N2lim. Right : Mass-weighted

radial pro�les of the ratio between heating and ooling rate for both models at spei� times.
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4.5. Sanity Chek and Convergene Test

As a last part of our analysis, we hek on the one hand that our ICs show numerial onvergene

and on the other hand if they maintain hydrostati equilibrium over time. First, in order to test

for hydrostati equilibrium, we perform a simulation without bubbles and hek that the veloities

within the unperturbed ICM approahing zero. Without using the speial boundaries for our

ICs, whih we have desribed in setion 3.2.3, the luster atmosphere does not stand still and

instead �uid veloities emerge moving towards the outer edges of the spatial domain. This an be

explained sine we lip the density distribution at 3 r/r0, where the analytial beta-pro�le has not

beome asymptotially lose to zero. Hene, the luster annot maintain hydrostati equilibrium

in this ase. One ould lip the density distribution at arbitrarily large r/r0 to ensure that ρ ≈ 0

approahes zero at the outer radii, but this would expand the spatial domain to unreasonable

large dimensions in terms of total number of ells to keep the resolution onstant. Therefore, we

introdued in-/out�ow boundaries, whih results in very low absolute veloities throughout the

ICM suh that we an on�rm hydrostati equilibrium.

Next, we alulate the perentage hange in total energy and in total mass within the boun-

daries of our domain. In �gure 4.22 we show the results for our simulation hB6N2 with the

�duial resolution. The total energy is the sum of kineti, thermal, magneti and gravitational

energy (for notation see setion 4.1.1). We �nd that by the end of the simulation the loss both

in total energy and total mass is less than one perent of the initial value. Despite that the

total energy is not perfetly onserved, we onlude that our simulations are still feasible and

that our outer boundary onditions work �ne. In addition, we have heked that the HD run

and the ideal MHD run (i.e. without visosity) with a very weak magneti �eld (β = 106) are

nearly indistinguishable in terms of morphology and show the same harateristis during their

evolution.

Figure 4.22.: Left : The red urve shows the perentage hange in total energy taken over the simulation time,

where Etot = Ekin +Eth +EB +Eg. The blue urve shows the frational perentage hange in total

energy for eah timestep. Right : Similar to the left sub�gure, here plotted with total mass, where

Mtot =
∫
V
mdV .

Next, we perform a resolution study to on�rm that our �duial resolution is numerially

onverged. This is important to show that the physial dynamis of the �uid motions are
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resolved (to a ertain degree). We use the same approah as done by Dong and Stone (2009)

sine our model setup is quite similar (see setion 3.1). We take the hydrodynami runs at

four di�erent resolutions, where eah resolution gets inreased by multiplying the number of

ells by a fator of

∼ 3. Note that the simulation labeled "Higher" is idential to our �duial

one. We show the onvergene for the kineti energy as a funtion of time and for 〈vy〉M as a

funtion of radius r in �gure 4.23. 〈vy〉M is the absolute value of the vertial omponent of the

veloity, mass-averaged over a spherial shell at eah radii. As Dong and Stone (2009) state,

〈vy〉 should be indiating onvergene quite well sine it is a proxy for the buoyant motion of

the bubbles. This does not beome very lear by looking at �gure 4.23. The two lowest and

the two highest resolutions seem to oinide with eah other, but looking at all of them there

is no asymptoti onvergene towards higher resolutions identi�able. The di�erene beomes

even more notieable for the kineti energies and hints at whether we resolve KHI or not. For

both of the higher resolutions, length sales of the perturbations of the KHI seem to be resolved,

whih indue turbulent motions at the bubble interfae and thus higher levels of kineti energy.

In addition, those �uid ells get dissolved and mixed faster with the ambient gas, whih slows

down the rising bubble as it expands, damping 〈vy〉 a little bit. In fat, we do want the KHI

to be resolved in order to be able to infer how e�etively Braginskii visosity suppresses the

maro-sale instabilities. Therefore, we fous on analysing the �duial run as it is very lose to

our highest resolution simulation both quantitatively in terms of Ekin and 〈vy〉 and qualitatively

in terms of morphology. We expet, if we would have gone even one step higher in resolution, it

would still resemble the urves of our highest resolution. We note that inreasing the resolution

even further would not be easily ahievable, beause the Braginskii timestep is proportional to

the ell size squared, ∆tBrag ∝ (∆x)2 (see setion 2.4.1).

Figure 4.23.: Left : Convergene test plotting the kineti energy for eah of our hydrodynami resolutions. The

resolution labeled "Higher" is idential to our �duial resolution. We set the next higher resolution

by inreasing the number of ells N by a fator of

∼ 3. Right : Convergene test plotting the vertial
omponent of the veloity, mass averaged over a spherial shell as a funtion of radius of that shell

at t/t0 = 5.

We also ompare the bubble morphology for eah of our four resolutions in �gure 4.24. The

passive salar mass fration is plotted to fous on di�erenes due to mixing. The global evolution
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has been already analysed in setion 4.1, whih we will not repeat here. We on�rm that the

�rst two and the last two resolutions show similar morphologies to eah other. A main di�erene

between both groups is that the rise veloity of the bubble front sales with resolution. This

orrelation has been found for jet-in�ated bubbles as well (Bourne and Sijaki, 2017; Weinberger

et al., 2017). The bubble front travels further in higher resolution simulations, whih implies

that it is important to su�iently resolve the veloity gradient. It an also be learly seen that

the two big eddies, indued by KHI, and the mixed bubble gas they drag along with them, get

muh better resolved with higher number of ells. This is needed to quantify e.g. visous heating

(see setion 4.1.3). The highest resolved simulation shows higher traer mass frations at the

top of the bubble, whih indiates a suppression of RTI ompared to the �duial resolution run.

Also the eddies stay more ompated and pronouned over time.

Figure 4.24.: Projeted slies of the x-y midplane showing the traer mass fration Xbub for eah of our hydrodyn-

ami resolutions. Eah panel spans a spatial domain orresponding to dimensions x ∈ [-1.5 r0, 1.5 r0]
and y ∈ [0, 3 r0]. The thin projetions in z-diretion have width dr = 0.066 r0 entered at z = 0.

As already mentioned above, there seems to be a jump in mixing ontent of bubble material

with the ambient gas between the medium and the �duial resolution. We quantify the amount of

mixed gas by plotting the normalised volume fration as a funtion of the traer mass fration at
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time t/t0 = 8 in �gure 4.25. Both of the higher resolution runs have their values of the overing

volume fration shifted towards lower traer mass frations ompared to the lower resolution runs.

The former ones also peak at higher volume frations of mixed gas. This shows quantitatively

that our higher resolved simulations result in more mixing. This is in ontrast to the resolution

studies by Bourne and Sijaki (2017) and Ehlert et al. (2018) with jet-in�ated bubbles, where

they �nd mixing to be suppressed at higher resolutions. In Bourne and Sijaki (2017) and Ehlert

et al. (2018) this is due to less numerial mixing in AREPO. We believe our higher resolutions

indue more mixing beause the hydrodynami KHI is signi�antly better resolved than in our

lower resolution runs. Indeed, KHI rolls are visible at the leading edge of the bubble in our

two higher resolved runs, but not in the lower resolution runs. In order to understand why our

simulations have mixing via KHI and Ehlert et al. (2018) do not, we estimate the growth rate of

the KHI in the two setups. To quantify the growth rate of the hydrodynami KHI, we take its

dispersion relation for a planar sheet in the inompressible, invisid limit Chandrasekhar 1981,

see also setion two in Berlok and Pfrommer (2019):

ω± =
δ ± i2

√
1 + δ

2 + δ
∆v k, (4.15)

where k is the wavenumber (related to the wavelength of the roll by k = 2π/λ), ∆v is the

�ow veloity and δ is the density ontrast δ = ρbub/ρamb − 1. The growth rate σ is given by

the imaginary part of equation (4.15), suh that σ = − Im(ω). Thus, for a density ontrast

of ρbub/ρamb = 10-2 we get a growth rate of σ ≈ 0.2∆v k, whih resembles our model setup.

Ehlert et al. (2018) �x the density ontrast to be ρbub/ρamb = 10-4, whih yields a growth rate

of σ ≈ 0.02∆v k. So in our simulations, the KHI is one order of magnitude more e�ient than

in the setup by Ehlert et al. (2018). Sine numerial dissipation depends on the grid resolution

and the KHI growth rate is proportional to the wavenumber, ergo the grid resolution (Berlok

and Pfrommer, 2019), we onlude that the large di�erene in density ontrast might explain

why mixing is not suppressed in our �duial simulation.

Figure 4.25.: Normalised volume overing fration of a given traer mass fration of the hydrodynami runs for

eah of our numerial resolutions at time t/t0 = 8 to show the mixing e�ieny of the bubble. The

volume overing fration is plotted in aordane to Ehlert et al. (2018).
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Disussion

We have shown in setion 4.4 with our simulations that not even a turbulent ICM is apable of

su�iently heating the luster atmosphere to levels of radiative ooling in a volume �lling fashion.

Our heating estimates are thereby restrited to only onsider parallel visous heating rates arising

from anisotropi pressures. Additional heating hannels need to be taken into aount for a total

piture, but quantifying all of them would be far beyond the sope of this thesis. A promising

soure is heating by mixing as supported by Hitomi observations of the Perseus luster ore

(Hillel and Soker, 2017). The heating-mixing mehanism is aused by dissipation of modes

indued by KHI. To get the heating rate via mixing of the ambient luster gas we would need to

alulate the time derivative of the ambient thermal energy,

∫

V u(Xbub − 1) dV , sine we expet

the thermal energy at the bubble rim to inrease if mixing is dominant (Yang and Reynolds,

2016a). This estimate will still not yield how muh of the heating is due to mixing, beause an

unertain fration of this rate is due to pdV work. Sine our ICs are based on the setup by Dong

and Stone (2009), we an refer to their �ndings that the internal energy of buoyant bubbles

only inreases by a few perent at late times onluding that heating by mixing is not very

e�etive for a initially stati ICM. However, Dong and Stone (2009) do not inlude a turbulent

on�guration of the ambient gas in their studies. Atually, a turbulent atmosphere enhanes

mixing in omparison to our quiesent ICM with the same thermal-to-magneti pressure ratio.

But the turbulent mixing rate does not beome more e�ient than the β = 106 ase and even for

the latter Dong and Stone (2009) �nd that hanges in internal energy are not notable. Hene,

we suppose that mixing is subdominant as a heating soure in our simulations.

If we want to inrease the heating rate based on visous heating alone, we probably need

to inlude AGN-driven bubbles in our ICs, where lobes are in�ated self-onsistently by sub-

relativisti jets. These jets will drive and injet turbulent energy into the luster ore region

with high amounts of vortiity in their wake. Additionally, the jet interior will have a highly

tangled magneti �eld, whose �eld lines get strongly bended. This turbulent on�nement leads to

inreasing levels of rate of strain and magneti �eld strength and eventually higher Q+
rates. How

muh loser that visous heating rate will be to Q−
ompared to our setup with arti�ially stati

bubbles might depend on the spei� jet model implementation. So for instane, whether multiple

epohs of jet ativity will be simulated to injet turbulent modes on a roughly onstant rate,

whih an ultimately lead to isotropi jet heating of the entire luster ore region (MNamara

and Nulsen, 2012). Here, isotropi means that due to jet preession and atmospheri pressure

gradients multiple sequently in�ated lobes an possibly deposit their energy via weak shoks

and sound waves (Bambi and Reynolds, 2019) over muh of the luster volume of the inner

atmosphere. Suh a fully turbulene-driven luster atmosphere will theoretially be apable of

balaning Q+/Q− ∼ 1 as we have shown in �gure 4.18.

As Kunz et al. (2011) show, the global self-regulated mehanism of visous heating and radia-

tive ooling, whih an mitigate ooling �ows and prevent a luster ore ollapse, an probably

also be established loally. If we reall equation (4.14) from setion 4.3 for the visous heating

rate (per unit volume),

Q+
lim = 7.7× 10-27 ξ2

( ‖B‖
10µG

)4( kBT

3.34 keV

)−5/2

erg cm-3 s-1,
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we infer that the strong dependene on ‖B‖ omprises the impliit dependene on density and

the rate of strain of the turbulene. So, as turbulent veloities inrease, onomitant will the

magneti �eld strength and thus the dissipation rate Q+
will inrease aordingly. Therefore,

Q+
an be loally self-regulating, in a sense that it is ompletely independent of the AGN, ating

as an external soure providing the turbulent energy globally (Kunz et al., 2011). But with the

addition, that the loal self-regulation is only maintained as long as there is enough turbulene

to pin the pressure anisotropy at its stability thresholds. Kunz et al. (2011) note that due to the

onstraint on the turbulent rate of strain (set by miro-sale instabilities), not all of the external

power injeted by driving turbulene is neessarily thermalized loally. In fat, the turbulene

may have an e�etive exess in its amount of power, where only those turbulent modes get

dissipated at the loal visous sale that do not trigger the miroinstabilities. The remaining

power ould be transported elsewhere (Kunz et al., 2011).

5.1. E�etive Reynolds Number

By analysing the unlimited �duial run in setion 4.1, we also alulated the parallel visous

heating rate Q+
lim, where ∆p is arti�ially restrited aording to the miro-sale limiters in the

post-proessing analysis. With the model xB6N2lim the entire simulation has already been run

while applying the hard-wall limiters to the pressure anisotropy, whih is a�eting the evolution

of the bubble signi�antly (see �gure 4.10). Thus, we have studied how the visous heating rate

hanges in this ase in �gure 4.11. St-Onge et al. (2020) �nd that if ∆plim is limited to remain

within the �rehose and mirror instability thresholds aording to inequality (2.48), then implies

an enhaned ollisionality in the unstable regions given by

νeff ∼ β(bb : ∇v), (5.1)

where νeff is the e�etive ion-ion ollision frequeny and the right-hand side is the produt of

the plasma beta and the rate of strain while assuming inompressibility (see equation (2.44)).

In ase of xB6N2lim, we have set β = 106 and thus aording to equation (5.1), the enhaned

ollisionality will redue visous stresses drastially, whih we ould verify with our simulations,

beause xB6N2lim and hydro are very lose in terms of mixing e�ieny and show muh lower

dye entropy S ompared to the unlimited run xB6N2. From equation (5.1) Melville et al. (2016)

and St-Onge et al. (2020) estimate the e�etive parallel-visous Reynolds number Re‖eff as

Re‖eff =
vLL

µ‖eff
∼ β2M4, (5.2)

where µ‖eff = v2th/νeff is the e�etive parallel visosity and M = vL/vth is the mah number

(see also setion 2.3.4). So, for β = 106 the e�etive visosity beomes negligible and in turn

Re‖eff indiates a highly turbulent medium. As the KHI and RTI injet energy into the turbulent

asade via �eld-strething/ompressing turbulent veloities (see setion 2.3.3), the parallel rate

of strain sales as |bb : ∇v| ∼ vl‖/l‖ ∝ l
-2/3
‖ (St-Onge et al., 2020). Hene the magnitude of the

rate of strain is largest at the e�etive parallel visous sale leff , where turbulent motions are

dissipated. At this visous uto�, St-Onge et al. (2020) �nd that

leff ∼ LRe
-3/4
‖eff ∝ B3, (5.3)

whih is smaller than the unlimited visous sale lvisc, whih we have introdued in setion 2.3.3:

V 1/3 ∼ λmfp ∼ lvisc > leff . While hoosing higher values for β, B is dereasing and thus lowering
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the visous uto� sale, whih in turn requires higher numerial resolution in order to orretly

piture the level of visosity in the system.

The e�etive Reynolds number also needs to be aounted for when onsidering the numerial

di�usivity for the highest wavenumbers limited by the grid resolution in a given volume (Donnert

et al., 2018). They argue that Re of a turbulent �uid �ow is not only set by the visous dissipation

sale but is also redued by the ut-o� of veloity power at the numerial dissipation sale. So, if

the grid resolution does not resolve the smallest sales of the veloity (or magneti �eld) power

spetrum, numerial errors take away that power, whih e�etively redues the rate of strain

and thus results in smaller visous heating rates. In other words, a less di�usive numerial ode

reahes higher e�etive Reynolds numbers and a more broader dynamial range at the same

resolution. This relation is quanti�ed by Donnert et al. (2018) as

Reeff ≈
(

L

ǫ∆x

)4/3

, (5.4)

where L is the outer injetion sale, ∆x = V 1/3
is the resolution element and ǫ is a fator

depending on the di�usivity of the numerial method used. For the �nite-volume ode AREPO

this fator is assumed to be ǫ ≈ 7, whih is smaller than for smoothed-partile hydrodynamis

(SPH) or hybrid odes (see referenes in Donnert et al. (2018)). Equation (5.4) implies that

dereasing either the fator ǫ or the grid resolution inreases Reeff , whih in turn broadens the

inertial range (shrinks the e�etive dissipation sale), inreases the veloity power (rate of strain)

on small sales and redues visosity.

Furthermore, bubble stability ruially depends on the numerial method used while the re-

solution is kept the same. What role di�erent hydrodynamial shemes play on the evolution of

buoyantly rising bubbles has been studied by Ogiya et al. (2018). After initialising eah simula-

tion in the same way, Ogiya et al. (2018) �nd that KHI fully dissolves the bubble in the ICM on

relatively short time-sales for the meshless �nite mass (MFM) sheme and the RAMSES simu-

lations, while for smoothed-partile hydrodynamis (SPH) the bubble survives. So the hoie of

a hydrodynamial solver an lead to systemati di�erenes on the outome, whether it aptures

the relevant �uid instabilities.

5.2. Limitations

As pointed out in hapter 3, we model an idealized luster ore in order to isolate the e�ets of

Braginskii visosity in a weakly ollisional ICM. Therefore, we have to neglet some realistiness

in our luster model in favor of omprehensibility of the underlying physial proesses. Step

by step we add more omplexity to our simulations, but some limitations remain untouhed

nonetheless.

At �rst, instead of a CC, we assume a perfet isothermal ICM with no small- or large-sale

gas motions throughout the atmosphere. In real systems this is rarely the ase sine the gas

an be disturbed by reent merger events or the AGN ativity itself. So, the luster atmosphere

does not need to be neessarily relaxed. Nonetheless, we set buoyant bubbles into a hydrostati

equilibrium modelled by a single-β density pro�le. Suh beta pro�les su�iently �t the density

distribution and X-ray surfae brightness pro�les for an isothermal luster, but studies �nd that

they yield wrong mass pro�les in the luster outskirts (Xue and Wu, 2000). Nevertheless, sine we

model the ore region, we are not omputing the mass distribution at radii near r200. Moreover,

the gravitational potential is following the beta pro�le instead of a more sophistiated NFW

distribution for dark matter.



5.2. Limitations 80

We do not model the formation and in�ation of the bubble via a powerful radio jet. In fat,

we ompletely ignore the jet-feedbak mehanism (JFM) (Soker, 2016), where jet-driven bubbles

are in�ated over multiple epohs of ativity. Soker (2016) �nd that the morphology of simulated

bubbles mathes with observations, if they are in�ated by slow (sub-relativisti), massive jets.

The jets play a ruial role a�eting the stability and mixing e�ieny of the longevity of the

bubbles after they are in�ated. Aording to Soker (2016), studying the dynamis of the buoyant

evolution of a bubble initially at rest is not very desirable and simulations approahing the JFM

should be favoured.

As mentioned in setion 2.2.1, the exat omposition of the bubble interior annot be inferred

diretly due to the very low bubble densities. But observations suggest that radio lobes are

atually �lled with a strongly magnetized relativisti plasma (Laing and Bridle, 2014). An

additional pressure omponent is needed for the bubbles to explain the disrepany with the

observed ambient ICM pressure (Croston and Hardastle, 2014), see setion 2.2.3. CR protons

seem to be a likely andidate for suh a pressure ontribution. These protons ould be aelerated

in the jet to build a relativisti plasma population (Pfrommer, 2013). However, we treat the

bubble material simply as a very hot thermal gas with γ = 5/3 and omit CR protons ompletely,

although CR heating an beome quite e�ient in the very enters of CCs to o�set radiative

ooling (Jaob and Pfrommer, 2017b). In addition, we assume that the lobe interior is magnetized

the same way as the ambient ICM (either uniform or turbulent), whereas numerial studies �nd

that very likely a toroidal magneti �eld dominates and stabilizes the bubble in�ated by energeti

jets (O'Neill and Jones, 2010; Huarte-Espinosa et al., 2011; Soker, 2016).

Furthermore, we lak an expliit term for radiative ooling in our energy equation (2.36). Using

equation (2.12), the ooling time at the very enter of our luster ore is tcool ≈ 1.8Gyr, whih

inreases to tcool ≈ 9Gyr at the outer boundary of our domain. Hene, the luster ooling times

are longer than the simulation times, allowing us to neglet ooling in our simulations. However

in real CCs, ooling gas aretes onto the entral SMBH and indues motions. We also neglet

thermal ondutivity in terms of an anisotropi heat �ux tensor in our set of Braginskii-MHD

equations. On the one hand, anisotropi ondution an make the radial temperature gradient

unstable in CCs and thus introdue the heat �ux driven buoyany instability (HBI), whih may

suppress anisotropi thermal ondution (Kunz et al., 2012; MNamara and Nulsen, 2012). On

the other hand, if the CC is threaded with a tangled magneti �eld, thermal ondutivity is

suppressed below the Spitzer value by at least one order of magnitude (MNamara and Nulsen,

2007). Condutive heating is neither thermally stable (Kunz et al., 2011) nor an it balane

radiative ooling throughout the ore (Yang and Reynolds, 2016b), but probably beomes e�ient

in the outer skirts of the luster (Jaob and Pfrommer, 2017a).

We also onsider the plasma �uid as a mono-phase �uid, only onsisting of fully ionized

hydrogen, whereas in real lusters the hydrogen mass fration is about 3/4 (with 1/4 helium

mass fration and negligible metal fration). Taking this into aount would not just tune the

mean moleular weight, it would also a�et the visosity oe�ient, sine ν‖ then depends on

the ollision frequenies νH-H, νH-He and νHe-He (see Appendix B in Berlok and Pessah 2015).

Lastly, we do not attempt to inlude the temperature dependene of ν|| ∝ T 5/2/ρ aording

to Spitzer (1962) in our alulations. However, Reynolds et al. (2005) state that they ould

on�rm with their simulations that the evolution of the bubbles is not qualitatively a�eted by

the onstant non-Spitzer ν|| assumption. On the other hand, the temperature dependent visosity

oe�ient inside lobes would very likely be unphysially large. If suh a bubble is i.e. 100 times

hotter (and in turn 100 times less dense) than the ambient ICM, the Spitzer visosity would be

three orders of magnitude greater. Therefore, numerial simulations use an upper limit for µsp

(Kingsland et al., 2019).
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Chapter 6.

Conlusions and Future Perspetive

We have performed 3D Braginskii-MHD simulations of arti�ial AGN-in�ated bubbles in an

isothermal luster ore to study the buoyant rise of these bubbles and its evolution inluding

the e�ets of weak magneti �elds and anisotropi visosity. We have varied di�erent ases of

visosity (onstant fator, un-/limited, isotropi) and the magneti �eld (geometry, strength) to

inrease the level of omplexity step by step in order to get a omprehensible piture on the

impats on the modelled ICM. Our onlusions are as follows:

1. If the magneti tensions are negligibly weak (β = 106) and Braginskii visosity su�iently

strong, the bubble evolution is drastially altered whether the pressure anisotropy ∆p is

bounded due to miro-sale instabilities or not. If pressure anisotropy is limited within

marginal stability levels, the very high plasma beta shrinks the range of ∆plim signi�antly

and onomitant the visous stresses are highly suppressed by the miroinstabilities suh

that they an no longer prevent the bubbles from disruption, resembling the invisid ase.

If ∆p is not limited, visous stresses are apable of e�etively suppressing maro-sale

instabilities like RTI and KHI suh that the bubble rim stays oherent over muh longer

time-sales ompared to the invisid ase. Independent of ∆p, we show that a very high

density ontrast between bubble and ambient gas density suppresses KHI as well.

2. Anisotropi dissipation of momentum transport is distintively a�eting the bubble mor-

phology by initiating uniformly aligned magneti �eld lines into a weakly ollisional plasma.

In the diretion parallel to the �eld, maro-sale instabilities are e�iently suppressed, while

having little e�et perpendiular to the �eld.

3. The magneti �eld is not dramatially enhaned at the bubble front as it buoyantly rises.

The �eld lines are probably not ompressed as muh to form a e�ient draping layer in

order to provide su�ient stability.

4. We omputed the mixing e�ieny of the bubble interior with the ambient gas in three

di�erent ways by deriving the volume overing fration, the gas lumping fator and the dye

entropy S. We onlude that analysing the dye entropy is the most insightful method while

being intellegibly to interpret. We �nd the following ordering: Shydro > Slim > SBrag > Siso.

5. Isotropi Navier-Stokes visosity resembles observed X-ray avities quite well and suppres-

ses RTI and KHI e�etively over the entire simulation time. None of our other simulated

models reahes mixing rates as low as with isotropi visosity. However, we are probably

overestimating the isotropi visosity oe�ient by a fator of ∼ 800.

6. Using a stronger magneti �eld, where β = 102 is in aordane with observed values of

galaxy lusters, reveals an invariane in bubble evolution in terms of mixing e�ieny and

visous heating regardless of whether limiting pressure anisotropy or not. We show that

the plasma beta is high enough to yield a broader range for the rate of strain suh that the

prodution of ∆plim rarely triggers miroinstabilities, e�etively resulting in unsuppressed

Braginskii visosity.

7. Prodution of anisotropi pressure leads to parallel visous heating, whih depends on

the rate of strain of turbulent motions and enhaned magneti �eld strength indued by
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strongly bended �eld lines. The inferred visous heating rates Q+
are not high enough to

balane radiative ooling Q−
in a volume �lling fashion. This shows that visous dissipation

is not very e�ient in heating the ICM in our simulations.

� Averaged over the entire luster (regardless of �eld geometry): Q+/Q− ∼ 10-3

� Averaged over the bubble region (regardless of �eld geometry): Q+/Q− . 10-1

� Q+
seems to be independent on the initial plasma beta, if one ignores kineti limiters

� As predited by Kunz et al. (2011), if levels of pressure anisotropy reah marginal

stability thresholds throughout the entire spatial domain where β = 102: Q+/Q− ∼ 1

� For β = 106: Q+ ∼ (10− 100) ×Q+
lim

� For β = 102: Q+ ∼ Q+
lim

8. If the ICM is turbulent with an initial magneti �eld following a Kolmogorov power

spetrum, not even magneti �eld lines with oherene lengths greater than the bubble

size an prevent the deformation of the bubbles. The ontribution of visous heating from

ambient turbulent motions has no signi�ant impat on the Q+/Q−
ratio as these motions

get relatively quikly dissipated and are not re-injeted again.

In future work, it will be insightful to study the e�ets of Braginskii-MHD on a more sophi-

stiated ool-ore luster model in order to investigate whether Braginskii visosity is a primary

mehanism for suppressing �uid instabilities (Kingsland et al., 2019) and/or visous heating is

a signi�ant heating hannel to viably quenh ooling �ows. Suh advaned simulations should

inlude self-onsistently in�ated bubbles driven by AGN jets, a NFW density pro�le, a mixture

of relativisti CRs and hot thermal gas for the bubble interior and an initial tangled magneti

�eld, whose turbulent energy will be injeted over multiple AGN outbursts. The simulations

should be able to resolve the (e�etive) visous dissipation sale and aount for miro-sale

instabilities in form of e.g. hard-wall limiters to apture the physis of the ICM orretly.
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Supplementary Figures

Figure A.1.: Low resolution simulations of the hydro model whih have been run with di�erent values of the

smoothing parameter a for the analytial pro�le of the traer mass fration used in equation (3.11).

From left to right a is equal to 0.01, 0.05 and 0.5, respetively.

Symbol Quantity

β plasma beta

β index of King model

c speed of light

cs isothermal sound speed

g gravitational aeleration

G gravitational onstant

γ ratio of spei� heats

gff Gaunt fator

h Hubble parameter

H0 Hubble onstant

~ redued Plank onstant

k wave number

kB Boltzmann onstant

kBT temperature in eV

L harateristi length sale

me eletron mass per partile

mp proton mass per partile

Table A.1.: List of ommon physial quantities used in

this thesis.

Symbol Quantity

µ mean moleular weight

µ dynami visosity

ne eletron number density

ni ion number density

νii ion-ion ollision frequeny

ν kinemati visosity

ν‖ anisotropi visosity

PB magneti pressure

Pth thermal pressure

ρamb ambient density

ρbub bubble density

S entropy

Tg gas temperature in K

tH Hubble time

u internal energy

vth thermal veloity

ω angular frequeny

Ze eletrial harge

Table A.2.: List of ommon physial quantities, onti-

nued.
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