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Abstract

Cosmic rays (CRs) constitute a significant fraction of the energy density in the interstellar

medium despite their negligible number density. Their coupling to the ambient plasma through

microphysical plasma instabilities makes them an important cornerstone in studies of galaxy

formation and large-scale astrophysical phenomena. However, the development of large-scale

models incorporating accurate CR feedback remains challenging due to the vast scale separation

between microscopic plasma processes and macroscopic transport phenomena. Effective large-

scale descriptions of CR feedback must therefore be informed by a detailed understanding of the

underlying microphysical processes.

In this thesis, I develop a comprehensive theoretical and numerical framework for studying how

CRs generate and interact with electromagnetic waves in astrophysical environments, focusing

on the microscopic plasma processes that regulate CR transport. My primary methodological

contribution is the development of the novel fluid-particle-in-cell (fluid-PIC) numerical method

that bridges the substantial computational challenges inherent in simulating the multi-scale

nature of the CR streaming instabilities. This approach treats the dense thermal background

plasma as a fluid while maintaining a fully kinetic description of the sparse CR population,

enabling the investigation of CR-driven instabilities across previously inaccessible temporal and

spatial scales. The method successfully captures essential kinetic effects such as Landau damping

through appropriate fluid closures while significantly reducing computational costs compared

to traditional particle-in-cell simulations. I implement an efficient, parallelizable and accurate

algorithm to calculate the Landau closure that is informed by the global wave spectrum. Various

test problems establish the accuracy of the employed algorithm.

Applying the fluid-PIC method to gyroresonant CR-driven streaming instabilities, I uncover

the fundamental mechanism of wave growth and saturation. I demonstrate that these pro-

cesses are governed by a lopsided bunching of CR gyrophases with respect to the wave magnetic

field. This gyrophase bunching provides a unified explanation for the growth of all gyroresonant

streaming instabilities, including forward- and backward-moving Alfvén waves, whistler waves

and electron cyclotron waves. I show that CRs significantly modify the wave velocity with

implications for the resonance condition. These findings are contrasted with the assumptions

conventional in quasi-linear theory, calling into question the pitch-angle diffusion coefficients

derived by assuming a single wave frame and especially the random phase approximation of

the CR distribution function. I advance our understanding of the intermediate-scale instabil-

ity, revealing its similarities and differences to the larger-scale Alfvén waves. I emphasize the

differences in growth rates and saturation levels, and explore a resonance gap at pitch angles

close to 90° that is distinct from the nonphysical resonance gap in quasi-linear theory. The

theoretical framework and numerical methods developed in this dissertation provide tools for

investigating CR transport in realistic astrophysical environments. These advances offer new

perspectives on fundamental plasma physics processes, such as wave-particle interactions and

instability mechanisms in collisionless plasmas, that influence galaxy formation and evolution.
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Zusammenfassung

Kosmische Strahlung (CR) trägt trotz ihrer geringen Teilchendichte einen bedeutenden An-

teil der Energiedichte im interstellaren Medium in sich. Ihre Kopplung an das umgebende

Plasma durch mikroskopische Plasmainstabilitäten macht sie zu einem wichtigen Grundpfeiler

bei der Untersuchung von Galaxienbildung und großskaligen astrophysikalischen Phänomenen.

Die Entwicklung makroskopischer Modelle mit präziser CR-Rückkopplung erfordert aufgrund

der enormen Skalentrennung zwischen mikroskopischen Plasmaprozessen und makroskopischen

Transportphänomenen ein detailliertes Verständnis der zugrundeliegenden Prozesse.

In dieser Dissertation entwickle ich einen umfassenden theoretischen und numerischen Rahmen

zur Untersuchung der Erzeugung und Wechselwirkung elektromagnetischer Wellen durch CR in

astrophysikalischen Umgebungen, wobei der Fokus auf den mikroskopischen Plasmaprozessen

liegt, die den Transport von CR regulieren. Mein primärer methodischer Beitrag ist die En-

twicklung der neuen Fluid-Particle-in-Cell (Fluid-PIC) Methode, zur Überbrückung der rechner-

ischen Herausforderung von skalenübergreifenden CR-getriebenen Instabilitäten. Dieser Ansatz

behandelt das dichte thermische Hintergrundplasma als Fluid, während eine vollständig kinetis-

che Beschreibung der weniger dichten CR-Population beibehalten wird, was die Untersuchung

von CR-getriebenen Instabilitäten über bisher unzugängliche zeitliche und räumliche Skalen

ermöglicht. Die Methode erfasst erfolgreich wesentliche kinetische Effekte wie Landau-Dämpfung

durch eine geeignete Fluid-Abschlussrelation, während sie den Rechenaufwand im Vergleich zu

traditionellen PIC-Simulationen erheblich reduziert. Ich implementiere einen effizienten par-

allelen Algorithmus zur Berechnung der Landau-Abschlussrelation basierend auf dem globalen

Wellenspektrum und validiere die Methode in Testproblemen.

Durch Anwendung der Fluid-PIC-Methode auf gyroresonante Instabilitäten zeige ich, dass eine

asymmetrische Bündelung der CR-Gyrophasen bezüglich des Wellenmagnetfeldes den fundamen-

talen Mechanismus des Wellenwachstums und der Sättigung darstellt. Dies erklärt einheitlich

das Wachstum aller gyroresonanten CR-Instabilitäten, einschließlich vorwärts- und rückwärts

propagierender Alfvén-Wellen, Whistler-Wellen und Elektronen-Zyklotron-Wellen. Ich zeige,

dass CR die Wellengeschwindigkeit signifikant modifizieren, mit Auswirkungen auf die Reso-

nanzbedingung. Diese Erkenntnisse werden mit der klassischen quasilinearen Theorie verglichen,

wobei die Neigungswinkel-Diffusionskoeffizienten in Frage gestellt werden, welche auf den An-

nahmen einer einzelnen Wellengeschwindigkeit und zufälliger Gyrophasen der CR beruhen. Ich

erweitere unser Verständnis der Instabilitäten auf Zwischenskalen und zeige ihre Ähnlichkeiten

und Unterschiede zu den Alfvén-Wellen-Instabilitäten auf. Dabei vergleiche ich die Wachstum-

sraten und Sättigungsniveaus, und untersuche eine Resonanzlücke bei Neigungswinkeln nahe

90°, die sich von der unphysikalischen Resonanzlücke in der quasilinearen Theorie unterschei-

det. Der in dieser Dissertation entwickelte theoretische Rahmen und die numerischen Meth-

oden stellen Werkzeuge zur Untersuchung des CR-Transports in realistischen astrophysikalis-

chen Umgebungen bereit. Diese Fortschritte bieten neue Einblicke auf fundamentale plasma-

physikalische Prozesse, wie Wellen-Teilchen-Wechselwirkungen und Instabilitätsmechanismen in

kollisionsfreien Plasmen, die Einfluss auf Galaxienentstehung und -entwicklung haben.

v





Contents

1. Introduction 1

1.1. Cosmic Rays: Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Cosmic Ray Transport and Streaming Instabilities . . . . . . . . . . . . . . . . . 4

2. Descriptions of Astrophysical Plasmas 9

2.1. The Kinetic Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. The Vlasov-Maxwell System . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2. Linear Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. The Multi-Fluid Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. The Moment Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2. Adiabatic Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3. Landau Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4. Linear Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Quasi-neutral fluids and MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1. Derivation of Generalized Ohm’s Law . . . . . . . . . . . . . . . . . . . . 21

2.3.2. Simplifying Generalized Ohm’s Law . . . . . . . . . . . . . . . . . . . . . 22

2.3.3. The MHD Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4. Linear Waves in Ideal MHD . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. Numerical methods 27

3.1. Kinetic Solvers: Vlasov Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2. Kinetic Solvers: Particle-in-Cell (PIC) . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1. Particle Pusher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2. Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.3. Electromagnetic Field Solver: Yee Grid and Magnetic Monopoles . . . . . 31

3.2.4. Numerical Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.5. Minimizing Numerical Heating . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Fluid Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1. Finite Difference Methods (FD) . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2. Finite Volume Methods (FV) . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.3. Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4. Compound techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2. Electron Fluids and Kinetic Ions (Hybrid-PIC) . . . . . . . . . . . . . . . 40

3.4.3. Thermal Fluids and Kinetic Cosmic Rays . . . . . . . . . . . . . . . . . . 41

vii



Contents

4. The fluid-PIC method 47

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2. Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1. Kinetic description of a plasma . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2. The particle-in-cell method . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.3. Fluid description of plasma . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.4. Finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.5. Electromagnetic interaction with charged fluids . . . . . . . . . . . . . . . 59

4.2.6. Landau closure for fluid species . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.7. Current-coupled fluid-PIC algorithm . . . . . . . . . . . . . . . . . . . . . 68

4.3. Code validation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1. Shock tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2. Two-fluid dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.3. Langmuir wave damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.4. Interacting Alfvén waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.5. Gyrotropic CR streaming instability . . . . . . . . . . . . . . . . . . . . . 79

4.3.6. Computational scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.A. C-WENO coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.B. Convergence order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.C. 𝑅31 closure and adiabatic coefficients . . . . . . . . . . . . . . . . . . . . . 87

5. Quasilinear Theory of Cosmic Ray Streaming 89

5.1. The Fokker-Planck Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2. Pitch Angle Diffusion in the Presence of Random Alfvén Waves . . . . . . . . . . 91

5.3. Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6. Growth and Saturation Mechanism of the Gyroresonant Instabilities 99

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.1. Astrophysical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1.2. CR transport and CR-driven instabilities . . . . . . . . . . . . . . . . . . 100

6.1.3. Idea to elucidate the physics of CR-driven instabilities . . . . . . . . . . . 103

6.2. Numerical Method and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.2. Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3. Particle motions and wave growth . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1. Momentum balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2. Evolution of the instability without CR back-reaction: the pendulum

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.3. Discussing the pendulum picture of CR motions . . . . . . . . . . . . . . 115

viii



Contents

6.4. The physics of wave growth and decay . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4.1. Deconstructing the instability’s feedback loop . . . . . . . . . . . . . . . . 118

6.4.2. Revisiting the dispersion relation . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.3. Simulated family of particle orbits . . . . . . . . . . . . . . . . . . . . . . 123

6.5. Saturation of a single wave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5.1. Saturation of wave growth due to CR scattering . . . . . . . . . . . . . . 126

6.5.2. Saturation of wave growth due to particle trapping . . . . . . . . . . . . . 128

6.5.3. Impact of CRs on the wave velocity . . . . . . . . . . . . . . . . . . . . . 130

6.5.4. Evolving CR distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.A. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.B. Comparison of fluid-PIC and PIC methods . . . . . . . . . . . . . . . . . 134

6.C. Robustness of initial setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.D. Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7. Differences Between the Gyroresonant Streaming Instabilities 141

7.1. Constraints on Resonance with Forward Moving Waves . . . . . . . . . . . . . . 141

7.1.1. Electron-scale Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1.2. Grid-Scale Limitations on Resonant CRs in MHD Simulations . . . . . . 143

7.1.3. Comparison and Implications of Resonance Bounds . . . . . . . . . . . . . 144

7.2. Instability Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.1. Derivation of the Intermediate-scale Instability Growth Rate . . . . . . . 145

7.2.2. Alfvén Wave Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2.3. Comparison of Pitch Angle-dependent Growth Rates . . . . . . . . . . . . 149

8. Conclusions 153

ix





1. Introduction

1.1. Cosmic Rays: Basic Properties

The field of cosmic ray physics emerged from an observation at the beginning of the 20th

century. Electroscopes, instruments designed to measure ionizing radiation, detected radiation

even when heavily shielded. While this “penetrating radiation” was initially thought to originate

from radioactive material, Pacini et al. (1910) challenged this hypothesis by demonstrating that

radiation levels decreased under water. This prompted Hess (1912) to conduct multiple balloon

experiments, finding that this radiation intensity increased with altitude rather than decreased,

a clear indication of the radiation’s extraterrestrial origin.

In light of these observations, the term “penetrating radiation” was later renamed to “cosmic

rays” (CR), coined by Millikan (1925) who initially proposed that these particles were gamma

rays. However, shortly thereafter, the discovery of the latitude effect by Clay (1927) challenged

this interpretation. By demonstrating that the radiation intensity varied with geomagnetic

latitude and the corresponding deviations in Earth’s magnetic field, Clay provided compelling

evidence that CRs were primarily charged particles interacting with magnetic fields. This un-

derstanding was further solidified by Bothe and Kolhörster (1929) through their coincidence

counting technique, which utilized adjacent Geiger-Müller counters to track individual charged

particles and record their path. This technique is still used today to observe and identify CRs in

experiments like IceCube (IceCube Collaboration*, 2013) and the Alpha Magnetic Spectrometer

(Aguilar et al., 2013).

Freier et al. (1948) established, that CRs consist predominantly of fully ionized atomic nuclei

and about 1% electrons. The composition of the atomic nuclei is made up of approximately 89%

protons, 10% helium, and 1% heavier nuclei. This composition varies with energy and continues

to be studied in greater detail by experiments like CREAM (Yoon et al., 2011) and PAMELA

(Adriani et al., 2011). This composition refers to primary CRs, originating outside of the Earth’s

atmosphere. As they enter the atmosphere, they also produce a host of secondary CRs as a result

of collisions with atmospheric matter (Auger et al., 1939). These secondary particles are free to

collide again, leading to a cascade of particles raining down on Earth as a “shower”. This has

surprisingly practical implications; for example, these showers provide a continuous supply of

the radioactive carbon isotope 14C through spallation. This isotope is used for the radiocarbon

dating method, which allows approximately identifying the time when an organism stopped

assimilating carbon, and has become an invaluable method for dating archaeological artifacts

(Anderson et al., 1947). In the broader context of astrobiology, understanding the intensity of

CRs on a planet’s surface and its variation over geological timescales is essential in assessing the

1



1. Introduction

habitability of exoplanets and the potential for life beyond Earth (Lammer et al., 2009).

These showers have also opened the gateways for particle physics research beginning in the

1930s. Antimatter, the muon, the pion, the kaon, and the Λ-baryon were first identified under CR

interactions (Anderson, 1933; Rochester and Butler, 1947; Nakamura, 2010). As a comparison

of scale, CRs reach energies up to 320 EeV, surpassing the Large Hadron Collider’s 7 TeV

capability by seven orders of magnitude (albeit the discrepancy in combined energy of collisions

is only three orders of magnitude).

Only few candidates can potentially accelerate CRs to these extreme energies. Supernova

remnants are considered the primary source of galactic CRs up to approximately 0.1 − −1 PeV

energies (Baade and Zwicky, 1934; Ginzburg and Syrovatskii, 1964; Lagage and Cesarsky, 1983;

Bell et al., 2013). More energetic particles likely originate from extragalactic sources such as

Active Galactic Nuclei (AGN) (Protheroe and Szabo, 1992; Rieger, 2022), pulsar wind nebulae

(PWN)(Sironi et al., 2013; Lemoine et al., 2015; The LHAASO Collaboration et al., 2021), and

Gamma-Ray Bursts (GRBs) (Waxman, 1995; Zhang et al., 2021). Observations by the Pierre

Auger Observatory have strengthened the connection between ultra-high-energy CRs and AGN

(Pierre Auger Collaboration et al., 2007).

At these acceleration sites, the CRs undergo the process of diffusive shock acceleration (Axford

et al., 1977; Bell, 1978a,b; Blandford and Ostriker, 1978). Particles become trapped between

magnetic mirrors, which confine particles between the upstream and downstream of a shock

through frequent particle scattering. As these mirrors apparently close in on the particles, they

accelerate the particles over successive impacts. While specifics of this process are actively

investigated (Caprioli and Spitkovsky, 2014a; Sironi and Spitkovsky, 2011; Lemoine, 2019; Mar-

cowith et al., 2020) – particularly its application to electron acceleration is not obvious (Amano

and Hoshino, 2010; Shalaby et al., 2022; Gupta et al., 2024) – the process of diffusive shock

acceleration explains both the extreme energies achieved as well as the power-law form of the

energy spectrum.

Indeed, the observed CR energy spectrum follows a remarkably smooth power-law spanning

ten orders of magnitude, with the peak energy density at 300 MeV. This was first systematically

studied by Blackett and Occhialini (1933) using cloud chamber photographs. Even though the

energy spectrum is surprisingly smooth, where the density generally falls off with increasing

energy as d𝑛/d𝐸 ∝ 𝐸−2.7, the spectrum exhibits two notable features: the “knee” at approxi-

mately 4 PeV where the spectrum steepens to ∝ 𝐸−3.1, and the “ankle” at around 4 EeV, where

it returns to ∝ 𝐸−2.7 (Kulikov and Khristiansen, 1959; Amenomori et al., 2008; Anchordoqui,

2019). The ankle’s flattening likely results from dominant extragalactic CRs dominating these

energies (Aloisio et al., 2012), while the knee may reflect either the maximum acceleration capa-

bility of supernova remnants in the Milky Way or an increased galactic escape probability due

to transition from pitch angle scattering to Hall diffusion (Ptuskin et al., 1993).

The velocity diffusion mechanism of CRs below the knee (pitch angle scattering) can be

quickly summarized as follows: CRs spiral along magnetic field lines, where the angle between

their direction of motion and the magnetic field line is called the pitch angle. Small magnetic

perturbations scatter CRs without significantly changing their energy, constantly redirecting

2



1.1. Cosmic Rays: Basic Properties

their velocity vector. Because the CRs undergo a random walk process in their pitch angle

(velocity direction), their average velocity along the magnetic field line is only a fraction of

their intrinsic particle velocity. This significantly increases the galactic escape time given the

presence of these magnetic perturbations, but the confinement of CRs in the galaxy by pitch

angle scattering is not only a coincidence. Kulsrud and Pearce (1969) proposed the concept of CR

self-confinement in galaxies, where CRs generate the magnetic turbulence necessary for their own

confinement via the CR streaming instabilities. This self-confinement concept fundamentally

shaped modern CR transport theories. As such, it lays the foundation for this thesis and we will

discuss it in detail in later chapters. In general, CR propagation through the galaxy is a complex

process including not only diffusion through self-generated turbulence, but it also encompasses

convective processes and various energy loss mechanisms. The development of phenomenological

propagation models has evolved significantly since the inception of the simple leaky-box model

(Davis Jr, 1960; Ginzburg and Syrovatskii, 1964). Modern numerical codes, like GALPROP

(Strong and Moskalenko, 1998), offer more sophisticated approaches, but they do not account

for the dynamic interaction between CRs and their environment.

Even though higher-energy CRs (> GeV) are mostly collisionless, the CR streaming instabil-

ities provide an effective mechanism to transfer momentum and energy to the thermal plasma.

Despite the low density of CRs—approximately nine orders of magnitude below that of the am-

bient gas – they contribute significantly to the pressure and energy density in the interstellar

medium (ISM) (Boulares and Cox, 1990; Draine, 2011), which makes them dynamically impor-

tant for galaxy formation. Nevertheless, their importance is not limited to the ISM. They drive

galactic winds from the galactic disk as shown in one-dimensional analytical models (Ipavich,

1975; Breitschwerdt et al., 1991; Recchia, 2020)and numerical studies of wind launching from

the ISM (Simpson et al., 2016, 2023; Girichidis et al., 2016, 2018; Farber et al., 2018; Sike

et al., 2024), thereby accelerating outflows in global galactic disk simulations (Uhlig et al., 2012;

Salem and Bryan, 2014; Pakmor et al., 2016; Wiener et al., 2017; Thomas et al., 2023; Thomas

et al., 2024) that influence the circumgalactic medium (Buck et al., 2020; Ji et al., 2020). CRs

also carry energy from active galactic nuclei into the intracluster medium of cool core clus-

ters, thereby heating it to counteract the cooling losses (Pfrommer, 2013; Ruszkowski et al.,

2017a; Jacob and Pfrommer, 2017b). Through their interactions with magnetic fields, CRs can

contribute to the dynamo processes that maintain galactic magnetic fields, creating a complex

feedback loop that influences galaxy evolution on multiple scales (Parker, 1992; Hanasz et al.,

2009).

On the other hand, collisional low-energy CRs (with particle energies 𝐸 ≪ GeV) are key

players in the chemical evolution of molecular clouds, where they drive ion-neutral chemistry

and influence star formation processes (Dalgarno, 2006b,a; Padovani et al., 2020; Gabici, 2022).

Furthermore, they create isotopes like beryllium-10 in the ISM through spallation, which serve as

CR chronometers (Simpson and Garcia-Munoz, 1988). The impact of CRs on galaxy formation

has become an active area of research recently (Grenier et al., 2015; Ruszkowski and Pfrommer,

2023). However, the galactic scales inherent to the problem prohibit self-consistent modeling

of the CRs’ microphysical interactions at scales of approximately AUs. Thus, these problems
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depend crucially on our understanding of the underlying plasma processes – specifically the CR

streaming instabilities, which allow GeV CRs to couple to the thermal plasma in the first place.

CR transport is on its own already a fascinating problem, but there is also a link to another

active area of research in heliophysics. Particles in the solar wind can drive the same streaming

instabilities as CRs, thereby sharing a methodological framework. This link can also serve as

a viable test bed for investigating the impact of these instabilities in observations (Gary et al.,

2016).

1.2. Cosmic Ray Transport and Streaming Instabilities

Early observations revealed CRs to be remarkably isotropic in their arrival directions at Earth

(Strong et al., 2007; Abbasi et al., 2012, with variations in the relative flux of order 4 × 10−4),
a fact that demands explanation given their presumed origin in discrete sources such as super-

nova remnants. Furthermore, the short-lived radioactive spallation products – which must be

produced in the local galactic disk to be observed – are present in surprisingly high numbers

compared with the primary CRs producing them. This indicates, that the CRs remain con-

fined in the galactic disc for a long time, estimated to be roughly ∼ 107 years (Simpson and

Garcia-Munoz, 1988; Evoli et al., 2020). Therefore, the time-averaged mean velocity of CRs

must be significantly smaller than their absolute velocity, which is close to 𝑐, indicating frequent

scattering of the mostly collisionless CRs. These observational challenges led to the development

of various theoretical frameworks attempting to explain CR confinement and transport within

galaxies. Among these frameworks, the self-confinement paradigm emerged as particularly suc-

cessful in resolving these apparent conflicts.

The self-confinement paradigm (Kulsrud and Pearce, 1969; Wentzel, 1969; Skilling, 1971)

posits that CRs generate magnetic fluctuations responsible for their own scattering and con-

finement. The mechanism operates through the gyroresonant streaming instability, whereby

CRs excite Alfvén waves that subsequently scatter the particles. These waves are believed to

be regulated through various damping mechanisms, most notably non-linear Landau damping

and ion-neutral damping. In this picture, saturation occurs when the instability growth rate

balances the damping rate. Thus, the efficiency of the self-confinement process depends not only

on the CR distribution but also on the environment. The self-confinement theory has provided

the foundation for much of our understanding of CR transport. It naturally explains how CRs

transition from an initially anisotropic distribution near their sources to the observed isotropic

state, while also providing mechanisms for momentum and energy transfer between CRs and

the thermal plasma as mentioned previously.

Streaming instabilities manifest in two distinct categories: resonant and non-resonant insta-

bilities. The self-confinement theory is mainly concerned with the gyroresonant instabilities

(Shapiro and Shevchenko, 1964; Lerche, 1967; Shalaby et al., 2021, 2023), as these instabili-

ties are driven at relatively small anisotropies in the CR configurations, with drift velocities of

𝑣dr ≳ 𝑣A. If the Alfvén speed 𝑣A in the ISM is assumed to be a fraction of the speed of light, e.g.,

𝑣A ≈ 10−4𝑐, this naturally limits CR anisotropies to similar, small orders, which agrees with the
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1.2. Cosmic Ray Transport and Streaming Instabilities

observed, almost isotropic CR distribution at Earth. The gyroresonant instabilities drive waves,

for which the Doppler shifted gyrofrequency of a CR approximately matches the frequency of

the waves carried by the thermal plasma 𝜔(𝑘),

Ωcr − 𝒌 · 𝒗 ∥ = −𝜔(𝑘), (1.1)

where Ωcr is the CR gyrofrequency and 𝒗 ∥ is the CR velocity parallel to the magnetic field at

wave vector 𝒌. This gyroresonance condition is not particularly restrictive, because a CR with

a given gyrofrequency and parallel velocity may resonate with a wave at any scale 𝒌. The waves

in the background might be Alfvén, whistler or electron cyclotron waves, spanning a large range

of different values for 𝒌 and 𝜔, but traditionally only Alfvén waves are taken into account.

The resulting gyroresonant coupling resembles a clutch mechanism, where a rotating disc driven

by an engine is pressed against a flywheel (representing the background waves). Just as a

clutch requires similar rotational velocities of both surfaces for efficient torque transfer, the CRs

must approximately fulfill the gyroresonance condition. Nevertheless, the CRs (acting as the

rotating disc) must rotate slightly faster (including their Doppler-shifted motion) than the wave

frequency such that they can systematically transfer energy to the waves. During this process,

the CRs develop a current perpendicular to the background magnetic field, 𝑱⊥, that assumes

a coherent wave-like structure adapted to the frequency and wavelength of the electromagnetic

waves. Therefore, it is the perpendicular CR current that interacts with the perpendicular

magnetic field, 𝑱⊥×𝑩⊥. The entire process is more complex than sketched out here, we dedicate

chapter 6 to understanding the physical mechanism of its growth and saturation mechanism.

Even though gyroresonant instabilities are not able to significantly intensify the total magnetic

field, the small magnetic perturbations are of similar wavelength as the CRs’ gyro radii. This

enables efficient scattering provided that waves at this scale are not inhibited by strong wave

damping.

As a side note, pressure-anisotropy-driven instabilities represent another class of gyroresonant

phenomena in CR transport. These instabilities arise from anisotropy in the CR pressure and can

lead to the generation of magnetic fluctuations through mechanisms distinct from the classical

streaming instability, able to occur even without a drifting CR distribution (Lebiga et al., 2018;

Sun and Bai, 2023). However, its mechanism is presumably orders of magnitude less efficient

than CR streaming under general ISM conditions and thus its relevancy is confined to specific

circumstances. Here, we are not concerned with these instabilities and use the term gyroresonant

instabilities to solely refer to the streaming instabilities.

Among the non-resonant CR-driven instabilities, the Bell instability (Bell, 2004) is the most

prominent example. It can generate large magnetic field amplifications, far exceeding the initial

magnetic field strength. It becomes only active if large unmitigated CR currents are present,

that is if the CR to background density ratio times the square of the CR drift to Alfvén velocity

ratio exceed unity, 𝑛cr/𝑛bg × (𝑣dr/𝑣A)2 > 1. This strong CR current generates a compensating

return current in the background plasma, primarily consisting of the more mobile electrons.

These large currents parallel to the background magnetic field are perturbed by perpendicular
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magnetic fluctuations, interacting with them according to the Lorentz-force 𝑱 ∥×𝑩⊥, and thereby

driving transverse waves (Zirakashvili et al., 2008). This mechanism has attracted considerable

attention for its potential role in magnetic field amplification around supernova remnant shocks

and CR acceleration (Niemiec et al., 2008; Riquelme and Spitkovsky, 2009), but in the regime

of very large currents other instabilities, like a filamentation instability, start taking precedence

(Bret, 2009; Reville and Bell, 2012). While the Bell instability is important to understand the

acceleration and escape of CRs at their sources, where the CR current is strong, this instability

is negligible for typical ISM conditions. As such, Bell’s instability is not relevant for self-

confinement in galaxies, and we focus on the gyroresonant interactions.

Although self-confinement has been the predominant theoretical framework for propagating

GeV–TeV CRs, its applicability to high-energy CRs (TeV–PeV energys) has been debated (Yan

and Lazarian, 2002, 2004). The CR power-law spectrum indicates, that these high-energy CRs

have a significantly smaller number and energy density than the CRs at GeV energies. As

the high-energy CRs would have to drive coherent waves at larger scales compared to CRs of

lower energy, they may not be able to drive instabilities fast enough to overcome turbulent

damping (Farmer and Goldreich, 2004). A notable candidate among the alternative theories

is external turbulent confinement, where CRs scatter off pre-existing magnetohydrodynamic

(MHD) turbulence (Jokipii and Parker, 1969; Giacalone and Jokipii, 1999), which is expected

to begin dominating CR transport at energies upwards of around 200 GeV–1 TeV (Blasi et al.,

2012; Evoli et al., 2018; Recchia and Gabici, 2024). Recent work suggests that bends in the

field line structures can provide efficient CR scattering, potentially rivaling self-generated waves

as the primary confinement mechanism (Lemoine, 2023; Kempski et al., 2023). A limitation of

external turbulent confinement is its requirement for ubiquitous, nearly isotropically distributed

pre-existing scattering centers around Earth because otherwise, it could not explain the almost

isotropic arrival directions of CRs. This would then pose a constraint on the injection rate

of strong turbulence, which would have to be distributed across the ISM and locally follow a

turbulent energy cascade. This requirement of volume-filling turbulence at the AU scale weakens

for higher-energy CRs (≳ TeV), which sample larger volumes because of their larger gyro radii,

which increases the likelihood of being scattered by externally driven MHD fluctuations on their

mean free path.

CR transport is traditionally modeled using quasi-linear theory (QLT) as its analytical frame-

work (Jokipii, 1966), which we discuss in detail in Chapter 5. QLT is a perturbation method,

which evolves a slowly changing ground state being impacted by small, first-order fluctuations.

Using QLT, the evolution equation of the CR distribution is transformed into a Fokker-Planck

equation. This models the CRs as undergoing a random walk in momentum and pitch angle,

where they randomly scatter off of (self-generated or pre-existing) resonant magnetic perturba-

tions.

Even though this framework has been quite successful in modeling CR transport, there are

some assumptions inherent to or commonly applied together with QLT. These include, for

example, the neglect of wave-wave interactions, which emerge as a second-order fluctuation and

which might play a role during saturation. It also predicts unphysical singularities leading to
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1.2. Cosmic Ray Transport and Streaming Instabilities

the 90° problem, relevant for CRs moving only perpendicular to the magnetic background field

(corresponding to a pitch angle of 90°). These CRs theoretically would encounter a static wave

magnetic field and thus would never scatter, which is a consequence of infinitely thin resonance

widths and assuming static waves (Völk, 1975; Tautz et al., 2008). As we will show later on,

the physical resonance conditions are broader than assumed in QLT, thereby resolving this

theoretical problem. The CR distribution is typically assumed to be initially isotropic in some

frame, further simplifying the diffusion coefficient to depend only on the CR’s energy instead of

taking their pitch angle into account as well. This is an observationally motivated assumption,

but fails to model how the CRs escaping in a narrow loss cone close to their sources start

to isotropize. The transport of freshly injected CRs is not just diffusive, but superdiffusive

(Ptuskin et al., 2008) and non-linear. Furthermore, the CRs are assumed to have random phase

angles with regard to their resonant waves, neglecting naturally occuring wave steepening and

bunching of the CR gyrophases, which is essential for driving the instabilities. Nevertheless,

QLT has shaped our understanding of the growth, saturation and diffusion of CRs and likely

captures the most important transport processes (Engelbrecht et al., 2022).

While analytical methods have mostly revolved around QLT, the complexity of CR stream-

ing processes and the limitations of analytical approaches have necessitated the development of

diverse numerical methods. These computational approaches span multiple scales and physical

regimes, ranging from microphysical scales to large scales, including the particle-in-cell (PIC)

method (Holcomb and Spitkovsky, 2019; Shalaby et al., 2021), hybrid-PIC (Weidl et al., 2019b;

Amano, 2018; Schroer et al., 2024), MHD-PIC (Lucek and Bell, 2000; Bai et al., 2015), CR

hydrodynamics (Pfrommer et al., 2017; Zweibel, 2017; Jiang and Oh, 2018; Thomas and Pfrom-

mer, 2019), test particle approaches (Giacalone and Jokipii, 1999). The development of another

method, the fluid-PIC method (Lemmerz et al., 2024b), is part of this thesis and we later lay out

the reasons for its development as well as its implementation in chapters 3 and 4, respectively.

Despite significant advances in our understanding of CR streaming, several fundamental ques-

tions remain unresolved in the field.

• The complex interplay between various wave damping mechanisms presents a critical area

of investigation. Multiple damping channels – including nonlinear Landau damping, ion-

neutral friction, and turbulent cascade – operate simultaneously in the interstellar medium

(Plotnikov et al., 2021; Schroer et al., 2024; Cerri, 2024). Understanding their relative

efficiencies and mutual interactions is essential for accurately predicting CR transport

properties.

• A fundamental theoretical challenge lies in bridging the gap between kinetic and fluid

descriptions of CR transport (Zweibel, 2013; Thomas and Pfrommer, 2019). While fluid

approximations offer computational advantages for large-scale simulations, their ability to

capture essential kinetic effects remains uncertain. The development of robust methods for

implementing kinetic phenomena in fluid models continues to be an active area of research.

• Finally, the interaction between self-generated and pre-existing turbulence presents a com-
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plex problem that spans multiple scales. Understanding how different scattering mecha-

nisms compete and coexist, how wave spectra evolve under their combined influence, and

how these processes ultimately affect CR transport coefficients remains crucial. This un-

derstanding is particularly relevant for accurately modeling CR propagation in realistic

astrophysical environments, where both self-generated and ambient turbulence play im-

portant roles (Reichherzer et al., 2020; Kempski and Quataert, 2022).

The thesis is structured as follows. We review various descriptions of plasmas in Chapter 2,

which are needed to understand the differences in numerical methods and analytical models

used to study CR streaming. In Chapter 3 we compare numerical methods, before introducing

the novel fluid-PIC method in Chapter 4. We summarize quasilinear theory in the context

of CR streaming in Chapter 5 before describing a competing description of CR streaming as a

gyrophase bunching process in Chapter 6. We further concentrate on growth rates and resonance

criteria in Chapter 7. We conclude our findings in Chapter 8. Throughout this thesis we employ

SI units.
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2. Descriptions of Astrophysical Plasmas

The description of plasma phenomena spans multiple scales, from microscopic particle dynamics

to macroscopic fluid behavior. The most fundamental description is given by kinetic theory,

which tracks the evolution of particle distribution functions in phase space. However, for many

applications, this level of detail is unnecessary and can be reduced to fluid descriptions through

appropriate averaging of the velocity distribution function. If electron scales can be neglected,

even further approximations are possible resulting in the magnetohydrodynamic (MHD) descrip-

tion of a plasma. This section presents a derivation of the different fluid models from kinetic

theory, carefully examining all assumptions and approximations involved in this process. One

important property of each description is the set of linear waves supported by the system of

equations, which we will derive for parallel waves that are important for CR streaming.

Throughout this thesis, we will not just frequently employ these different approximations

analytically but we also assess the validity of numerical methods using these descriptions. More

general overviews are given by (in descending order of use in this chapter) Wolfgang Baumjohann

(2012), Treumann and Baumjohann (1997), Stix (1992), Chen (2016), Landau et al. (1990), and

Boyd and Sanderson (2003).

2.1. The Kinetic Description

Phase Space and Distribution Functions. Consider a plasma consisting of particles of different

species 𝑠 (typically electrons and ions). The state of each particle is described by its position

𝒙 and velocity 𝒗 in six-dimensional phase space. Rather than tracking individual particles, we

describe the plasma through distribution functions 𝑓𝑠 (𝒙, 𝒗, 𝑡) for each constituent of the plasma,

defined such that:

𝑓𝑠 (𝒙, 𝒗, 𝑡)d3𝑥 d3𝑣

represents the number of particles in the phase space volume element d3𝑥 d3𝑣 centered at (𝒙, 𝒗)
at time 𝑡.

2.1.1. The Vlasov-Maxwell System

The Vlasov-Maxwell system of equations provides a complete description of the collisionless

plasma dynamics, including collective effects and the self-consistent evolution of the electromag-

netic fields.
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The evolution of 𝑓𝑠 in a collisionless plasma is governed by the Vlasov equation,

d 𝑓𝑠
d𝑡

=
𝜕 𝑓𝑠
𝜕𝑡
+ 𝒗 · ∇ 𝑓𝑠 + 𝑞𝑠

𝑚𝑠
(𝑬 + 𝒗 × 𝑩) · ∇𝒖 𝑓𝑠 = 0, (2.1)

where the proper velocity is denoted as 𝒖 = 𝛾𝒗 using 𝛾 = [1− (𝑣/𝑐)2]−1/2 with the speed of light

𝑐; the electric and magnetic field vectors are given by 𝑬 and 𝑩, respectively, and 𝑞𝑠 and 𝑚𝑠

represent the charge and mass of the particle species, respectively. This equation expresses the

conservation of phase space density along particle trajectories. The electromagnetic fields satisfy

Maxwell’s equations, which reads as follows in the SI unit system (which we use throughout this

thesis),

∇ · 𝑬 =
𝜌

𝜖0
, ∇ · 𝑩 = 0, (2.2)

∇ × 𝑬 = −𝜕𝑩
𝜕𝑡

, ∇ × 𝑩 = 𝜇0𝑱 + 1

𝑐2
𝜕𝑬

𝜕𝑡
, (2.3)

denoting vacuum permittivity and susceptibility as 𝜖0 and 𝜇0, respectively, which are related

via 𝑐 = (𝜖0𝜇0)−1/2. The electromagnetic fields do not directly depend on the position of any

single particle, but rather on velocity-averages of the distribution function, also called velocity

moments or just moments. The charge and current density are sums over all the species 𝑠 for

these moments:

𝜌(𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠

∫
𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑢 =

∑︁
𝑠

𝑞𝑠𝑛𝑠, (2.4)

𝑱(𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠

∫
𝒗 𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑢 =

∑︁
𝑠

𝑞𝑠𝑛𝑠𝒘𝑠 . (2.5)

We introduce 4 moments, which correspond to physically meaningful quantities. The zeroth

moment, the number density

𝑛𝑠 (𝒙, 𝑡) =
∫

𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑢 (2.6)

represents the number of particles per unit volume. The first moment, the bulk velocity,

𝒘𝑠 (𝒙, 𝑡) = 1

𝑛𝑠

∫
𝒗 𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑢 (2.7)

represents the average velocity of particles at a spatial location. The second moment, the

pressure tensor

P𝑠 =
∫
(𝒗 − 𝒘𝑠) (𝒗 − 𝒘𝑠) 𝑓𝑠 d3𝑢 (2.8)

represents the momentum flux and thermal motion. The notation 𝒗𝒗 indicates the dyadic product

of two vectors. Another common definition of the pressure tensor includes an additional factor

of 𝑚𝑠. Finally, the third moment, the heat flux tensor

Q𝑠 =
∫
(𝒗 − 𝒘𝑠) (𝒗 − 𝒘𝑠) (𝒗 − 𝒘𝑠) 𝑓𝑠 d3𝑢, (2.9)
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represents the flow of thermal energy. Of course, even higher order moments can be formed, but

those are less important.

2.1.2. Linear Waves

The dispersion relation of the Vlasov-Maxwell system is derived by manipulating Maxwell’s

equations (2.3),

𝑐2
𝜕

𝜕𝑡
(∇ × 𝑩) = 𝜕

𝜕𝑡

(
𝜖0𝑱 + 𝜕𝑬

𝜕𝑡

)
.

⇔ −𝑐2∇ × (∇ × 𝑬) = 𝜕

𝜕𝑡2

(
𝜖0

∫ 𝑡

𝑡0

d𝑡′
¯
𝜎 + 1

)
· 𝑬, (2.10)

where 1 is the unit tensor and 𝑱 depends linearly on 𝑬 with the proportionality factors encoded

in the conductivity tensor
¯
𝜎, 𝑱 =

¯
𝜎𝑬. Just like 𝑱 is the sum of the current of each species 𝑱𝑠,

the total conductivity is just the sum of conductivities of each species,
¯
𝜎 =

∑
𝑠 ¯
𝜎𝑠. To further

shorten the notation, we use the susceptibility tensor
¯
𝜒 =

¯
𝜎/i𝜔𝜖0, as it absorbs the prefactors.

We make an ansatz for a plane-parallel, homogeneous wave by varying each quantity 𝑈 as

𝑈 = 𝐴𝑈 exp [i(−𝒌 · 𝒙 + 𝜔𝑡 + 𝜑𝑈)] (2.11)

with some quantity specific amplitude 𝐴𝑈 and phase 𝜑𝑈. The wave vector 𝒌 and wave frequency

𝜔 are common to each quantity. With this ansatz, we further reformulate equation (2.10)

𝑐2𝒌 × (𝒌 × 𝑬) = −𝜔2
(
1 +

¯
𝜒
)
· 𝑬

⇔
[
𝒌𝒌 − 𝑘21 + 𝜔2

𝑐2 ¯
𝜖

]
· 𝑬 = 0 (2.12)

The dielectricity tensor

¯
𝜖 = 1 +

¯
𝜒 = 1 + ¯

𝜎

i𝜔𝜖0
(2.13)

has been introduced in the last step.
¯
𝜖 ,

¯
𝜒 and

¯
𝜎 are determined by the Vlasov equation, as we

will discuss shortly. The linear waves supported by the Vlasov-Maxwell system of equations are

simply those, for which the determinant of the tensor in equation (2.12) vanishes for a given 𝜔

and 𝒌.

For waves propagating parallel to the magnetic field 𝑩, it is useful to split the dielectricity

tensor in two parts: a two-dimensional transverse part (𝑇) and a one-dimensional longitudinal

part (𝐿). The transverse part describes the response in the plane perpendicular to 𝑩, while the

longitudinal part describes the response along 𝑩. The dispersion relation for these wave types
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are then given by

Transverse waves: det

{
−𝑘21 + 𝜔2

𝑐2

(
1 +

∑︁
𝑠 ¯

𝜒𝑠,𝑇

)}
= 0, (2.14)

Longitudinal waves:
𝜔2

𝑐2

(
1 +

∑︁
𝑠

𝜒𝑠,𝐿

)
= 0. (2.15)

(2.16)

The exact analytical derivation of all possible linear waves is not feasible in the kinetic picture.

Instead, numerical dispersion relation solvers are employed, such as WHAMP (Roennmark,

1982), ALPS (Verscharen et al., 2018) or Bo (Xie, 2019).

Equations (2.14) and (2.15) are useful, because they are general solutions extending beyond

kinetic plasma physics.
¯
𝜒𝑠 can also be a susceptibility tensor of a fluid or MHD species, which

we will introduce later. It also correctly predicts the electromagnetic waves in absence of any

plasma species, given by setting
¯
𝜒 = 0. This yields the dispersion relation 𝜔 = ±𝑐𝑘 for transverse

waves, corresponding to light waves in vacuum.

Kinetic Contributions to the Conductivity

We search for the linear susceptibility tensor by using the Vlasov equation (2.3), where we

are concerned with a small perturbation around a constant ground state, 𝑓 (𝒙, 𝒗, 𝑡) → 𝑓0(𝒗) +
𝑓1(𝒙, 𝒗, 𝑡), which generates a current perturbation 𝑱 → 𝑱1 and electric perturbation 𝑬1. We

assume a background magnetic field, 𝑩→ 𝑩0 + 𝑩1.

The Vlasov equation for these perturbations yields to first order

(
𝜕𝑡 + 𝒗 · ∇ + 𝑞𝑠

𝑚𝑠
𝒗 × 𝑩0 · ∇𝒖

)
︸                                 ︷︷                                 ︸

=L

𝑓1 = − 𝑞𝑠
𝑚𝑠
[𝑬1 + 𝒗 × 𝑩1] · ∇𝒖 𝑓0. (2.17)

Solving for 𝑓1 and substituting it into the definition of the current, 𝑱1 = 𝑞𝑠
∫
𝒗 𝑓1 d3𝒖, yields

𝑱1 =
𝑞2𝑠
𝑚𝑠

∫
𝒗L−1 [𝑬1 + 𝒗 × 𝑩1] · 𝜕 𝑓0

𝜕𝒖
d3𝑢, (2.18)

where L−1 is the inverse operation of L. In the electrostatic case, where 𝑩 = 0, we simplify

L = i(−𝜔 + 𝒗 · 𝒌) using the plane wave ansatz (2.11). With these assumptions, 𝑱1 is directly

proportional to 𝑬1, allowing us to quickly identify
¯
𝜎 as

¯
𝜎𝑠 ( 𝑓0, 𝜔, 𝑘) =

𝑞2𝑠
𝑚𝑠

∫
𝒗

𝜕 𝑓0/𝜕 (𝒖)
i(−𝜔 + 𝒗 · 𝒌) d3𝑢 (2.19)

The conductivity tensor of the electrostatic case is not just valid for 𝑩0 = 0, but also accu-

rately describes the longitudinal response along the magnetic background field 𝑩0 since the

corresponding wave modes are independent of magnetic perturbations.
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Resonances. One important property of equation (2.19) is, that the denominator vanishes for

𝜔(𝑘) = 𝒗 · 𝒌, (2.20)

where 𝜔(𝑘) is a solution of the dispersion relation (2.15). The plasma quickly develops a density

current in response to the applied electric field, or it is said to be in resonance. This specific

resonance is called the Landau resonance. For transverse waves, cyclotron resonances of the

form

𝜔(𝑘) = 𝒗 ∥ · 𝒌 ± 𝑛Ω𝑠 (2.21)

appear, where 𝜔(𝑘) is a solution of the dispersion relation (2.14), and the integer 𝑛 denotes the

harmonics of the gyrofrequency. The subscripts parallel and perpendicular denote the relation of

the velocity components to the background magnetic field, and Ω𝑠 = 𝑞𝑠𝐵0/(𝛾𝑚𝑠) is the cyclotron

frequency. While in general, a superposition of infinitely many harmonics is considered (see, e.g.

chapter 8.3 and 11.2 of Schlickeiser, 2002), we are interested in transverse waves propagating

parallel to 𝑩0. This case is of importance for CR streaming and exhibits the first harmonics of

the cyclotron resonance in the linear regime. For these, the susceptibility tensor is of the form

¯
𝜒𝑠 =

1

2𝜔2

𝑞2𝑠
𝜖𝑚𝑠

∫
𝑣2⊥

{ [(𝜔 − 𝑘𝑣∥ )/𝑣⊥]𝜕𝑢⊥ 𝑓0 + 𝑘 ∥𝜕𝑢∥ 𝑓0
𝑘 ∥𝑣∥ − 𝜔 −Ω𝑠

}
d3𝑢, (2.22)

where the term in the denominator represents the cyclotron resonance.

2.2. The Multi-Fluid Equations

Directly solving the Vlasov-Maxwell system can be challenging as phase-space is 6-dimensional,

composed of three spatial and three velocity dimensions. The fluid approach reduces this com-

plexity by eliminating velocity dimensions while retaining spatial dimensions. Theoretically, this

can be achieved without loss of accuracy, but at the cost of an ever-expanding set of equations.

Thus, additional assumptions have to be made to close the fluid hierarchy and to retrieve a

solvable set of equations, which we will cover in this section. We focus on non-relativistic fluids

and assume 𝛾 = 1.

2.2.1. The Moment Hierarchy

The derivation of fluid equations proceeds by taking velocity moments of the Vlasov equation,

recovering equations for each of the moments presented in Section 2.1.1.

Particle Conservation. For the zeroth moment, we simply integrate the Vlasov equation (2.1)

(i.e., we apply
∫

d3𝑣),

∫
d3𝑣

𝜕 𝑓𝑠
𝜕𝑡︸        ︷︷        ︸

=𝜕𝑛𝑠/𝜕𝑡

+
∫

d3𝑣 𝒗 · ∇ 𝑓𝑠︸             ︷︷             ︸
=∇·𝑛𝑠𝒘𝑠

+
∫

d3𝑣
𝑞𝑠
𝑚𝑠
(𝑬 + 𝒗 × 𝑩) · ∇𝒗 𝑓𝑠 = 0, (2.23)

13



2. Descriptions of Astrophysical Plasmas

where the temporal and spatial derivatives commute with the velocity integral, allowing us to

directly identify the velocity moments. This leaves the last term

𝑞𝑠
𝑚𝑠

∫
(𝑬 + 𝒗 × 𝑩) · ∇𝒗 𝑓𝑠 d3𝑣 =

𝑞𝑠
𝑚𝑠

{
𝑓𝑠 (𝑬 + 𝒗 × 𝑩)

���𝒗→+∞
𝒗→−∞

−
∫

𝑓𝑠∇𝒗 · (𝑬 + 𝒗 × 𝑩) d3𝑣

}
= 0, (2.24)

which vanishes upon integration by parts, given that ∇𝒗 is perpendicular to 𝒗 × 𝑩 and assuming

that 𝑓𝑠𝒗 → 0 vanishes for |𝒗 | → ∞. We retrieve

𝜕𝑛𝑠
𝜕𝑡
+ ∇ · (𝑛𝑠𝒘𝑠) = 0. (2.25)

We make three observations. First, the particle number is conserved as the density 𝑛𝑠 (𝒙) at

position 𝒙 can only change by flowing into or out of a neighboring fluid element, where strength

and direction of the flow is determined by the divergence term. Second, if Poisson’s equation

∇ · 𝑬 = 𝜌/𝜖0 (2.2) is fulfilled at some point in time, the continuity equation (2.25) implies that

it is fulfilled at any time as

∑︁
𝑠

𝜕𝑞𝑠𝑛𝑠
𝜕𝑡

=
𝜕𝜌

𝜕𝑡
= 𝜖0∇ · 𝜕𝑬

𝜕𝑡
= ∇ ·

(
−𝑱 + ∇ × 𝑩

𝜇0

)
= −∇ · 𝑱 = −∇ ·

∑︁
𝑠

𝑞𝑠𝑛𝑠𝒘𝑠 . (2.26)

Finally, equation (2.25) necessitates the next higher-order moment, the bulk velocity, for which

we will derive another equation.

Higher-order Moment Equations. The momentum equation derives from the first velocity

moment of the Vlasov equation (i.e., we apply
∫
𝒗 d3𝑣). The temporal derivative terms is triv-

ial once again and results in 𝜕𝑛𝑠𝒘𝑠/𝜕𝑡, the spatial derivative is (with omitted subscript 𝑠 for

improved readability)

∇ ·
∫

𝒗𝒗 𝑓 d3𝑣 = ∇ ·
∫
[(𝒗 − 𝒘) (𝒗 − 𝒘) + 𝒗𝒘 + 𝒘𝒗 − 𝒘𝒘] 𝑓 d3𝑣 (2.27)

= ∇ · [P + (𝑛𝒘)𝒘 + 𝒘(𝑛𝒘) − (𝑛)𝒘𝒘] = ∇ · (𝑛𝒘𝒘 + P) . (2.28)

The spatial derivative of a tensor in this notation acts always on its first component, that is

∇P| 𝑗 = 𝜕𝑖P𝑖 𝑗 in component notation (where we adopted Einstein’s sum convention and sum over

two identical indices). The final term is treated similarly as in equation (2.24), but we need to

make a stronger assumption of 𝑓𝑠𝒗𝒗 → 0 as |𝒗 | → ∞. This yields

𝑞𝑠
𝑚𝑠

∫
d3𝑣𝒗 [(𝑬 + 𝒗 × 𝑩) · ∇𝒗 𝑓𝑠] = 𝑞𝑠

𝑚𝑠
𝑓𝑠𝒗(𝑬 + 𝒗 × 𝑩)

���𝑣=+∞
𝑣=−∞

− 𝑞𝑠
𝑚𝑠

𝑛𝑠 (𝑬 + 𝒘𝑠 × 𝑩) . (2.29)

Thus, the momentum equation is given by

𝜕𝑛𝑠𝒘𝑠

𝜕𝑡
+ ∇ · (𝑛𝑠𝒘𝑠𝒘𝑠 + P𝑠) = 𝑞𝑠

𝑚𝑠
𝑛𝑠 (𝑬 + 𝒘𝑠 × 𝑩). (2.30)

The pressure tensor evolution equation can be derived similarly, necessitating an even stronger
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2.2. The Multi-Fluid Equations

assumption of 𝑓𝑠𝒗𝒗𝒗 → 0 as |𝒗 | → ∞. We omit the derivation and continue to give the resulting

equation, where superscript T denotes the transpose (Hunana et al., 2019a)

𝜕P𝑠

𝜕𝑡
+ ∇ · (𝒘𝑠P𝑠 +Q𝑠) + (P𝑠 · ∇) 𝒘𝑠 + [(P𝑠 · ∇) 𝒘𝑠]T = − 𝑞𝑠

𝑚𝑠
[𝑩 × P𝑠 − P𝑠 × 𝑩] . (2.31)

The cross product of a vector with a tensor is defined as (𝑩×P)𝑖 𝑗 = 𝜖𝑖𝑙𝑚𝐵𝑙𝑃𝑚𝑗 in index-notation

using the Levi-Civita symbol 𝜖𝑖𝑙𝑚. We denote the tensor product by 𝒘P, which results in

[∇ · (𝒘P)]𝑖 𝑗 = 𝜕𝑘 (𝑤𝑘𝑃𝑖 𝑗).
The heat flux tensor can also be self-consistently evolved by finding a new set of equations

of even higher orders, but the ever-increasing complexity of the higher-order moment equations

urges one to apply appropriate approximations. The highest-order moment can be approximated

using only lower-order moments, which allows to close the system of equations. Because of this

property, the approximation is usually referred to as a closure. In the following, we provide

some common closures and discuss their applicability.

2.2.2. Adiabatic Closures

Q is a moment of 𝑓 , see equation (2.9). More specifically, Q describes the skewness of 𝑓 .

Assuming that 𝑓 is fully symmetric around its mean, its skewness would vanish and thus Q = 0.

Conversely, if we start with the assumption Q = 0, we imply a vanishing skewness of the

distribution function. By doing so, we cut off the fluid equation hierarchy and ignore higher-

order contributions, which implicitly sets all higher-order moments to 0 as well. Therefore,

in such a case, the distribution function is not only without any skewness, but it should also

be without any kurtosis (or non-Gaussian tail). This is fulfilled by the Maxwell-Boltzmann

distribution, which is well modeled in the fluid picture. As the Maxwell-Boltzmann distribution

is an equilibrium distribution for gases undergoing elastic collisions, the fluid equations are

particularly useful to model collisional species.

Setting the heat flux Q = 0 enforces the adiabatic assumption, implying that compression and

expansion of the gas are reversible processes. Even with this closure, P initially has six degrees

of freedom – as it is a symmetric tensor by definition – which can be further reduced by taking

physical symmetries into account. We can decompose the tensor along the magnetic unit vector

𝒃̂ = 𝑩/𝐵 via P = 𝑝 ∥ 𝒃̂ 𝒃̂ + 𝑝⊥(1 − 𝒃̂ 𝒃̂) + 𝚷. The stress tensor 𝚷 is often neglected, 𝚷 = 0, which

leads to the double adiabatic description of a plasma with just two degrees of freedom (Oraevskii

et al., 1968; Passot and Sulem, 2004).

𝜕𝑝 ∥
𝜕𝑡
+ ∇ · (𝑝 ∥𝒘) + (𝛤∥ − 1)𝑝 ∥ 𝒃̂ · ∇𝒘 · 𝒃̂ = 0 (2.32)

𝜕𝑝⊥
𝜕𝑡
+ ∇ · (𝑝⊥𝒘) + (𝛤⊥ − 1)

(
−𝑝⊥ 𝒃̂ · ∇𝒘 · 𝒃̂ + 𝑝⊥∇ · 𝒘

)
= 0 (2.33)

The adiabatic index 𝛤 is closely linked to the degrees of freedom of the (decomposed parts of the)

pressure tensor, 2𝑝/(𝛤 − 1) = TrP. For a fully isotropic tensor we have three degrees of freedom

(TrP = 3𝑝) and thus 𝛤 = 5/3, while the perpendicular pressure component has TrP⊥ = 2𝑝⊥
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2. Descriptions of Astrophysical Plasmas

corresponding to 𝛤⊥ = 2, and the parallel component has one degree of freedom, corresponding

to 𝛤∥ = 3. The isotropic pressure equation follows as

𝜕 (𝑝 ∥ + 2𝑝⊥)
𝜕𝑡

=
𝜕𝑝

𝜕𝑡
= − [∇ · (𝑝𝒘) + (𝛤 − 1)𝑝∇ · 𝒘] . (2.34)

The set of fluid equations with the adiabatic closure fulfills the adiabatic equation of state

d(𝑝𝑛−𝛤 )/d𝑡 = 0. It is also useful to express the pressure evolution equation (2.34) as the energy

evolution equation. We define the fluid energy density as the sum of the inner and kinetic energy

density of the fluid, 𝜖 = (TrP + 𝑛𝒘2)/2 = 𝑝/(𝛤 − 1) + 𝑛𝒘2/2, and obtain

𝜕𝜖

𝜕𝑡
+ ∇ · [(𝑝 + 𝜖)𝒘] = 𝑞𝑛

𝑚
𝒘 · 𝑬 . (2.35)

Here, the total fluid energy is conserved except for the case of an increase in kinetic energy

through acceleration by the electric field. This formulation is useful because its conservative

properties can be fulfilled numerically up to machine precision; the numerical solution of the

non-conservative pressure equation tends to violate the energy conservation and can lead to

numerical instabilities. We will get back to this point when discussing numerical algorithms in

Section 3.3.2.

The adiabatic closure also has significant drawbacks, as many kinetic effects, like Landau

damping or cyclotron damping, are completely lost. These irreversible effects introduce a per-

turbation in the heat flux, which has to be modeled using more appropriate closures.

2.2.3. Landau Closures

Landau closures for fluid models aim to capture Landau damping effects within the fluid frame-

work. We present the general idea of deriving such closures, roughly following the ideas of the

original paper by Hammett and Perkins (1990), while a more systematic approach is given by

Hunana et al. (2019b). We examine the one-dimensional case along a magnetic field line, fo-

cusing on longitudinal wave modes that are subject to Landau damping. An extension to three

dimensions is performed by Snyder et al. (1997), which has been further extended to include

non-gyrotropic contributions by Passot and Sulem (2007). Jikei and Amano (2021) developed

collisionless closures for cyclotron damping affecting transverse waves by using a similar deriva-

tion.

The derivation centers on determining the fluid species’ conductivity tensors with variable

closure coefficients, which are then matched to the Maxwellian conductivity tensor (even though

other distributions are also possible).

Fluid Conductivity. Following the kinetic approach in Section 2.1.2, we introduce perturbations

𝑛𝑠 → 𝑛0 + 𝑛1, 𝑤𝑠 → 𝑤1, and 𝑝𝑠 → 𝑝0 + 𝑝1, employ the plane wave ansatz (2.11), and identify

the fluid conductivities
¯
𝜎𝑠 from 𝑱𝑠 = 𝑞𝑠𝑛0𝒘1 =

¯
𝜎 · 𝑬. We propose a scalar heat flux closure
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2.2. The Multi-Fluid Equations

𝑞1 = 𝑎𝑛𝑛1 + 𝑎𝑝𝑝1 + 𝑎𝑤𝑤1 with variable coefficients 𝑎, yielding:

𝜕𝑛

𝜕𝑡
= −𝜕𝑛𝑤

𝜕𝑥
⇒ 𝑛1 =

𝑘

𝜔
𝑤1𝑛0, (2.36)

𝜕𝑝

𝜕𝑡
= −𝛤𝑝 𝜕𝑤

𝜕𝑥
− 𝑤 𝜕𝑝

𝜕𝑥
− 𝜕𝑞

𝜕𝑥
⇒ 𝑝1 =

1

𝜔/𝑘 − 𝑎𝑝
(𝛤𝑝0 + 𝑎𝑤𝑤1 + 𝑎𝑛𝑛1) , (2.37)

𝑞𝑠
𝜕𝑛𝑤
𝜕𝑡
+ 𝑞𝑠 𝜕 (𝑝 + 𝑛𝑤𝑤)

𝜕𝑥
=
𝑞2𝑠𝑛

𝑚𝑠
𝐸

⇒ 𝑤1𝑞𝑠i

[
𝜔𝑛0 − 𝑘

𝜔/𝑘 − 𝑎𝑝

(
𝛤𝑝0 + 𝑎𝑤 + 𝑎𝑛 𝑘

𝜔
𝑛0

)]
=
𝑞2𝑠𝑛0
𝑚𝑠

𝐸1. (2.38)

Before deriving the conductivity tensor
¯
𝜎, we establish the fundamental parameters and nor-

malizations. The plasma frequency is defined as 𝜔2
𝑠 = 𝑞2𝑠𝑛0/𝑚𝑠𝜖0, with background pressure

𝑝0 = 𝑛0(𝑣2th/2). The system’s characteristic velocity is the thermal velocity 𝑣th aligned with the

wave vector direction, given by sgn(𝑘)𝑣th. This characteristic velocity enables the introduction of

dimensionless coefficients 𝑏𝑈, which relate to the closure variables 𝑎𝑈 through 𝑎𝑝 = 𝑏𝑝 sgn(𝑘)𝑣th,

𝑎𝑛 = 𝑏𝑛 sgn(𝑘)𝑣th𝑝0/𝑛0 and 𝑎𝑤 = 𝑏𝑤𝑝0 We further normalize the wave phase velocity 𝑣wave = 𝜔/𝑘
using the dimensionless parameter 𝜁 = 𝑣wave/(sgn(𝑘)𝑣th) = 𝜔/(|𝑘 |𝑣th). With these normaliza-

tions, we rearrange equation (2.38) into the form 𝑱𝑠 = 𝑞𝑠𝑛0𝒘1 =
¯
𝜎 · 𝑬 to obtain the conductivity

tensor

(
¯
𝜎𝑠)Landau fluid = 2i

𝜖0𝜔
2
𝑠𝜁

|𝑘 |𝑣th
−𝑏𝑝 − 𝜁

𝑏𝑛 + 𝜁 (𝑏𝑤 + 𝛤) + 2𝑏𝑝𝜁2 − 2𝜁3
. (2.39)

Comparison to Kinetic Conductivity. The next step requires matching the fluid coefficients 𝑏𝑈

to their kinetic counterparts. For the kinetic description, we model 𝑓0 as a Maxwell-Boltzmann

distribution 𝑓0(𝑣) = 𝑛0 exp
(
−𝑣2/𝑣2

th

)
/(√𝜋𝑣th), which is well approximated by fluids for the reasons

outlined beforehand. With this distribution, the kinetic conductivity tensor from equation (2.19)

takes the form

(
¯
𝜎𝑠)MB =

𝑞𝑠
𝑚𝑠i

𝑛0

∫
𝑣
𝜕𝑒−(𝑣/𝑣th )

2

𝜕𝑣
1√

𝜋𝑣th(−𝜔 + 𝑣𝑘)
d𝑣 = [𝑣/𝑣th → 𝑥]

=
𝜖0𝜔

2
𝑠

i𝑣th

∫ −2𝑥2√
𝜋𝑘

𝑒−𝑥
2

𝑥 − 𝜔/(𝑘𝑣th)
d𝑥 = 2i

𝜖0𝜔
2
𝑠

|𝑘 |𝑣th
𝜁𝑅(𝜁). (2.40)

The integral can be expressed through the plasma response function 𝑅(𝜁) = 1+𝜁 i
√
𝜋 exp

(−𝜁2) (1+
erf (i𝜁)), where erf denotes the error function (Fried and Conte, 1961). To determine appropriate

closure coefficients, we match the fluid conductivity tensor (2.39) to its kinetic counterpart (2.40),

requiring 𝜎MB ≈ 𝜎Landau fluid. Of particular interest is the hot, collisionless limit (𝜁 → 0), where
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we can compare the Taylor series expansions:

𝑅(𝜁) ≈ −𝑏𝑝 − 𝜁

𝑏𝑛 + 𝜁 (𝑏𝑤 + 𝛤) + 2𝑏𝑝𝜁2 − 2𝜁3

𝜁→0⇒ 1 + i
√
𝜋𝜁 − 2𝜁2 − i

√
𝜋𝜁3 + O(𝜁4) ≈ −𝑏𝑝

𝑏𝑛
+ 𝑏𝑛 + 𝑏𝑝𝑏𝑤 + 𝑏𝑝𝛤

𝑏2𝑛
𝜁

+
[−𝑏𝑤 − 𝛤

𝑏2𝑛
− 𝑏𝑝

(−2𝑏𝑛𝑏𝑝 + 𝑏2𝑤 + 2𝑏𝑤𝛤 + 𝛤2
)

𝑏3𝑛

]
𝜁2 + O(𝜁3).

(2.41)

The Landau fluid model achieves second-order accuracy in 𝜁 with the coefficients 𝑏𝑛 = −𝑏𝑝 =

−i
√
𝜋/(𝜋 − 4) and 𝑏𝑤 = 4/(𝜋 − 4) − 𝛤 = (8 − 3𝜋)/(𝜋 − 4) (for 𝛤 = 3) (Hunana et al., 2018). For

applications where first-order accuracy suffices, Hammett and Perkins (1990) provided a simpler

set of coefficients, 𝑏𝑛 = −𝑏𝑝 = −i(1 − 𝛤)/√𝜋 = i2/√𝜋 and 𝑏𝑤 = 0.

Physical Meaning. Both, first and second-order closures, share the relation 𝑏𝑛 = −𝑏𝑝, yielding

a heat flux proportional to the perturbed temperature 𝑇1

𝑞1 ∼ i sgn(𝑘)𝑣th𝑛0 𝑘B𝑇1
𝑚𝑠

, (2.42)

where 𝑇1 =
𝑚𝑠𝑝1 − 𝑘B𝑇0𝑛1

𝑛0
, (2.43)

and
𝑘B𝑇0
𝑚𝑠

=
𝑣2
th

2
=

𝑝0
𝑛0

. (2.44)

The most significant feature is the non-local relationship between heat flux and temperature

perturbations, evidenced by the i sgn(𝑘) term. This indicates that the maximum heat flux occurs

at different spatial locations in comparison to the maximum temperature perturbations. This

non-locality emerges from the free streaming of collisionless particles along magnetic field lines,

where damping processes occur through spatially coherent waves. This non-locality is challenging

to efficiently implement in numerical realizations as will be discussed later in Section 4.2.6.

A limitation of Landau closures lies in their inability to capture the flattening of the velocity

distribution function around the resonance. In kinetic theory, the wave-particle resonance leads

to selective particle acceleration (𝑣∥ < 𝑣wave) and deceleration (𝑣∥ > 𝑣wave). If more particles

are slower than the wave, the particles gain on average energy over time and give rise to Lan-

dau damping. Large-amplitude waves can flatten the distribution function near the resonance

over time, thereby saturating the damping effect. By contrast, Landau fluid models maintain

exponential damping of longitudinal waves until the wave energy is fully converted to thermal

energy.

Finally, we compare the Landau closures with the adiabatic closures (of an ideal fluid), where

𝑞1 = 0 and thus

(𝜎𝑠)ideal fluid = 2i
𝜖0𝜔

2
𝑠𝜔

𝑘2𝑣2
th

2

𝛤 − 2𝜁2
. (2.45)

This conductivity tensor is purely imaginary for all real values of 𝜁 , which precludes any damping
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effects while the plasma is at rest. However, in the limit of a cold plasma or for large wave

velocities, i.e., 𝜁 →∞, all models converge.

2.2.4. Linear Waves

Longitudinal Waves (ideal fluid)

For the longitudinal waves, we will only derive equations for the adiabatic closure, as the Landau

fluids yield more complicated expressions. We substitute equation (2.45) and insert it into the

dispersion relation (2.15). For a two-fluid plasma with immobile ions, the dispersion relation

yields

𝜔2 = 𝜔2
𝑒 + 𝑐2𝑠,𝑒𝑘2, (2.46)

where the electron sound speed is 𝑐2𝑠,𝑒 = 𝛤𝑣2
th,𝑒
/2. For an electron-ion fluid, two longitudinal

wave modes emerge

𝜔2 = 𝜔2
𝑝 + 𝑐2𝑠𝑘2 ±

√︂(
𝜔2

𝑝 + 𝑐2𝑠𝑘2
)2 − 4𝑘2

(
𝑐2𝑠,𝑒𝑐

2
𝑠,𝑖𝑘

2 + 𝑐2𝑠,𝑖𝜔2
𝑒 + 𝑐2𝑠,𝑒𝜔2

𝑖

)
, (2.47)

where the total sound speed is 𝑐2𝑠 = 𝑐2𝑠,𝑒 + 𝑐2𝑠,𝑖. These acoustic waves, which experience Landau

damping in kinetic theory, exhibit different behaviors in fluid models. In Landau fluid models,

the dispersion relation includes an imaginary component Im(𝜔) < 0, causing wave damping over

time.

In the case of CR streaming, the primary interest lies not in direct Landau damping of

longitudinal waves because CRs interact with transverse waves. Transverse waves generate

these longitudinal modes via wave-wave interactions. The longitudinal modes then experience

damping in the Landau fluid model, leading to indirect damping of the transverse waves, which is

called non-linear Landau damping. By contrast, the ideal fluid model preserves these longitudinal

waves without damping, which results in their saturation and which terminates the transverse

wave energy transfer.

Transverse Waves

We turn our attention to transverse modes with 𝑝1 = 0 and 𝑛1 = 0. We set 𝑩0 = 𝐵0𝒆𝑥 along

the 𝑥-axis, 𝐸𝑥 = 0 and linearly perturb the remaining quantities to find two equations for the

transverse velocity,

i𝜔𝑣𝑦 =
𝑞

𝑚
(𝐸𝑦 + 𝑣𝑧𝐵0), i𝜔𝑣𝑧 =

𝑞

𝑚
(𝐸𝑧 − 𝑣𝑦𝐵0) (2.48)

⇒ 𝐽𝑦 = 𝑞𝑠𝑛0𝑣𝑦 = 𝜖0𝜔
2
𝑠

−i𝜔𝐸𝑦 −Ω𝑠𝐸𝑧

𝜔2 −Ω2
𝑠

, 𝐽𝑧 = 𝑞𝑠𝑛0𝑣𝑧 = 𝜖0𝜔
2
𝑠

−i𝜔𝐸𝑧 +Ω𝑠𝐸𝑦

𝜔2 −Ω2
𝑠

. (2.49)

From these equations the conductivity tensor is readily identified with its (anti-)symmetries

𝜎𝑦𝑧 = −𝜎𝑧𝑦 and 𝜎𝑧𝑧 = 𝜎𝑦𝑦. These symmetries carry over to the dielectricity tensor 𝜖 = 𝜎/(i𝜔𝜖0)
and help to solve the dispersion relation (2.14) for the transverse wave modes. If we split the

dielectricity tensor as 1 + 𝜖𝑦𝑦 = (𝑃+ + 𝑃−)/2 and 𝜖𝑦𝑧 = (𝑃+ − 𝑃−)/2, the dispersion relation splits
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into a left-hand and right-hand polarized solution as

(
𝑐2𝑘2

𝜔2
− 𝑃+

) (
𝑐2𝑘2

𝜔2
− 𝑃−

)
= 0

⇔
(
𝑐2𝑘2

𝜔2
− 𝑃+

)
= 0 or

(
𝑐2𝑘2

𝜔2
− 𝑃−

)
= 0, (2.50)

where 𝑃± = 1 −
∑︁
𝑠

𝜔2
𝑠

𝜔(𝜔 ±Ω𝑠) . (2.51)

This dispersion relation is important, as its solutions enter into the resonance condition (2.14).

Among the solutions for 𝜔(𝑘), we can quickly identify modified light waves 𝜔2 = 𝑐2𝑘2 + 𝜔2
𝑝 for

|𝜔| ≫ max𝑠 |Ω|𝑠, where the plasma frequency 𝜔𝑝 =
∑

𝑠 𝜔𝑠. Their phase velocity 𝜔/𝑘 is larger

than 𝑐 so that they cannot resonate with particles.

Thus, we turn our attention to waves with |𝜔 | ≤ max𝑠 |Ω|𝑠, as these potentially allow for

cyclotron resonances. At very small scales, corresponding to 𝑘 → ∞, waves correspond to the

individual particle rotations, 𝜔 = Ω𝑠, with phase velocities of 0. In the low frequency limit,

𝜔2 ≪ max𝑠 Ω2
𝑠 , we find

𝑃± − 1 = −
∑︁
𝑠

𝜔2
𝑠 (𝜔 ∓Ω𝑠)

𝜔(𝜔2 −Ω2
𝑠)

= +
∑︁
𝑠

𝜔2
𝑠 (𝜔 ∓Ω𝑠)
𝜔Ω2

𝑠

=
∑︁
𝑠

[
𝑚𝑠𝑛𝑠

𝜖0𝐵
2
0

∓ 𝑞𝑠𝑛𝑠
𝜖0𝜔𝐵0

]
. (2.52)

Under the assumption of quasi-neutrality,
∑

𝑠 𝑞𝑠𝑛𝑠 = 0, we identify the Alfvén velocity of a

multi-species plasma as

𝑣A =
𝐵0√︁

𝜇0
∑

𝑠 𝑚𝑠𝑛𝑠
, (2.53)

The wave frequency is

𝜔2 = 𝑘2
𝑣2A

1 + 𝑣2
A
/𝑐2 , (2.54)

which is valid for large scale waves 𝑘 → 0. Only in the limit of non-relativistic Alfvén velocities,

the wave (phase) velocity 𝑣wave converges to 𝑣A:

𝑣wave =
𝜔

𝑘
=

𝑣A√︃
1 + 𝑣2

A
/𝑐2

. (2.55)

To estimate the waves between the shortest and largest scales, we need to know about the

composition of plasma. One important wave mode are the whistler waves, which we obtain from

𝑃+ for wave lengths smaller than the ion skin depth, 𝑘 ≫ 𝑑𝑖 = 𝑐/𝜔𝑖:

𝜔(𝑘) = Ω𝑒
𝑘2𝑑2𝑒

2
(
1 + 𝑘2𝑑2𝑒

)
(√︄

1 + 4

𝑘2𝑑2𝑖
+ 1

)
. (2.56)

At spatial scales smaller than the electron skin depth (𝑘𝑑𝑒 > 1), the wave characteristics tran-

sition to electron-cyclotron waves that asymptotically approach Ω𝑒 as 𝑘 →∞.

Instead of finding another solution for 𝑃−, we use the symmetry relation 𝑃+(𝜔) = 𝑃− (−𝜔).
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The choice between solving 𝑃+ or 𝑃− remains arbitrary, provided that we are clear about the

convention that is implied, i.e., whether 𝜔 > 0 is right- or left-hand polarized. Under the 𝑃−
convention, electron-cyclotron waves converge towards −Ω𝑒 as 𝑘 → ∞; it is common to refer to

waves co-rotating with the electrons as right-hand polarized (𝑃+ with 𝜔 < 0, 𝑃− with 𝜔 > 0),

while waves co-rotating with the ions are left-hand polarized.

2.3. Quasi-neutral fluids and MHD

The multi-fluid and Vlasov equations can incorporate multiple particle species, but practical

applications typically focus on electron-ion plasmas. We can significantly simplify these equa-

tions by invoking the quasi-neutral and inertialess electron assumptions, eliminating the fast

electron timescale (𝜔−1𝑒 ≪ 𝜔−1𝑖 ) from the system of equations. This simplification allows numer-

ical simulations to use larger time steps governed by ion dynamics rather than electron motion,

substantially improving computational efficiency. Here, we give an overview of the quasi-neutral

two-fluid system.

2.3.1. Derivation of Generalized Ohm’s Law

The derivation of Ohm’s law begins with the fluid momentum equations (2.30) for electrons and

ions:

𝑚𝑒

(
𝜕𝑛𝑒𝒘𝑒

𝜕𝑡
+ ∇ · 𝑛𝑒𝒘𝑒𝒘𝑒 + ∇ · P𝑒

)
= 𝑞𝑒𝑛𝑒 (𝑬 + 𝒘𝑒 × 𝑩), (2.57)

𝑚𝑖

(
𝜕𝑛𝑖𝒘𝑖

𝜕𝑡
+ ∇ · 𝑛𝑖𝒘𝑖𝒘𝑖 + ∇ · P𝑖

)
= 𝑞𝑖𝑛𝑖 (𝑬 + 𝒘𝑖 × 𝑩). (2.58)

Using the assumption of quasi-neutrality, 𝑛𝑖 = 𝑛𝑒 = 𝑛 with 𝑞𝑖 = −𝑞𝑒, we define the current

density, 𝑱 = 𝑞𝑖𝑛(𝒘𝑖 − 𝒘𝑒), and the center-of-mass bulk velocity, 𝒘 = (𝑚𝑖𝒘𝑖 + 𝑚𝑒𝒘𝑒)/𝑚𝑡 with the

total mass 𝑚𝑡 = 𝑚𝑖 + 𝑚𝑒.

Thus, the bulk velocities of the different species is expressed in terms of 𝑱 and 𝒘:

𝒘𝑖 = 𝒘 + 𝑚𝑒

𝑚𝑖 + 𝑚𝑒

𝑱

𝑞𝑖𝑛
𝒘𝑒 = 𝒘 − 𝑚𝑖

𝑚𝑖 + 𝑚𝑒

𝑱

𝑞𝑖𝑛
. (2.59)

Next, we replace the electron momentum equation (2.57) with a simpler equation. The gener-

alized Ohm’s law emerges as a result of subtracting the electron momentum equation (multiplied

by 𝑚𝑖) from the ion momentum equation (multiplied by 𝑚𝑒). Using 𝑚𝑖 ≫ 𝑚𝑒 and assuming ap-

proximate isothermality, 𝑚𝑖P𝑖 ≈ 𝑚𝑒P𝑒 and thus P𝑖 ≪ P𝑒, we obtain:

𝑬 + 𝒘 × 𝑩 =
𝑱 × 𝑩

𝑞𝑖𝑛
− 𝑚𝑒∇ · P𝑒

𝑞𝑖𝑛
+ 𝑚𝑒

𝑛𝑞2𝑖

[
𝜕𝑱

𝜕𝑡
+ ∇ · (𝑱𝒘 + 𝒘𝑱)

]
+ 𝜂𝑱, (2.60)

We have also introduced a resistive term 𝜂𝑱 to phenomenologically account for collisions, which

has been absent in our previous treatment. The resistive term, and sometimes even hyper-

resistive terms, are often needed to stabilize numerical methods, which is why we include them
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here. The terms on the right-hand side of equation (2.60) can be interpreted as follows (from left

to right): the Hall electric field, the thermoelectric effect from the electron pressure gradient, the

electron inertia and the collisional resistivity. The left-hand side represents the effective electric

field experienced by a fluid element moving with velocity 𝑤.

2.3.2. Simplifying Generalized Ohm’s Law

The generalized Ohm’s law without additional approximations is not very practical, as it retains

the electron time scales. We proceed with two additional assumptions. First, we neglect dis-

placement currents by assuming 𝜕𝑬/𝜕𝑡 ≪ 𝑱 in Maxwell’s equations (2.3), yielding 𝑱 = ∇×𝑩/𝜇0.
Second, we consider electrons to have a vanishingly small inertia so that we can set 𝑚𝑒 𝜕𝐽/𝜕𝑡 = 0

in the generalized Ohm’s law (2.60). Even though any physical species without inertia would

be massless, this model retains other effects that result from the electron mass, such as the

pressure, so that we prefer to speak of a fluid without inertia. Using these assumptions, Ohm’s

Law simplifies to

𝑬 + 𝒘 × 𝑩 =
(∇ × 𝑩) × 𝑩

𝜇0𝑞𝑖𝑛
− 𝑚𝑒∇ · P𝑒

𝑞𝑖𝑛
+ 𝜂

𝜇0
∇ × 𝑩. (2.61)

This simplified form fundamentally changes the nature of the equations: both 𝑬 and 𝑱 become

derived quantities rather than independent variables with their own evolution equations. These

simplifications significantly impact the linear waves supported by the system.

For transverse waves, the removal of 𝜕𝐸
𝜕𝑡 eliminates the 1𝜔2/𝑐2 term from equation (2.14),

reducing it to

det
{
𝑘21 + 𝜔2

¯
𝜒/𝑐2} = 0. (2.62)

This modification excludes light waves (𝜔2/𝑘2 = 𝑐2) from the solution, effectively removing the

fastest time scale from the system. For longitudinal waves the equation (2.15) keeps the 𝜔2/𝑐2
term. However, the assumption of a vanishing electron inertia eliminates Langmuir waves while

the ion-acoustic waves, which are coupled with the thermo-electric effect, remain in the system.

2.3.3. The MHD Approximation

The MHD model unifies the electron and ion fluids from the quasi-neutral two-fluid description

into a single fluid. Ohm’s law was retrieved by subtracting the momentum equation for the

electrons’ (2.57) from the ions’ (2.58), but we can also add them together, which yields

𝑚𝑡

(
𝜕𝑛𝒘
𝜕𝑡
+ ∇ · 𝑛𝒘𝒘 + ∇ · P𝑡

)
= 𝑱 × 𝑩, (2.63)

where 𝑚𝑡P𝑡 = 𝑚𝑒P𝑒 + 𝑚𝑖P𝑖 defines the total pressure. Similarly, the mass density conservation

equation is obtained by summing the ion to the electron contributions (𝑚𝑠 times equation 2.25)

𝜕𝜌𝑚
𝜕𝑡
+ ∇ · 𝑛𝒘 = 0, (2.64)
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where the mass density is given by 𝜌𝑚 = 𝑚𝑖𝑛𝑖 +𝑚𝑒𝑛𝑒. Similarly as before, one can also derive an

equation for the conservation of the electrical charges by subtracting the electron contributions

from the ion contributions, but the charge density vanishes anyway due to the assumed quasi-

neutrality.

Using the adiabatic assumption for the energy evolution equation (2.35), we can proceed just

as before in the case of the zeroth- and first-moment equations by adding the ion and electron

contributions
𝜕𝜖𝑚
𝜕𝑡
+ ∇ · [(𝜖𝑚 + 𝑚𝑡 𝑝) 𝒘] = 0, (2.65)

where 𝜖𝑚 = 𝑚𝑖𝜖𝑖 + 𝑚𝑒𝜖𝑒 and the scalar pressure, 𝑝, is defined as before. The conservation of

magnetic energy follows from the electron-ion difference

0 = 𝑱 · 𝑬 =
1

𝜇0
(∇ × 𝑩) · 𝑬 =

1

𝜇0
[𝑩 · (∇ × 𝑬) − ∇ · (𝑬 × 𝑩)]

⇔ 0 =
1

𝜇0

[
𝜕𝐵2/2
𝜕𝑡

+ ∇ · (𝑬 × 𝑩)
]
, (2.66)

using Faraday’s law
𝜕𝑩

𝜕𝑡
= −∇ × 𝑬 (2.67)

in the last step (as given by Maxwell’s equations 2.3). The equations (2.63)–(2.65) and equa-

tion (2.67) are the MHD evolution equations, which are supplemented with Ohm’s law (2.61)

and the constraint equation ∇ · 𝑩 = 0. Instead of solving the fluid energy equation (2.65) by

itself, it is often combined with the magnetic energy equation (2.66) through addition, thereby

resulting in the evolution equation of the total energy. Different variants of MHD exist, which

differ in accuracy based on the term modeled in Ohm’s law. The least accurate model is ideal

MHD, which simplifies Ohm’s law to 𝑬 = −𝒘 × 𝑩. The model of resistive MHD keeps the

resistivity term, while Hall-MHD includes the Hall term. Furthermore, as the MHD equations

derive from the multi-fluid equations, they may also employ different closures in order to more

accurately model the pressure tensor.

We summarize the approximations for ideal MHD as follows,

• The plasma is quasi-neutral (𝑞𝑖𝑛𝑖 + 𝑞𝑒𝑛𝑒 = 0 ) and the electron inertia is negligible on the

scale of interest.

• The ion gyroradius and ion skin depth 𝑑𝑖 = 𝑐/𝜔𝑖 are much smaller than the length scale

of interest.

• The plasma quickly relaxes to a Maxwellian and the ion and electron temperatures are in

equilibrium, 𝑇𝑖 = 𝑇𝑒, for example if the collision frequency is much higher than the time

scale of interest.

• Adiabatic equation of state, no viscosity, electrical resistivity and thermal conductivity

(although numerical implementations introduce additional dissipative terms for stability).
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Despite these significant approximations, the MHD framework successfully describes many as-

trophysical phenomena. The success of MHD in these diverse applications stems from the

astrophysical time and length scales: most astrophysical systems operate on scales much larger

than the ion gyroradius and plasma oscillation periods. This scale separation validates the

fundamental MHD assumptions and explains its utility in astrophysical research.

2.3.4. Linear Waves in Ideal MHD

Transverse waves

We use the transverse dispersion relation (2.62), which neglects the displacement currents. Aside

from that, we proceed as usual by determining the conductivity tensor as a result of equating 𝑱

with 𝑬 from a perturbation analysis. Choosing the background magnetic field 𝑩0 to be aligned

with the 𝑥-axis, the transverse current density perturbation 𝑱1 lies in the (𝑦, 𝑧)-plane. To derive

its components, we take the cross product of the momentum conservation equation (2.63) with

𝑩0. Neglecting the pressure gradient term in the longitudinal direction yields

(𝑱 × 𝑩) × 𝑩0 = 𝑚𝑡

(
𝜕𝑛𝒘
𝜕𝑡
+((((((((∇ · 𝑛𝒘𝒘 + ∇ · P𝑡

)
× 𝑩0, (2.68)

→ (𝑱 × 𝑩) × 𝑩0 = 𝑩

=0︷     ︸︸     ︷
(𝑱1 · 𝑩0) −𝑱1𝐵2

0 = i𝜔𝑚𝑡𝑛0 (𝒘1 × 𝑩0) = i𝜔𝑚𝑡𝑛0𝑬1 (2.69)

→ 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = −i𝜔
𝑚𝑡𝑛

𝐵2
0

= −i𝜔
1

𝑣2
A
𝜇0

. (2.70)

We identified the Alfvén velocity as 𝒗A = 𝑩0/√𝜇0𝑚𝑡𝑛 (cf. equation 2.53) and find the solution

of the dispersion relation 𝑐2𝑘2 + 𝜔2𝜎𝑦𝑦/(i𝜔𝜖0) = 0,

𝜔2 = 𝑘2𝑣2A, (2.71)

which is approximately the same as in the more accurate multi-fluid picture (equation 2.54). This

dispersion relation significantly simplifies the multi-fluid model, as the waves are dispersionless

(𝜕𝜔(𝑘)/𝜕𝑘 = const.).

Longitudinal Waves

In ideal MHD, the electric field in the longitudinal direction vanishes

𝑩 · 𝑬 = 𝑩 · (−𝒘 × 𝑩) = 0. (2.72)

In the ideal MHD approximation, longitudinal waves manifest as pure fluid waves without af-

fecting the electric field. We can derive their properties by combining the three fluid equa-

tions Using the linearized momentum conservation equation along 𝑥, i𝜔𝑚𝑡𝑛1 = 𝑚𝑡 i𝑘 𝑝1 and the

density conservation equation i𝜔𝑛1 = i𝑘𝑛0𝑤1, together with the adiabatic equation of state,
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i𝜔𝑝1 = (𝛤𝑝0/𝑛0) (i𝑘𝑛1) , yields (𝜔
𝑘

)2
= 𝛤

𝑝0
𝑛0

= 𝑐2𝑠 , (2.73)

where the speed of sound of the unified fluid is 𝑐𝑠. The longitudinal waves in the adiabatic MHD

description do not dissipate energy, similar to the adiabatic multi-fluid description.

Nomenclature

Our analysis has identified six fundamental wave modes in parallel propagation: four Alfvén

modes propagating at ±𝑣A and two acoustic modes at ±𝑐𝑠 (additionally, a non-propagating en-

tropy mode with 𝜔 = 0, (𝜌𝑚)1 ≠ 0 and 𝐵1 ≠ 0 exists, but is of less interest). However, standard

MHD nomenclature refers to these waves as Alfvén, fast magnetosonic and slow magnetosonic

waves (also termed magnetoacoustic). This nomenclature is useful if waves propagate at arbi-

trary angles 𝜃, where 𝜃 is the angle between magnetic field vector and propagation direction

fulfilling 𝒌 · 𝑩 = |𝒌 | |𝑩 | cos(𝜃). For theses waves, the wave modes are no longer purely transversal

or longitudinal. Instead, magnetic and acoustic effects couple, leading to hybrid wave charac-

teristics. The dispersion relations for oblique waves are for Alfvén waves

𝜔 = 𝑣A cos(𝜃) |𝒌 |, (2.74)

and for magnetosonic waves,

𝜔2 =
𝑘2

2

[
𝑐2ms ±

√︃
𝑐4ms − 4𝑣2

A
𝑐2𝑠 cos2(𝜃)

]
(2.75)

where 𝑐2ms = 𝑣2A + 𝑐2𝑠 defines the magnetosonic speed, and the ± distinguishes between fast (+)
and slow (−) modes. In the parallel case (𝜃 = 0), these relations reduce to our earlier findings,

but with an important subtlety. Our acoustic mode corresponds to the fast magnetosonic wave

if 𝑐𝑠 > 𝑣A, but it changes character and corresponds to the slow magnetosonic wave if 𝑐𝑠 < 𝑣A.

One of our two Alfvén modes takes on the respective other role, i.e., it is the fast (𝑣A > 𝑐𝑠)

or slow (𝑣A < 𝑐𝑠) magnetosonic mode. The remaining Alfvén mode in our nomenclature is a

so-called shear Alfvén mode in the other nomenclature. This difference arises because fast and

slow magnetosonic wave modes are coined after their phase speeds depending on the ratio 𝑣A/𝑐𝑠,
while we prefer to classifiy them as longitudinal or transverse wave modes.
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3. Numerical methods

The hierarchy of plasma models presented in Chapter 2 not only serves as an analytical frame-

work but also offers distinct computational advantages and limitations in numerical implemen-

tations. This section presents representative numerical methods for solving each of these mod-

els, emphasizing their practicability and computational considerations with respect to the CR

streaming problem.

The analytical formulation presented thus far employs SI units. However, numerical imple-

mentations of Maxwell’s equations (2.3) commonly utilize the Heaviside-Lorentz unit system.

This choice optimizes computational efficiency by eliminating numerical prefactors in Maxwell’s

equations

∇ · 𝑬 = 𝜌, ∇ · 𝑩 = 0, (3.1)

𝑐∇ × 𝑬 = −𝜕𝑩
𝜕𝑡

, 𝑐∇ × 𝑩 = 𝑱 + 𝜕𝑬

𝜕𝑡
. (3.2)

The subsequent normalization 𝑐 = 1 removes all remaining numerical constants. The Heaviside-

Lorentz system can be converted to other unit system like the SI and CGS units (Jackson, 1999).

We adhere to SI units for theoretical discussions, which are trivially converted to computational

units by setting 𝑐 = 𝜖0 = 𝜇0 = 1, yielding the normalized Heaviside-Lorentz system.

In the following, we will introduce numerical techniques to solve the kinetic plasma equations

in Sections 3.1 and 3.2, before moving to the fluid equations in Section 3.3. Finally, we de-

scribe the most appropriate numerical methods for the CR streaming problem in Section 3.4 by

combining these different strategies.

3.1. Kinetic Solvers: Vlasov Solvers

The Vlasov equation (2.1) governs the temporal evolution of the particle distribution func-

tion in a six-dimensional phase space, comprising three spatial and three velocity dimensions.

A direct numerical solution requires discretizing the distribution function 𝑓 (𝒙, 𝒗, 𝑡) across this

six-dimensional domain. To illustrate the fundamental solution strategy, we follow the semi-

Lagrangian method proposed by Cheng and Knorr (1975) (see also Sonnendrücker et al., 1999),

and present its non-relativistic formulation in one spatial dimension and one velocity dimension.

The approach utilizes operator splitting (Strang, 1968), a method that systematically decom-

poses complex differential equations into more tractable components. Consider a linear partial

differential equation of the form
𝜕 𝑓

𝜕𝑡
= 𝐴

𝜕 𝑓

𝜕𝑥
+ 𝐵𝜕 𝑓

𝜕𝑣
, (3.3)
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where 𝐴 and 𝐵 are coefficients. Strang splitting, a second-order accurate operator splitting

method, separates this equation into two separate operations (A) 𝜕𝑡 𝑓 = 𝐴𝜕𝑥 𝑓 and (B) 𝜕𝑡 𝑓 =

𝐵𝜕𝑣 𝑓 . These operations are solved sequentially in a specific pattern, first (A) for half a time

step, then (B) for a full time step, and finally (A) again for half a time step. The result of each

operation (A or B) becomes the initial condition for the successive operation. This approach

achieves second-order accuracy in time if all operators are also second-order accurate, while

higher-order accuracy can be achieved through additional iterations (Yoshida, 1990).

Applying Strang splitting to the Vlasov equation, we only have to find solutions for each

operator (A or B) and apply them in succession. In the following, we show how each operator

is solved for a full time-step of size Δ𝑡. We discretize time using the forward differencing, where

𝑓 𝑛 represents the distribution function at time 𝑡 = 𝑛Δ𝑡:

(A) 𝑓 𝑛+1 − 𝑓 𝑛

Δ𝑡
= −𝑣 𝜕 𝑓

𝑛

𝜕𝑥
+𝑂 (Δ𝑡2)

⇒ 𝑓 𝑛+1(𝑥, 𝑣) = 𝑓 𝑛 (𝑥, 𝑣) − 𝑣Δ𝑡 𝜕 𝑓
𝑛 (𝑥, 𝑣)
𝜕𝑥

= 𝑓 𝑛 (𝑥 − 𝑣Δ𝑡, 𝑣) +𝑂
(
𝑣2Δ𝑡2

)
. (3.4)

The last step represents the key insight of semi-Lagrangian schemes, it transforms the evaluation

of a gradient into a spatial shift of the distribution function. This reformulation converts the

differential equation into an interpolation problem, thereby significantly simplifying the numer-

ical implementation. The same idea is applied to (B), where the electric field was determined

beforehand by Maxwell’s equations,

(B) 𝑓 𝑛+1(𝑥, 𝑣) = 𝑓 𝑛 (𝑥, 𝑣) + 𝐸 (𝑥, 𝑡)Δ𝑡 𝜕 𝑓
𝑛 (𝑥, 𝑣)
𝜕𝑣

= 𝑓 𝑛 (𝑥, 𝑣 + 𝐸 (𝑥, 𝑡)Δ𝑡) +𝑂
(
𝐸2Δ𝑡2

)
. (3.5)

Just as before, the gradient is replaced by a spatial shift, and the problem is simplified to

an interpolation. The semi-Lagrangian scheme only translates phase space elements without

modifying them, which is in accordance with Liouville’s theorem stating that phase space volume

is conserved. However, numerical conservation of the phase space volume is not guaranteed in

this scheme (Qiu and Shu, 2011).

Even though Vlasov solvers provide the most accurate description of plasma dynamics, they

face significant computational challenges. The memory requirements and computational com-

plexity scale as 𝑁𝑑, where 𝑁 represents the number of grid points per dimension and the number

of dimensions 𝑑 ranges up to 6. This scaling severely limits the practical applicability of Vlasov

solvers. Additionally, the complex geometry of phase space structures demands high resolution

to capture fine details. These challenges can be addressed through adaptive mesh refinement

(Kolobov and Arslanbekov, 2012) or an involved exploitation of the symmetries (Schween et al.,

2024).

3.2. Kinetic Solvers: Particle-in-Cell (PIC)

The particle-in-cell (PIC) method provides a powerful approach to simulate kinetic plasma

dynamics by tracking discrete particles. Rather than directly solving the Vlasov equation, the
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distribution function is approximated as a collection of discrete particles:

𝑓 (𝒙, 𝒗, 𝑡) ≈
𝑁𝑝∑︁
𝑝=1

𝑤𝑝𝑆(𝒙 − 𝒙𝑝 (𝑡))𝛿(𝒗 − 𝒗𝑝 (𝑡)). (3.6)

𝑤𝑝 represents the particle weight as each computational particle should be understood as a

macro-particle that represents multiple physical particles. 𝑆 is a spatial shape function that

describes the spatial extent of the computational particles, which in its simplest form can be

represented by Dirac’s 𝛿 function (which is also adopted for the velocity distribution). In prac-

tice, we employ higher-order spline functions to minimize our noise properties (Shalaby et al.,

2017b, see also the discussion in Sect. 3.2.5). Unlike Vlasov solvers that discretize the entire

phase space, the PIC method discretizes only the electromagnetic fields on a spatial grid while

maintaining continuous particle positions in phase space. The PIC method is a Monte Carlo

method, which requires a substantial number of particles to accurately model the distribution

𝑓 , with statistical Poisson noise scaling as 1/√︁𝑁pc, where 𝑁pc represents the number of particles

per grid cell. At first glance, this statistical approach appears to be limiting but its strength lies

in the grid-less discretization of 𝑓 , which is an appealing alternative to high-dimensional grids.

As a consequence of the discretization, the PIC method automatically concentrates computa-

tional effort in densely populated regions in phase space, unlike Vlasov solvers which may use

an adaptive grid to achieve the same. Additionally, the particle representation provides direct

physical insight and enables trajectory tracking throughout the simulation domain.

In the following, we present some fundamental principles of the PIC method (Hockney, 1988;

Birdsall and Langdon, 1991). Nevertheless, some variations of the PIC method deviate from

the initial ideas presented here (Fonseca et al., 2002; Markidis and Lapenta, 2011; Hewett and

Bruce Langdon, 1987). We first focus on the particle dynamics, followed by the “in” aspect, i.e.,

addressing the interpolation procedures and interaction with the cell component responsible for

modeling the electromagnetic field, which we detail in the end.

3.2.1. Particle Pusher

The relativistic particle motion is governed by the equations

𝑑𝒙𝑝

𝑑𝑡
= 𝒗𝑝,

𝑑𝒖𝑝

𝑑𝑡
=

𝑞𝑝

𝑚𝑝
(𝑬 + 𝒗𝑝 × 𝑩). (3.7)

These equations are solved using the leapfrog scheme1, where the particle’s spatial position

𝒙𝑛𝑝 and velocity 𝒗𝑛+1/2𝑝 are computed at staggered time points 𝑡𝑛 and 𝑡𝑛+1/2, yielding a simple

second-order accurate position update

𝒙𝑛+1𝑝 = 𝒙𝑛𝑝 + 𝒗𝑛+1/2𝑝 Δ𝑡. (3.8)

1The leapfrog scheme is a Strang splitting scheme. It is common to speak of leapfrog in the context of integrating
the particle trajectory (𝒙, 𝒗) (governed by two separate equations instead of one equation with two operators),
and if the algorithm uses two time steps (full-full) instead of three time steps (half-full-half), which is achieved
by merging the half-time steps.
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The velocity update is performed using the Boris algorithm (Boris et al., 1970), which remains

the de-facto standard due to its excellent long-term stability properties (Qin et al., 2013). The

algorithm employs Strang splitting to separate electric and magnetic acceleration, executing the

following steps for each particle (omitting the subscript 𝑝 for clarity)

First Electric Push: 𝒖− = 𝒖𝑛−1/2 + 𝑞

𝑚

Δ𝑡
2
𝑬𝑛 (𝑥), (3.9)

Magnetic Rotation: 𝒖′ = 𝒖− + 𝒖− × 𝒕′, (3.10)

𝒖+ = 𝒖− + 2

1 + 𝒕′2 (𝒖
′ × 𝒕′), (3.11)

Using: 𝒕′ = Δ𝑡
𝑞

2𝛾𝑛𝑚
𝑩𝑛 (𝑥),

Second Electric Push: 𝒖𝑛+1/2 = 𝒖+ + 𝑞

𝑚

Δ𝑡
2
𝑬𝑛 (𝑥), (3.12)

where 𝛾− =
[
1 + (𝒖−/𝑐)2]1/2. The magnetic rotation preserves the four-velocity magnitude if

the particle’s cyclotron frequency is slow compared to the time step, Ω𝑝Δ𝑡 ≤ 2, introducing

numerical errors only in the rotational phase. This mirrors the physical reality that magnetic

fields can only deflect particles but not increase their velocity, which is vital in eliminating

numerical instabilities. Modern variants of the relativistic Boris pusher, such as those developed

by Vay (2008) and Higuera and Cary (2017), offer improved predictions of 𝛾−.

3.2.2. Interpolation

We require the electromagnetic fields 𝑬 (𝒙𝑝) and 𝑩(𝒙𝑝) at the particle locations for equa-

tions (3.9)–(3.12). The fields are only defined on their respective discrete grid points (𝒙𝑔, which

may differ for each 𝑬 and 𝑩 component), so they must be interpolated to the particle locations,

accounting for the particle shape function 𝑆(𝒙 − 𝒙𝑝):

𝐸𝑥 (𝒙𝑝) =
∫

𝐸𝑥 (𝒙)𝑆(𝒙 − 𝒙𝑝)d3𝑥 ≈
∑︁
𝑔

𝐸𝑥 (𝒙𝑔+1) + 𝐸𝑥 (𝒙𝑔)
2

𝑊 (𝒙𝑔+1/2 − 𝒙𝑝) +𝑂 (Δ𝑥2), (3.13)

𝑊 (𝒙𝑔 − 𝒙𝑝) =
∫ 𝒙𝑔+Δ𝒙/2

𝒙𝑔−Δ𝒙/2
𝑆(𝒙 − 𝒙𝑝)d3𝑥, (3.14)

with analogous formulae for 𝑩 and the remaining components of 𝑬, although the interpolation

method may be adapted for specific purposes. The weight function 𝑊 represents the fraction

of the macro-particle located within each cell volume of extent Δ𝑥, satisfying the normalization

condition
∑

𝑔𝑊 (𝒙𝑔 − 𝒙𝑝) =
∫
𝑆(𝒙)d3𝑥 = 1.

The current density in equation (2.5) is similarly discretized, and interpolated from the par-

ticles to the grid according to

𝑱(𝒙𝑔) =
∑︁
𝑝

𝑤𝑝𝑞𝑝𝒗𝑝𝑊 (𝒙𝑝 − 𝒙𝑔). (3.15)

We have assumed that all interpolated quantities are defined at the same time; sometimes
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temporal interpolation is necessary as well using, e.g., 𝒙𝑛+1/2𝑝 ≈ (𝒙𝑛+1𝑝 + 𝒙𝑛𝑝)/2. Furthermore,

the choice of interpolation scheme significantly impacts momentum conservation, with some

schemes introducing unphysical self-forces while others preserve momentum exactly (Birdsall

and Langdon, 1991; Fehske et al., 2008; Shalaby et al., 2017b).

The charge density 𝜌, while not strictly necessary for the PIC algorithm, can be defined

analogously to equation (3.15). The interpolation scheme should preferentially conserve charge

(𝜕𝑡 𝜌 + ∇ · 𝑱 = 0, which is linked to the constraint ∇ · 𝑬 = 𝜌/𝜖0, see the discussion about

equation 2.25), which may be achieved using the Esirkepov algorithm that computes currents by

tracking particles crossing cell boundaries, numerically enforcing 𝜕𝑡 𝜌 = −∇ · 𝑱 and thus charge

conservation, see equations (2.25)–(2.26) (Esirkepov 2001, see also Villasenor and Buneman

1992). For one-dimensional simulations, direct integration of ∇ · 𝑬 = 𝜌/𝜖0 provides a viable

alternative to enforce charge conservation.

3.2.3. Electromagnetic Field Solver: Yee Grid and Magnetic Monopoles

In continuous electromagnetic theory, a divergence-free magnetic field remains divergence-free,

as demonstrated by
𝜕∇ · 𝑩
𝜕𝑡

= −∇ · (∇ × 𝑬) = 0. (3.16)

This prohibits the creation of magnetic monopoles, which should also be prohibited in the

discrete treatment. We discretize 𝑩 on the three dimensional lattice as 𝑩𝑖, 𝑗 ,𝑘 = 𝑩(𝑖Δ𝑥 𝒆̂𝑥 +
𝑗Δ𝑦 𝒆̂𝑦 + 𝑘Δ𝑧𝒆̂𝑧) with unit vectors 𝒆̂, integers 𝑖, 𝑗 and 𝑘, and spatial steps Δ𝑥, Δ𝑦 and Δ𝑧. We

momentarily indicate the components of 𝑩 with superscripts 𝑥, 𝑦 and 𝑧, and discretize the

divergence as follows

0
!
=

𝜕

𝜕𝑡
∇ · 𝑩𝑖, 𝑗 ,𝑘 =

𝜕

𝜕𝑡
©­
«
𝐵𝑥
𝑖+ 12 , 𝑗 ,𝑘

− 𝐵𝑥
𝑖− 1

2 , 𝑗 ,𝑘

Δ𝑥
+
𝐵
𝑦

𝑖, 𝑗+ 12 ,𝑘
− 𝐵

𝑦

𝑖, 𝑗− 1
2 ,𝑘

Δ𝑦
+
𝐵𝑧

𝑖, 𝑗 ,𝑘+ 12
− 𝐵𝑧

𝑖, 𝑗 ,𝑘− 1
2

Δ𝑧
ª®
¬
. (3.17)

The terms on the right-hand side should vanish up to machine precision. Yee (1966) achieved

this through strategic staggering of the grid in time and space (Yee grid), his method is also

referred to as finite differences in the time domain (FDTD). We reproduce the discretization of

𝜕𝑡𝑩 = −∇ × 𝑬 for the 𝑥 component here, while the 𝑦 and 𝑧 component are analogous,

𝜕𝐵𝑥
𝑖+ 12 , 𝑗 ,𝑘
𝜕𝑡

= −
𝐸 𝑧

𝑖+ 12 , 𝑗+ 12 ,𝑘
− 𝐸 𝑧

𝑖+ 12 , 𝑗− 1
2 ,𝑘

Δ𝑦
+
𝐸

𝑦

𝑖+ 12 , 𝑗 ,𝑘+ 12
− 𝐸

𝑦

𝑖+ 12 , 𝑗 ,𝑘− 1
2

Δ𝑧
. (3.18)

When this equation and its counterparts for 𝐵𝑦 and 𝐵𝑧 components are substituted into equa-

tion (3.17), all terms cancel exactly. This ensures conservation of magnetic field divergence

throughout the simulation, provided the initial condition satisfies ∇ · 𝑩 = 0.

The electric field update 𝜕𝑡𝑬 = −𝑱/𝜖0 + 𝑐2∇ × 𝐵 (equation 2.3) similarly discretizes the curl,

𝜕𝐸 𝑥
𝑖, 𝑗+ 12 ,𝑘+ 12
𝜕𝑡

= −
𝐽𝑥
𝑖, 𝑗+ 12 ,𝑘+ 12

𝜖0
+ 𝑐2 ©­«

𝐵𝑧

𝑖, 𝑗+1,𝑘+ 12
− 𝐵𝑧

𝑖, 𝑗 ,𝑘+ 12
Δ𝑦

−
𝐵
𝑦

𝑖, 𝑗+ 12 ,𝑘+1
− 𝐵

𝑦

𝑖, 𝑗+ 12 ,𝑘
Δ𝑧

ª®¬
, (3.19)
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and 𝐸 𝑦 and 𝐸 𝑧 are obtained analogously.

The above equations are still semi-discrete; temporal discretization is achieved using central

differences, 𝜕𝑡𝑬
𝑛+1/2 = (𝑬𝑛+1−𝑬𝑛)/Δ𝑡 with analogous expressions for other quantities. The time

integration thus follows the leap-frog pattern used in particle integration, achieving second-order

accuracy in time as well.

Reviewing the previous update equations, the Yee grid requires tracking electromagnetic quan-

tities at the staggered locations

(𝐸𝑥)𝑛𝑖, 𝑗+ 12 ,𝑘+ 12 (𝐸𝑦)𝑛𝑖+ 12 , 𝑗 ,𝑘+ 12 (𝐸𝑧)𝑛𝑖+ 12 , 𝑗+ 12 ,𝑘
(𝐵𝑥)𝑛+

1
2

𝑖+ 12 , 𝑗 ,𝑘
(𝐵𝑦)𝑛+

1
2

𝑖, 𝑗+ 12 ,𝑘
(𝐵𝑧)𝑛+

1
2

𝑖, 𝑗 ,𝑘+ 12
.

𝑱 is defined at time 𝑡𝑛+1/2 but spatially staggered like 𝑬.

Now that we have gathered all the ingredients, the PIC algorithm simply repeats the four

operations:

1. Interpolation of the electromagnetic fields to particle positions according to equation (3.14).

2. Integration of the particle trajectory (particle push) according to equations (3.8)–(3.12)

3. Deposition of particle currents on the grid according to equation (3.15)

4. Advancing the electromagnetic fields according to equations (3.18)–(3.19).

3.2.4. Numerical Stability

The total computational cost of a PIC simulation scales approximately with

𝐶tot ∝ 𝑡end
Δ𝑡
× 𝑁𝑝𝐶particle (3.20)

where 𝑡end/Δ𝑡 represents the number of iterations to reach the simulation time 𝑡end, 𝑁𝑝 is the

number of particles, and 𝐶particle denotes the computational cost per particle for one iteration.

While the field solver’s cost depends also on the grid resolution Δ𝑥, it remains negligible compared

to the computational expense of all particle interpolation and pushing operations. Although

increasing the time step Δ𝑡 reduces 𝐶tot, there are limits on how large Δ𝑡 may be chosen.

The PIC method as laid out here is an explicit scheme, and can become unstable if fundamental

frequencies are not resolved. We must consider that propagating waves and particles can move at

velocities approaching 𝑐, while standing waves oscillating at the plasma and cyclotron frequency

must be resolved as well

Courant–Friedrichs–Lewy (CFL) Condition: 𝑐Δ𝑡 ≤ 1√︁
Δ𝑥−2 + Δ𝑦−2 + Δ𝑧−2

∼ Δ𝑥. (3.21)

Plasma Frequency Resolution: Δ𝑡 ≤ 2/max
𝑠
(𝜔𝑠) ∼ 2𝜔−1𝑒 . (3.22)

Cyclotron Frequency Resolution: Δ𝑡 ≤ 2/max
𝑠
(Ω𝑠) ∼ 2Ω−1𝑒 . (3.23)
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For estimating the order of magnitude, we assumed an equispaced grid for the CFL condition,

and that the electron scale is the smallest scale in the simulation. The factor 2 of the oscillation

constraints results from a stability analysis of the harmonic oscillator assuming the leapfrog

discretization; if a stable time step is taken, the full rotation period 𝑇 = 2𝜋Ω is resolved by

multiple time steps (𝑇/(Δ𝑡) > 𝜋, i.e., at least 4). The plasma frequency typically exceeds the

cyclotron frequency – unless the plasma is highly magnetized – making equation (3.22) the

primary constraint on Δ𝑡 in case Δ𝑥 ≫ 𝑑𝑒. For numerical accuracy and proper resolution of the

frequency constraints (3.22) and (3.23), the simulation time step Δ𝑡 should be approximately

an order of magnitude smaller than the maximum allowable time step derived from stability

analysis.

While these restrictions apply to Δ𝑡, the grid spacing Δ𝑥 underlies another constraint. PIC

codes are often momentum conserving, but not energy conserving (though variants achieving

energy conservation at the expense of momentum conservation have been developed, e.g., Lewis

1970; Markidis and Lapenta 2011). As a consequence of this energy non-conservation com-

bined with aliasing effects of spatially limited grids, the finite-grid instability causes exponential

heating in plasmas if the Debye-Length 𝜆D is not resolved

Debye-Length Resolution: Δ𝑥 < 𝐶th𝜆D ∼ 𝐶th𝑐𝑠,𝑒/𝜔𝑒 . (3.24)

𝐶th is an implementation dependent constant of roughly on the order of 𝐶th > 3.4 (Langdon,

1970; McMillan, 2020). This instability heats the plasma, until the Debye-Length reaches the

stability constraint, where the electron sound speed 𝑐2𝑠,𝑒 = 𝛤𝑣2
th,𝑒
/2 increases with heating (for

definitions of the thermal velocity, see equation 2.44). Preventing the heating to relativistically

hot temperatures wherein 𝑐𝑠,𝑒 approaches 𝑐 demands a grid spacing smaller than the electron

skin depth Δ𝑥 ≪ 𝐶th𝑑𝑒. A step size of around Δ𝑥 ∼ 𝑑𝑒/10 is common in PIC. However, in modern

implementations 𝐶th is often large enough to allow for mildly warm plasmas at coarser resolutions

of Δ𝑥 ∼ 𝑑𝑒 (McMillan, 2020). For grid spacings of this length, the CFL condition (3.21) is not

the main limiting factor of Δ𝑡 (and thus, the computational cost) because the resolution of the

plasma frequency necessitates smaller time steps.

3.2.5. Minimizing Numerical Heating

Numerical heating occurs not only exponentially fast through the finite-grid instability below

the numerical temperature floor, but generally accumulates linearly over time. In terms of

equations, this linear numerical heating may be expressed using the particle temperature 𝑇 (𝑡)
that depends approximately on its initial value of 𝑇0 as (Hockney, 1971; Arber et al., 2015)

𝑇 (𝑡) ≈ 𝑇0
(
1 + 𝑡

𝜏𝐻

)
, (3.25)

where 𝜏𝐻 is an implementation and resolution dependent numerical heating time scale. This ac-

cumulation limits the maximum simulation time 𝑡end beyond computational resource constraints

set by equation (3.20), as numerical heating degrades the quality of the simulation over time.
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For meaningful results, the ratio 𝑡/𝜏𝐻 should remain below a few percent throughout the simu-

lation. Simulations of CR streaming can reach millions of time steps, necessitating techniques

to maximize 𝜏𝐻 . We discuss two approaches to address this challenge.

The most widely adopted approach employs digital filters on the current density prior to

interpolation. These filters smooth out small-scale noise while largely preserving large scale

components. The binomial filter represents a common implementation, performing a symmetric

convolution of the current density with the kernel 𝑲 = [1/4 1/2 1/4] spanning three cells. If

we interpret the discrete field values as a vector, such as 𝑱̄𝑥 = [𝐽𝑥,𝑖=0 𝐽𝑥,𝑖=1 . . . 𝐽𝑥,𝑖=𝑁 ], the

resulting filtered density current is given by 𝑱̄𝑥,filtered = 𝑲 ∗ 𝑱̄𝑥 using the discrete convolution

operator ∗.2 This effectively broadens the particle shape during current deposition, though

not during force interpolation. This disparity results in a violation of momentum conservation

by introducing nonphysical self-forces (Fehske et al., 2008; Shalaby et al., 2017b). Through

successive iterations (or passes) of applying the binomial filter, the particle shape can be further

smoothed. The number of iterations 𝑝 is a tuneable parameter requiring optimization across

multiple criteria. 𝑝 should be small enough to not smear out physically relevant scales, while it

should be large enough to lower numerical heating as much as possible by removing small scale

noise. Even successive applications of filters are computationally inexpensive, given that they

only act on the fields and are not invoked for each particle.

Alternatively, the particle shape can be smoothed self-consistently through higher-order shape

functions 𝑆, see equation (3.6), which significantly decreases numerical heating by orders of

magnitude (Birdsall and Langdon, 1991; Arber et al., 2015). While higher-order shape functions

are computationally more expensive per particle, they require fewer particles to achieve the

same numerical heating as codes using lower-order shape functions. The hierarchy of spline

shape functions begins with the nearest grid point (NGP) interpolation (𝑆0 = 𝛿). The next

level is a cloud-in-cell (CIC) interpolation scheme, which employs linear interpolation using a

top-hat function 𝑆1(𝑥) = 𝜃 (𝑥 +Δ𝑥/2)𝜃 (−𝑥 +Δ𝑥/2)/Δ𝑥, where 𝜃 represents the Heaviside function.

Triangular shaped cloud (TSC) extends this to quadratic interpolation. The shape function

is never computed in the code, since only the weight function 𝑊 appears in the interpolation

routines. The weight function is always one order higher than the shape function – for instance,

the NGP weight function 𝑊0 = 𝑆1 corresponds to the CIC shape function. An example for a code

utilizing very high-order shape functions is the SHARP code, which implements fourth-order

shape functions corresponding to fifth-order weight functions (Shalaby et al., 2017b).

Figure 3.1 visualizes how filtered interpolation breaks the symmetry of particle self-forces.

While the particle’s total contribution to the grid remains unity, filtering creates a density current

that is asymmetric around the particle’s position. Consequently, the particle experiences only

half of its deposited field contribution, preventing complete self-force cancellation. However, this

apparent deficiency becomes less significant when considering multiple particles, as “missing”

self-force contributions are compensated by neighboring particles. In the limit of high particle

numbers, filtered and higher-order shape function approaches produce equivalent results. Higher-

2Filtering of multi-dimensional data is performed successively in each direction, using the property that the
binomial filter is separable (App. C of Birdsall and Langdon, 1991).
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NGP with Filter

Deposition

Back-Interpolation

CIC without Filter

 from  from 

Figure 3.1 Conceptual comparison of par-
ticle self-force in electrostatic PIC simula-
tions. Left: Nearest grid point interpola-
tion with binomial filtering spreads parti-
cle contributions asymmetrically around the
particle location, and the self-force is calcu-
lated from half the particle’s current contri-
bution. Right: Cloud in cell interpolation
maintains consistent particle shape during
both current deposition and force calcula-
tion, enabling complete self-force cancella-
tion if the electrostatic field solver is prop-
erly implemented. Arrow values indicate
current contributions at grid points accord-
ing its weight function 𝑊 that sums to unity,
and how these contributions propagate to
calculate the self-force.

order shape functions smooth the particle shape while eliminating self-forces, leading to desired

behavior even at low particle numbers.

3.3. Fluid Solvers

The multi-fluid and the MHD equations share the basic structure of fluid equations, therefore

their numerical solvers share the same fundamentals and we will treat both of them in this

section. The structure of these equations resembles

𝜕𝑼̃

𝜕𝑡
+ ∇ · F(𝑼̃) = 𝑺(𝑼̃), , (3.26)

where the fluid quantities are defined in the vector 𝑼̃, F is the flux tensor and 𝑺 are source terms.

The multi-fluid equations fit the template of equation (3.26), but only if the pressure evolution

equation (2.31) is reformulated into the conservative energy evolution equation (2.35). In ideal

MHD, Faraday’s law (2.67) is reformulated using the vector triple product expansion and the

identity for dyadic and dot products given by 𝒄 · (𝒂𝒃) = (𝒄 · 𝒂) 𝒃

𝜕𝑡𝑩 + ∇ · (𝒘𝑩 − 𝑩𝒘) = 0. (3.27)

The Vlasov equation follows the structure of equation (3.26) as well, thus the methods pre-

sented here are also applicable to the Vlasov equation. The solvers presented in this section are

called Eulerian, while the scheme described in Section 3.1 is semi-Lagrangian (for a review see

Palmroth et al., 2018) and the PIC method is Lagrangian.

Here, we will consider systems with vanishing source terms, 𝑺 = 0, which is directly applicable

to the MHD equations (2.63)–(2.67) and the Vlasov equation. For multi-fluid systems where

𝑺 ≠ 0, Strang splitting enables decomposition into two sub problems: one with 𝑺 = 0 and another
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with F = 0. A detailed treatment of this splitting is given in Section 4.2.4.

For clarity of presentation, we restrict our analysis to one-dimensional geometries (∇ · F →
𝜕𝑥𝑭). An extension to multiple dimensions is easily achievable through dimensional Strang

splitting. However, this approach introduces grid-dependent artifacts, particularly in spherical

geometries. While dimensionally unsplit schemes exist, they are method-specific and beyond

our current scope.

We examine two methods of fluid solvers, finite difference (FD) and finite volume (FV), and

briefly introduce two more methods, spectral and discontinous Galerkin (DG). While spatial

discretization varies among these approaches, temporal discretization typically employs finite

differences across all schemes, which can be solved using Runge-Kutta or (semi-)implicit meth-

ods. Comprehensive treatments of FD and FV methods are provided by LeVeque (2002) and

Toro (2009).

3.3.1. Finite Difference Methods (FD)

The fundamental principle of finite difference methods lies in approximating derivatives through

Taylor series expansions at discrete domain points. The solution is evaluated at these points,,

and derivatives are approximated using neighboring point values. The electromagnetic field

solver discussed previously in Section 4.2.2 uses FD. The spatial derivative can be approximated

in different ways

𝜕F

𝜕𝑥

����
𝑖

=
F𝑖+1 − F𝑖−1

2Δ𝑥
+ O(Δ𝑥3) (central difference), (3.28)

𝜕F

𝜕𝑥

����
𝑖

≈ F𝑖 − F𝑖−1
Δ𝑥

+ O(Δ𝑥2) (backward difference), (3.29)

𝜕F

𝜕𝑥

����
𝑖

≈ F𝑖+1 − F𝑖

Δ𝑥
+ O(Δ𝑥2) (forward difference), (3.30)

even though the central difference scheme appears well motivated, it results in an uncondition-

ally unstable scheme in conjunction with the temporal discretization 𝜕𝑈
𝜕𝑡 =

(
𝑈𝑛+1 −𝑈𝑛

) /Δ𝑡. The

instability arises because information propagates along characteristic curves. Physically, these

characteristics represent, among other things, shocks or waves. In the following, we will inter-

change characteristics with waves to to simplify the interpretation, even though the concept

applies to characteristics more generally. As the waves carry information, they propagate in

a certain direction, and it is important to know where they are coming from to predict where

they travel to. Thus, a numerical scheme should be informed by the waves origin, rather than

its destination, and stability may be achieved by aligning the differentiation direction with the

waves origin. For a scalar conservation law, the characteristic speed 𝜆 is given by linearizing 𝐹

𝜕𝑥𝐹 =
𝜕𝐹

𝜕𝑈
𝜕𝑥𝑈 = 𝜆𝜕𝑥𝑈. (3.31)

and, more generally, characteristic speeds correspond to eigenvalues of the Jacobian 𝜕𝑭/𝜕𝑼̃.

The stable upwinding scheme takes the propagation direction into account, where we designate
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the directions left referring to lower values of 𝑖 and right referring to larger values of 𝑖

𝜕𝐹

𝜕𝑥

����
𝑖

≈


𝐹𝑖−𝐹𝑖−1

Δ𝑥 if 𝜆 > 0 (wave moves from left to right, backward difference),

𝐹𝑖+1−𝐹𝑖
Δ𝑥 if 𝜆 < 0 (wave moves from right to left, forward difference).

(3.32)

FD schemes rarely implement upwinding directly because vector systems feature multiple waves

propagating in opposite directions, but the schemes are upwind-biased for each individual wave

mode. The unstable central difference scheme (equation 3.28) results from the arithmetic mean

of upwind and downwind derivatives assigning equal weights to information propagating from

both directions; an upwind-biased scheme applies greater numerical weight to spatial derivatives

in the upstream direction. This principle of respecting wave propagation direction is fundamental

to all numerical methods in this context.

The FD method is simple to implement and readily extends to higher orders by employing more

accurate differencing formulations. However, it does not naturally conserve physical quantities

like momentum or energy, but a staggered grid layout might aid in conserving key constraints,

e.g., the Yee-grid conserves ∇·𝑩 = 0 (Section 4.2.2). The FD scheme is well suited for Maxwell’s

equations, but is not as well suited for fluid equations. FD schemes handle large gradients

inadequately, which occur naturally as a consequence of wave steepening in compressible fluids.

FD is thus unable to capture shocks correctly, unless the shock width is significantly larger than

the cell size or large viscosity is employed to prevent spurious oscillations referred to as Gibbs

phenomenon (Pirozzoli, 2011).

3.3.2. Finite Volume Methods (FV)

Instead of solving the partial differential equation (3.26) directly, FV methods integrate over

the volume and utilize the divergence theorem

∫
Ω

dΩ

[
𝜕

𝜕𝑡
𝑼̃ + ∇ · F(𝑼̃)

]
= 0 (3.33)

𝜕

𝜕𝑡

∫
Ω
𝑼̃dΩ +

∮
𝜕Ω

F(𝑼̃) · d𝑺Ω = 0 (3.34)

The domain Ω with surfaces 𝑺Ω is discretized into computational volumes Ω𝑖 with surfaces

𝑺Ω,𝑖±1/2. In our one-dimensional, fixed grid treatment each volume has length Δ𝑥, and therefore

𝜕𝑼𝑖

𝜕𝑡
= − 1

Δ𝑥

[
𝑭𝑖+1/2(𝑼̃) − 𝑭𝑖−1/2(𝑼̃)

]
(3.35)

where 𝑼𝑖 represents the cell average of 𝑼̃ with boundaries at 𝒙𝑖±1/2 and 𝑭𝑖±1/2 denotes numerical

fluxes through the cell interfaces. The key difference to FD schemes, which solve for nodal

points defined at fixed positions 𝑥𝑖, is that FV schemes solve for cell averages of the physically

conserved quantities 𝑼̃. This allows FV schemes to naturally conserve the volume-averaged

physical quantities numerically, as evidenced by the telescoping series
∑𝑁

𝑖 𝜕𝑡𝑼𝑖 = −(𝐹𝑁+1/2 −
𝐹−1/2)/Δ𝑥 which is determined by the inflows and outflows through the boundaries. This enforced
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conservation is a highly desirable numerical property.

Solving equation (3.35) requires determining the numerical fluxes 𝑭𝑖±1/2, which depend on

the nodal point values 𝑼̃. The values at the cell boundaries 𝑼̃𝑖±1/2 are reconstructed using a

subgrid description, which is informed by the cell averages 𝑼𝑖 and its neighboring cells. The

reconstructed values at the boundaries can be discontinuous, i.e., 𝑼̃𝑖−1/2 is not equal to 𝑼̃ (𝑖−1)+1/2
in FV, requiring the solution of a Riemann problem. The Riemann solver returns wave speeds

and propagation directions at cell boundaries, which enables to compute numerically stable

fluxes. We keep the description of the reconstruction and Riemann solvers short, but will later

return to them in Section 4.2.4, where we apply these concepts concretely.

FV methods captures shocks well, as it does not need to solve for steep gradients, but only has

to find the (mass, momentum and energy) fluxes at shock interfaces. This makes this method

more robust for compressible flows. It also generalizes to complex geometries or flexible meshes.

Brio and Wu (1988) first applied the FV scheme to the MHD equations, an application to

the two-fluid (multi-fluid with electrons and ions) equations is given by Shumlak and Loverich

(2003). FV methods for MHD automatically conserve mass, momentum, energy and magnetic

flux, but the divergence-free constraint remains problematic. This issue becomes apparent when

we take the divergence of equation (3.27), resulting in 𝜕𝑡∇·𝑩 on the left-hand side of the equation

while the right-hand side of the equation does not necessarily equal 0 numerically.

Powell et al. (1999) addressed this by deriving the MHD equations without assuming ∇ · 𝑩 =

0, introducing a source term 𝑺 proportional to ∇ · 𝑩 in equation (3.26). The inclusion of

𝑺 sacrifices the strict conservation properties, and it also introduces an additional degree of

freedom, corresponding to a new wave mode. Powell’s method is also known as the eight-wave

formulation, named for adding a divergence wave to the standard seven MHD characteristic

waves (four magnetosonic, two Alfvén, and one entropy wave). Alternatively, Dedner et al.

(2002) developed a hyperbolic divergence cleaning technique, using an auxiliary scalar field

equation. The aim of these methods is not to eliminate the divergence completely, but to

quickly transport divergence errors to domain boundaries and damp them. A third approach

called constrained transport by Evans and Hawley (1988) employs a staggered grid inspired by

the Yee-Grid, defining 𝑩 exclusively at cell boundaries so that the method maintains vanishing

divergence throughout the simulation (see also Gardiner and Stone, 2005).

3.3.3. Other methods

Spectral Methods

Spectral methods approximate solutions through series expansions of global basis functions,

offering increased accuracy for smooth problems. The solution representation typically employs

either Fourier series for periodic domains or Chebyshev polynomials for non-periodic boundaries
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(Boyd, 2013)

𝑼̃(𝑥, 𝑡) =
𝑁∑︁

𝑘=−𝑁
𝑼̃𝑘 (𝑡)𝑒i𝑘𝑥 (Fourier), (3.36)

𝑼̃(𝑥, 𝑡) =
𝑁∑︁
𝑛=0

𝑼̃𝑛 (𝑡)𝑃𝑛 (𝑥) (Chebyshev), (3.37)

where 𝑃𝑛 (𝑥) is the 𝑛-th Chebyshev polynomial.

The method transforms differential operations into algebraic manipulations. For instance, the

density continuity equation 𝜕𝑛/𝜕𝑡 = −∇· (𝑛𝑤) is solved with spectral Fourier methods as follows:

𝜕𝑡

𝑁∑︁
𝑘=−𝑁

𝑛𝑘ei𝑘𝑥 = −
𝑁∑︁

𝑘=−𝑁
i𝑘 (𝑛𝑤)𝑘ei𝑘𝑥 , (3.38)

where the spatial derivatives reduce to multiplication by wave numbers i𝑘.

This approach yields little numerical dissipation and achieves exponential convergence rates

through high-order differentiation. The method naturally accommodates non-local Landau-fluid

closures (Section 2.2.3). However, the presence of discontinuities generates Gibbs phenomena,

manifesting as oscillatory behavior near sharp gradients. Furthermore, shocks and discontinuities

in the solution lead to the Gibbs phenomenon (similar to FD), and non-linear equations are

communication-intensive on parallel systems.

Discontinuous Galerkin Methods

DG methods extends the FV framework (Hesthaven and Warburton, 2008). FV methods con-

struct subgrid models through reconstruction from neighboring cells, which becomes a limiting

factor for spatially higher-order codes that rely on information from many neighboring cells.

DG methods implement direct subgrid representations through an expansion in basis functions

Φ𝑛 (𝑥), given by

𝑼̃(𝑥, 𝑡) =
N∑︁
𝑛=0

𝑼̃𝑛 (𝑡)Φ𝑛 (𝑥). (3.39)

Φ𝑛 is typically a polynomial function that may be discontinuous at the cell interfaces. Thus,

for each basis function of order 𝑛 and cell 𝑖, an evolution equation is given, generalizing the FV

evolution equation (3.34):

𝜕𝑼̃𝑖,𝑛

𝜕𝑡

∫
Ω𝑖

Φ𝑛d𝑥 +
∫
𝜕Ω𝑖

Φ𝑛𝑭
(
𝑼̃𝑖,𝑛

)
· d𝑺Ω𝑖 − 𝑭(𝑼̃𝑖,𝑛) · ∇

∫
Ω𝑖

Φ𝑛d𝑥 = 0, (3.40)

where, similar to FV schemes, the quantities at the boundaries may be discontinuous, thereby

𝑼̃𝑖−1/2 is not equal to 𝑼̃ (𝑖−1)+1/2. This necessitates the computation of numerical fluxes by solving

a Riemann problem, giving DG the same conservative properties as FV. DG methods offer similar

advantages as FV methods, but allow even higher-order accurate formulations (though these lead

to increased memory and computational requirements).
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We attempted incorporating the DG method in our fluid-PIC code (which we will introduce

in Chapter 4), but the interpolation of higher-order accurate electromagnetic source terms from

the lower-order electromagnetic fields lead to numerical instabilities. Instead, for our fluid-PIC

method we settled on an FD scheme for electromagnetic fields (Yee-Grid), a FV scheme for

solving the fluid equations while we use a spectral method for the Landau closures.

3.4. Compound techniques

So far we have reviewed some fundamental numerical concepts, which we now want to investigate

based on their practicability in simulating the CR streaming problem. Reviews on similar topics

have been presented previously (Marcowith et al., 2020; Pohl et al., 2020). In our presentation,

however, we will set a different focus. We will concentrate on the limitations in reproducing

physical effects and present the order-of-magnitude efficiency in comparison to the PIC method.

3.4.1. Requirements

First, we lay out multiple requirements, which a code should ideally fulfill to study the CR

streaming problem. It should (i) capture all gyroresonant streaming instabilities including the

intermediate scale instability (Shalaby et al., 2021, 2023), (ii) capture important damping pro-

cesses, particularly Landau damping and ion-neutral damping, (iii) support versatile setups with

different CR compositions, possibly also CR electrons, (iv) not impose constraints on admissible

CR distributions, (v) achieve these goals with reasonable computational costs at high fidelity.

The CR streaming problem is challenging, because of the multiple scales involved. The insta-

bilities develop over the time scale of many inverse ion gyrofrequencies. Furthermore, CRs are

very sparse in comparison to the background plasma and require small levels of numerical noise

to accurately capture their instabilities. This combination cannot be achieved in kinetic codes

without significant compromises of the physical parameters. Nevertheless, CRs exhibit kinetic

effects, which makes it necessary to solve the Vlasov equation (2.1). This precludes the use

of simplified fluid descriptions for investigating streaming mechanics from first principles, even

though fluid-based phenomenological models may emerge as useful approximations by coarse

graining the plasma kinetic physics.

Neither kinetic nor fluid solvers can address the streaming problem by themselves, but this

problem involves the interaction of multiple species, namely energetic CRs, thermal ions and

electrons. A class of numerical techniques, which might be regarded as compound solvers, apply

species-specific approximations from the analytical frameworks presented in Chapter 2, thereby

combining fluid and kinetic descriptions. This approach eliminates unnecessary detail for the

thermal fluids while maintaining detailed velocity space resolution of the CRs.

3.4.2. Electron Fluids and Kinetic Ions (Hybrid-PIC)

The Hybrid-PIC method (e.g., Lipatov, 2002) combines PIC modeling for ions with the quasi-

neutral approximation. To start our discussion, we will briefly consider the speed ups obtained

40



3.4. Compound techniques

with this method. First, the electron particles are replaced by a computationally cheap fluid,

which cuts the number of particles in half. This translates in a speed up of a factor ∼ 2. Because

electron oscillations are eliminated, the stability conditions (3.21)-(3.23) can be relaxed to ion

scales, thus restricting the temporal resolution to the ion plasma frequency Δ𝑡 ≤ 𝜔−1𝑖 . Hybrid-

PIC codes also eliminate light waves as a consequence of neglecting the displacement current, but

the CFL condition (3.21) remains constrained by the fastest propagating wave or the maximum

particle velocity. As we are interested in CR streaming, the fastest particles move with 𝑐 and

this constraint is not relaxed. Thus, the time step of Hybrid-PIC compared to PIC can be larger

by a factor of ∼ 𝜔𝑒/𝜔𝑖 = (𝑚𝑖/𝑚𝑒)1/2 ∼ 40 assuming a realistic mass ratio. While this is achieved

by sacrificing the resolution on the electron scales, some implementations incorporate electron

inertia effects, allowing them to accurately reproduce some electron physics (Muñoz et al., 2018).

This, however, lessens the computational gains especially for relativistic particles. As such, the

Hybrid-PIC method is up to ∼ 80 times more efficient than the PIC method if electron scales are

neglected, which is a substantial speed-up. In the following we will investigate an alternative,

which is even better suited for the CR streaming setup.

3.4.3. Thermal Fluids and Kinetic Cosmic Rays

Hybrid-PIC treats only electrons as a (typically inertialess) fluid, replacing the Vlasov equation

for electrons by a fluid description and solving only the Vlasov equation for ions. However, the

full ion distribution function may be split into thermal and CR parts as well, 𝑓all ions → 𝑓i + 𝑓cr.

The linearity of the Vlasov equation in 𝑓 enables its decomposition into two equations, one for

the thermal ions and one for the CRs. The partitioning of ions into thermal species and CRs is

thus justified by the system of equations. The coupling between these separate Vlasov equations

occurs through Maxwell’s equations, which only depend on the total charge density and current.

These quantities are readily computed by summing contributions from all species components.

This splitting of 𝑓 is convenient for two reasons. First, because the (Landau-)fluid approxi-

mation is a proper description for thermal species, as established in Section 2.2. While Landau

damping is excluded from the fluid descriptions, this damping process can be modeled for Lan-

dau fluids. Second, the PIC method concentrates its computational resources on the most

densely populated areas in phase space, i.e., the thermal particles. With this splitting, we can

concentrate our resources on the lower-density CRs.

In the following, we consider the speed up achieved by codes employing this splitting. The

computational cost of PIC simulations scales with the number of particles, which must be

sufficient to reduce Poisson noise to an acceptable level. We will provide scaling estimates

for the Poisson noise for multiple species in order to show why utilizing the fluid model is so

beneficial. The signal-to-noise ratio (SNR) for multiple, statistically independent particle species

at a fixed box size scales with (Moschüring, 2020)

SNR ∝
∑

𝑠 𝜌𝑠√︃∑
𝑠 𝜌

2
𝑠/𝑁pc,𝑠

, (3.41)
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where the numerator indicates the signal, and the denominator indicates the Poisson noise. The

signal corresponds to the charge density 𝜌𝑠 = 𝑞𝑠𝑛𝑠, but analogous formulations for the current

densities are possible. For a single species, the SNR scales as
√︁
𝑁pc, confirming the Poisson

noise reduction by 1/√︁𝑁pc. The number density can be expressed as 𝑛𝑠 = 𝑤𝑝,𝑠𝑁pc,𝑠/𝛿𝑉 , where

𝑤𝑝,𝑠 is the macro-particle weight of species 𝑠, 𝑁𝑠 is the number of particles (see 3.6) and Δ𝑉

is the volume of a cell. Given the CR-to-thermal-ion density ratio, 𝑛cr/𝑛i = 𝛼 ≪ 1, we have

𝑤𝑝,cr𝑁pc,cr = 𝛼𝑁pc,i𝑤𝑝,i. At first glance, it might seem beneficial to significantly increase the

particle weights for CR 𝑤𝑝,cr to achieve an equal number of macro particles for CRs and thermal

ions, setting 𝑁pc,cr = 𝑁pc,i. This leads to a more accurate representation of the CR distribution

in phase space. However, Moschüring (2020) demonstrated that the SNR is maximized if all

weights are equal, thus deviations from this actually increase noise. Therefore, 𝑁pc,cr = 𝛼𝑁pc,i

is the optimal choice to reduce Poisson noise, even for ISM-relevant values as low as 𝛼 = 10−9.
Replacing thermal ions with a fluid description eliminates their noise contribution, 𝜌2i /𝑁pc,i,

while preserving their signal 𝜌𝑠. Neglecting the comparatively small fluid solver noise, we com-

pare the SNR between a pure PIC method and a solver mixing thermal fluids and CR particles

SNRPIC ∝ 𝜌i(1 + 𝛼)√︃
𝜌2i 𝑁

−1
pc,i(1 + 𝛼)

=
√︁
(1 + 𝛼) 𝑁pc,i, (3.42)

SNRfluid+PIC ∝ 𝜌i(1 + 𝛼)√︃
𝜌2i 𝑁

−1
pc,i𝛼

=
1 + 𝛼√

𝛼

√︁
𝑁pc,i, (3.43)

⇒ SNRfluid+PIC ∝
√︂

1 + 𝛼
𝛼

SNRPIC ≈ 1√
𝛼

SNRPIC. (3.44)

This demonstrates, that these compound fluid treatments achieve similar SNR with
√
𝛼 fewer

particles per cell. We neglected electrons in this derivation, as this does not affect the scaling.

Moreover, the fluid solver replaces 𝛼−1𝑁pc,cr thermal electrons and ions, respectively, which

provides an additional speed up factor of 2𝛼−1, resulting in a total speedup of 2𝛼−3/2. Thus,

fluidized thermal formulations capturing electron scales are more efficient than Hybrid-PIC

codes neglecting electron scales already at artificially high density contrasts of 𝛼 ∼ 0.08 (where

𝛼−3/2 ≥ (𝑚𝑖/𝑚𝑒)1/2). While this magnitude-of-order estimate neglected fluid noise (which is

important for 𝛼 ≪ 1) and assumed statistical independence, it demonstrates the effectiveness of

utilizing thermal fluids for investigating CR streaming. Additional speed ups can be achieved

by neglecting electron scales if necessary. We will now introduce some representatives solvers

for these compound methods.

MHD-PIC

So far, the MHD-PIC method has emerged as the leading approach for simulating gyroresonant

streaming instabilities, with many recent applications (Zachary and Cohen, 1986; Lucek and

Bell, 2000; Reville and Bell, 2012; Bai et al., 2015, 2019; Mignone et al., 2018; Lebiga et al.,

2018; van Marle et al., 2018; Bambic et al., 2021; Plotnikov et al., 2021; Bai, 2022; Sun and Bai,
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2023). This method offers several key advantages beyond simply accelerating computations by

representing thermal particles as an MHD fluid.

A primary benefit is the relaxed time step constraint compared to Hybrid-PIC methods. By

eliminating plasma oscillations, the gyrofrequency becomes the limiting factor for the time step

(see equation 3.23). This allows for larger cell sizes, which is important given that CRs can

move with 𝑐 and the CFL condition, 𝑐Δ𝑡 ≤ Δ𝑥, still has to be fulfilled.

However, the method faces significant challenges. Even with large cell sizes, MHD-PIC codes

require thousands of particles per ion skin depth 𝑑𝑖 to mitigate Poisson noise and to observe the

streaming instability growth (Bai et al., 2019). As a remedy, the 𝛿 𝑓 method is employed (Dimits

and Lee, 1993; Parker and Lee, 1993). Its name stems from the expansion of the distribution

function into 𝑓 = 𝑓0+𝛿 𝑓 , where 𝑓0 is assumed to be (almost) static while the PIC particles model

the fluctuating part of the distribution function, 𝛿 𝑓 . This approach substantially reduces noise

while maintaining the ability to handle non-linear behavior through continuous adjustment of

particle weights. Larger deviations in 𝛿 𝑓 increase the respective particle weights, while small

deviations decrease it. Therefore, the 𝛿 𝑓 method should not be confused with our prior linear

analytic treatments that assumed small perturbations. Nevertheless, large perturbations (𝛿 𝑓 ∼
𝑓0) can lead to numerical instabilities or nonphysically, negative quantities because the method

does not guarantee conservation of density, momentum or energy (Parker and Lee, 1993; Kunz

et al., 2014). The method is thus best suited for small 𝛿 𝑓 , where the Poisson noise is greatly

diminished. It also requires defining 𝑓0 throughout phase space, which is straightforward for,

e.g., Maxwellian distributions. However, many anisotropic beam setups are sparse in phase

space. Thus, the 𝛿 𝑓 method prevents simulations where the CR distribution is initially far from

its assumed near isotropic steady state solution. Furthermore, the MHD approximation neglects

electron scales, despite the existence of rapidly growing gyroresonant instabilities on these scales

(Shalaby et al., 2021, 2023). This makes the MHD-PIC method very efficient, but more accurate

alternatives are desirable.

Including intermediate scales

The quasi-neutral two fluid (QNTF) solver by Amano (2015), extended with PIC capabilities

(Amano, 2018), implements a generalized Ohm’s law enabling investigation of electron-scale

phenomena. This case requires to resolve the electron skin depth, and imposes time step con-

straints through the CFL condition and the CR particle speed 𝑐, severely limiting the time

step size in comparison to MHD-scale simulations. A particular strength of the QNTF-PIC

code is its ability to adapt to different parameter regimes by including different contributions

to generalized Ohm’s law. As such, it represents a generalization of the MHD-PIC method by

analogy with the relationship between generalized and idealized Ohm’s law. However, its fun-

damental dependence on the two fluid formulation limits its versatility and Landau damping is

not contained in the fluid model. Furthermore, relatively large numerical dissipation needs to

be applied to achieve numerical stability.
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Table 3.1. An overview of numerical solvers. We provide citations for less-frequently applied
solvers. Starting from the fully kinetic solvers in the upper-left corner, codes in the lower rows
utilizing the quasi-neutral (QN) and MHD approximations are applicable if small spatial and
temporal scales can be neglected. Codes to the right are applicable, if some or all species are
thermal. Solvers in the central column are generally well-suited for the CR streaming setup in
terms of efficiency and accuracy. The solvers by Shumlak and Loverich (2003) and Amano (2015,
2018) presuppose a two-fluid (ion and electron) formulation, the abbreviation QNTF stands for
quasi-neutral two-fluid. For multi-fluid solvers we also refer to Shumlak et al. (2011) and Wang
et al. (2015). Some compound Vlasov methods exist (Valentini et al., 2007), but we focus on
methods employing PIC.

Currently, there is no existing code that meets all the criteria we identified at the beginning

of this section; in particular, no fluidized thermal code models Landau damping. To address

this gap, we developed a fluid-module extension for the SHARP code (Shalaby et al., 2017b,

2021), which minimizes Poisson noise and numerical heating through high-order shape functions.

Since we prioritize capturing electron-scale phenomena (requirement i), we maintain SHARP’s

original PIC routine unchanged, preserving its excellent conservation properties while adding

the fluid component as a supplementary module. The absence of filtering in this code enables the

elimination of spurious self-forces even if employing few particles per cell, ensuring an efficient

representation of the sparse CRs. We implement a Landau-fluid approximation for thermal

species that, while not yet incorporating ion-neutral collisions, provides a theoretical framework

for its future implementation (requirement ii). Our approach differs from previous multi-fluid

and two-fluid codes (Shumlak and Loverich, 2003; Shumlak et al., 2011; Wang et al., 2015):

rather than implicitly coupling electromagnetic sources to the fluid, we employ a fully explicit

scheme that preserves the PIC routine’s electromagnetic field solver. This enables initialization

of arbitrary combinations of fluid and PIC species, allowing to model arbitrary distribution

functions (requirement iii and iv), unless excessive noise were to dictate the use of the 𝛿 𝑓 method,

which would prohibit arbitrary CR distributions. In the following Chapter 4 we will describe

its implementation and perform numerical tests, indicating its high-fidelity and computational

efficiency (requirement v) even without the 𝛿 𝑓 method.

Table 3.1 summarizes different numerical approaches. While established kinetic methods (left

column) require significant parameter compromises for gyroresonant CR streaming problems

44



3.4. Compound techniques

(though they remain applicable to non-resonant Bell instability), pioneering studies using PIC

(Holcomb and Spitkovsky, 2019; Shalaby et al., 2021) and Hybrid-PIC codes (Schroer et al.,

2024) have been conducted. Pure fluid frameworks (right column) cannot adequately capture

CR microphysics, but approaches fluidizing thermal species (central column) offer an optimal

balance of efficiency and accuracy. Our proposed fluid-PIC code fills the remaining upper spot

of the central column in Table 4.1.
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This chapter is based on the published paper by Lemmerz, R.; Shalaby, M.; Thomas, T.; Pfrom-

mer, C.:

Journal of Plasma Physics, vol. 90, no. 1, p. 905900104, 2024. doi:10.1017/S0022377823001113

The particle-in-cell (PIC) method is successfully used to study magnetized plasmas.

However, this requires large computational costs and limits simulations to short phys-

ical run-times and often to setups in less than three spatial dimensions. Traditionally,

this is circumvented either via hybrid-PIC methods (adopting massless electrons) or

via magneto-hydrodynamic-PIC methods (modelling the background plasma as a single

charge-neutral magneto-hydrodynamical fluid). Because both methods preclude mod-

elling important plasma-kinetic effects, we introduce a new fluid-PIC code that couples

a fully explicit and charge-conservative multi-fluid solver to the PIC code SHARP

through a current-coupling scheme and solve the full set of Maxwell’s equations. This

avoids simplifications typically adopted for Ohm’s Law and enables us to fully resolve

the electron temporal and spatial scales while retaining the versatility of initializing any

number of ion, electron, or neutral species with arbitrary velocity distributions. The

fluid solver includes closures emulating Landau damping so that we can account for

this important kinetic process in our fluid species. Our fluid-PIC code is second-order

accurate in space and time. The code is successfully validated against several test

problems, including the stability and accuracy of shocks and the dispersion relation

and damping rates of waves in unmagnetized and magnetized plasmas. It also matches

growth rates and saturation levels of the gyro-scale and intermediate-scale instabilities

driven by drifting charged particles in magnetized thermal background plasmas in com-

parison to linear theory and PIC simulations. This new fluid-SHARP code is specially

designed for studying high-energy cosmic rays interacting with thermal plasmas over

macroscopic timescales.
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4.1. Introduction

Astrophysical plasmas naturally partition into thermal and non-thermal particle populations.

Provided particles collide frequently via (Coulomb) collisions, this eventually leads to a charac-

teristic thermal Maxwellian phase-space distribution. This population can be reliably described

with the fluid approximation, which characterizes a vast amount of particles by a few macro-

scopic fields in space (e.g., number density, mean velocity and temperature). By contrast, the

non-thermal cosmic ray (CR) ion population at energies exceeding GeV is mostly collisionless

and interacts with the background plasma via wave-particle interactions, thus retaining its ini-

tial power-law distribution for much longer times (Blandford and Eichler, 1987; Draine, 2011;

Zweibel, 2017). Low-energy CRs (≲ GeV) more frequently experience Coulomb/ionisation col-

lisions and as such have a direct influence on gas dynamics and molecular chemistry (Dalgarno,

2006a; Padovani et al., 2020). CRs can excite and grow plasma waves via instabilities at which

they scatter in pitch angle (i.e., the angle between momentum and magnetic field vector), thereby

regulating their macroscopic transport speed and exchanging energy and momentum with the

thermal population. Modelling these plasma processes requires to move beyond the classical

fluid approximation.

During the process of diffusive shock acceleration, CRs stream ahead of the shock into the pre-

cursor region and drive non-resonant Alfvén waves unstable by means of their powerful current

(Bell, 2004; Riquelme and Spitkovsky, 2009; Caprioli and Spitkovsky, 2014b), which provides

efficient means of increasing their wave-particle scattering and reducing the CR diffusion co-

efficient (Caprioli and Spitkovsky, 2014c). Upon escaping from the acceleration site into the

ambient medium, CRs continue to drive Alfvén-waves through resonant instabilities. Scatter-

ing off of these self-induced waves regulates their transport speed (Kulsrud and Pearce, 1969;

Marcowith et al., 2021; Shalaby et al., 2021), which is determined by the balancing instability

growth and wave damping (Thomas and Pfrommer, 2019; Thomas et al., 2020). In the interstel-

lar medium, CRs provide a comparable if not dominant pressure, despite their negligible number

densities in comparison to the thermal population, which makes them dynamically important

(Boulares and Cox, 1990; Draine, 2011). Their pressure gradient can drive outflows from the

interstellar medium (Simpson et al., 2016; Girichidis et al., 2018; Farber et al., 2018) so that

powerful global winds emerge from galaxies (Uhlig et al., 2012; Hanasz et al., 2013; Pakmor

et al., 2016; Ruszkowski et al., 2017b) that enrich the circumgalactic medium in galaxy haloes

with CRs that can also dominate the pressure support and modify the cosmic accretion of gas

onto galaxies (Buck et al., 2020; Ji et al., 2020). The degree to which CRs regulate galaxy for-

mation critically depends on the efficiency of wave-particle interactions, which in turn depends

on the amplitude of self-excited plasma waves (Thomas et al., 2023). On even larger scales, CRs

energised in jets of active galactic nuclei stream into the surrounding intracluster medium of cool

core clusters and heat it via the excitation of Alfvén waves and the successive damping (Guo and

Oh, 2008; Pfrommer, 2013; Ruszkowski et al., 2017a; Jacob and Pfrommer, 2017b). Because

the plasma physics underlying these processes is highly non-linear, numerical calculations are

needed to study these effects.
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Due to its ability to resolve kinetic processes, the PIC method (Dawson, 1962; Langdon and

Birdsall, 1970; Hockney, 1988; Birdsall and Langdon, 1991) has become one of the most used

methods for studying plasmas from laboratory to astrophysical scales. Examples of that include

revolutionizing our understanding of the rich physics found in collisionless shocks (Spitkovsky,

2008; Marcowith et al., 2016), magnetic reconnection (Daughton et al., 2006; Daughton et al.,

2011; Sironi and Spitkovsky, 2014), instabilities driven by highly relativistic electron-positron

beams (Bret et al., 2010; Shalaby et al., 2017a, 2018, 2020), as well as the transport of non-

thermal particle populations like CRs (Holcomb and Spitkovsky, 2019; Shalaby et al., 2021).

However, the PIC method needs to advance numerous particles per cell each time step, and

thus it is quick to reach its computational limit. Even one-dimensional simulations usually only

capture dynamics on very short physical times and the extent to which two or three-dimensional

simulations can be performed is very limited.

The time interval between the inverse of the electron plasma frequency, 𝜔−1e , (which is nec-

essary to ensure the stability of the PIC algorithm) and that of the ion plasma frequency, 𝜔−1i ,

depends on the ion-to-electron mass ratio, since 𝜔−1i /𝜔−1e = (𝑚i/𝑚e)1/2, assuming charge neu-

trality, i.e. that the electron and ion densities are equal. Therefore, one frequently used trick to

increase the computational efficiency in PIC simulations is to adopt a reduced ion-to-electron

mass ratio to bridge the gap between the smallest timescale in the simulation and the larger

timescale on which interesting physical processes occur. However, this might lead to artificial

suppression of physical effects (Bret and Dieckmann, 2010; Hong et al., 2012; Moreno et al.,

2018), including instabilities with excitation conditions that depend on the mass ratio (Shalaby

et al., 2021, 2022). This shows the need for a more efficient numerical method to complement the

accurate results achieved by PIC simulations in order to enable simulations of realistic physics

occurring on longer timescales. One possible method consists in using the less expensive fluid

approximation, which works particularly well for collisional systems where frequent particle col-

lisions maintain a thermodynamic temperature but is less well motivated in weakly collisional

or even collisionless astrophysical plasmas where it cannot accurately capture some important

microphysical plasma processes.

Multiple methods have been devised that combine the computational advantages of a fluid

code, while trying to maintain some of the physics accuracy provided by the PIC method.

Hybrid-PIC codes (Lipatov, 2002; Gargaté et al., 2007) treat electrons as a massless fluid and

ions as particles. With the assumption of charge neutrality and the Darwin approximation

(i.e., neglecting the transverse displacement current), these codes are able to overcome some

computational barriers while omitting effects on the electron time and length scale. Since this

eliminates the need to resolve electron scales, the increase in computational efficiency from pure-

PIC to hybrid-PIC methods is roughly a factor of (𝑚i/𝑚e)1/2 in timescale and about the same

factor in spatial scales. In cases where the electron pressure anisotropy becomes important such

as in magnetic reconnection, a hybrid Vlasov-Maxwell system can be coupled to an anisotropic

electron fluid with a Landau fluid closure, which captures more kinetic physics (Finelli et al.,

2021). On the other hand, an even more efficient method exists, that combines the magneto-

hydrodynamic (MHD) description of the thermal background plasma with PIC methods to
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model the evolution of energetic particles such as CRs (Bai et al., 2015; van Marle et al., 2018),

called MHD-PIC. However, this method inherits the assumptions of MHD, in particular, the use

of (simplified) Ohm’s law by fully neglecting the displacement current, which precludes physics

associated with higher-order terms of Ohm’s law as well as the electron dynamics.

In this paper we present a self-consistent algorithm that is suitable for simulating microphys-

ical effects of CR physics by only applying the fluid approximation to thermal particles and

solving the full set of Maxwell’s equations. Our goal of this novel fluid-PIC method is to sac-

rifice as little physics accuracy as possible, while at the same time alleviating computational

restraints by orders of magnitude for setups involving CRs (or similar, low density non-thermal

particle populations interacting with a thermal plasma). The fluid-PIC method, in essence,

couples a multi-fluid solver to the PIC method by summing their contributions to the charge

and current densities used to solve Maxwell’s equations, and the resulting electromagnetic fields.

Thus, the subsequent dynamics is dictated by fluid and PIC species. This enables treating any

arbitrary number of species in thermal equilibrium by modelling them as separate fluids that

interact electromagnetically with each other and with particles of arbitrary momentum distri-

bution (modelled using the PIC method). In contrast to MHD-PIC and hybrid-PIC methods,

we do not explicitly assume Ohm’s law, and instead, solve Maxwell’s equations in a fully self-

consistent manner in our fluid-PIC code. Therefore, displacement currents are included in our

model and fast changes in the electric field and electron dynamics are captured. This, in turn,

allows studying the interaction of high energy particles with the background plasma, e.g. to in-

vestigate CR streaming. Another hybrid approach resolving electron timescales fully, but using

pressure coupling, has been used for simulation of pick-up ions in the heliosphere by Burrows

et al. (2014).

Often implicit and semi-implicit methods are utilized for stability and resolution reasons to

couple the multi-fluid equations to Maxwell’s equations (Hakim et al., 2006; Shumlak et al.,

2011; Wang et al., 2020). However, this creates an interdependency between all fluids and has

limited utility when coupled to explicit particles. We have developed an explicit multi-fluid

solver in which each fluid and particle species is agnostic about each other and the coupling

is achieved via an indirect current-coupling scheme. Because the PIC part of the code is the

most computationally expensive part of the fluid-PIC, hybrid-PIC, and MHD-PIC methods, the

computational efficiency is mostly determined by the number of particles required as well as

the smallest time and length scales that need to be resolved. Hence, this fluid-PIC approach

results in large speed-ups for CR propagation simulations in comparison to traditional hybrid-

PIC codes, which treat every ion as a particle and need to initialize a large number of particles

according to the density ratio, as well as in comparison to PIC-only simulations. Especially

studying comic ray propagation in the interstellar medium, where the typical CR density is of

the order 10−9 times the interstellar medium number density, is challenging. Since the fluid-PIC

algorithm is faster by orders of magnitude in comparison to PIC in such a case, we can reach

further into the realistic parameter regime without sacrificing some essential microphysics.

One of the most important kinetic effects is arguably Landau damping. The fluid description

can emulate this effect using Landau closures (Hammett and Perkins, 1990; Umansky et al.,
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2015; Hunana et al., 2019b), which necessitates the computation of the heat flux in Fourier

space. While Fourier transforms in 1D are not easily parallelizable, this bottleneck can partially

be mitigated by performing global communications of the message-passing interface (MPI) in

the background while processing the high computational load (e.g. resulting from evolving or-

bits of PIC particles) in the foreground. Simulations with periodic boundary conditions are

currently handled by convolution with a finite-impulse-response (FIR) filter in our code, but

other options are available in the literature (Dimits et al., 2014; Wang et al., 2019). A number

of simplifying local approximations exist as well (Wang et al., 2015; Allmann-Rahn et al., 2018;

Ng et al., 2020), which scale computationally well but become inaccurate for studying some

multiscale plasma physics problems. Our code implements these different approaches so that an

appropriate one can be chosen, dependent on the requirements of a simulation. Our implemen-

tation is massively parallelized and can be efficiently run on thousands of cores. Furthermore,

the fluid-PIC method allows for any multi-fluid setup. As such, this framework allows for some

straightforward extensions. Potentially, this involves a setup with actively participating neutrals

to incorporate ion-neutral damping into this method. To this end, the coupling between different

fluids needs to be extended by a collision term, which is left as a future extension to the code.

The outline of this paper is as follows. In Section 4.2, we introduce the pillars of this method

and describe the PIC method, the fluid solver, how we couple both methods by means of elec-

tromagnetic fields, and describe various implementations of the Landau closure. In Section 4.3,

we show validation tests of the fluid solver (shock tube tests), linear waves in an ion-electron

plasma, and the damping rate of Langmuir waves in a single-electron fluid with Landau closures.

We then investigate the non-linear effects of two interacting Alfvén waves as well as cosmic-ray-

driven instabilities, where fluid-PIC and PIC results are compared. We conclude in Section 4.4.

Throughout this work, we use the SI system of units.

4.2. Numerical Method

After a review of the kinetic description of a plasma in Section 4.2.1, we briefly introduce our

PIC method in Section 4.2.2. The fluid description for plasmas and its assumptions are given

in Section 4.2.3. The finite volume scheme we use to numerically solve the compressible Euler

equations is described in Section 4.2.4, while the electromagnetic interactions of the fluid are

described in Section 4.2.5. In Section 4.2.6, we describe the Landau closure we adopt in order

to mimic the Landau damping in kinetic thermal plasmas within the fluid description, and

detail its implementation in our code. We close this Section by describing the overall code

structure of the fluid-PIC algorithm and finally discuss the interaction between the modules via

the current-coupling scheme (Section 4.2.7).
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4.2.1. Kinetic description of a plasma

The kinetic description of a collisionless relativistic plasma with particles of species s with

elementary mass, 𝑚s, and elementary charge, 𝑞s, is given by the Vlasov equation,

𝜕 𝑓s
𝜕𝑡
+ 𝒖

𝛾
· ∇ 𝑓s + 𝒂s · ∇𝑢 𝑓s = 0, (4.1)

where 𝑓s = 𝑓s(𝒙, 𝒗, 𝑡) is the distribution function, 𝒖 = 𝛾𝒗 is the spatial component of the four-

velocity with the Lorentz factor 𝛾 = [1 + (𝒗/𝑐)2]−1/2, and 𝑐 is the light speed. The acceleration

due to the Lorentz force is given by

𝒂s =
𝑞s
𝑚s
[𝑬 (𝒙, 𝑡) + 𝒗 × 𝑩 (𝒙, 𝑡)] , (4.2)

where 𝑬 (𝒙, 𝑡) and 𝑩 (𝒙, 𝑡) are the electric and magnetic fields, respectively. The evolution of

electric and magnetic fields is governed by Maxwell’s equations:

𝜕𝑩

𝜕𝑡
= −∇ × 𝑬, ∇ · 𝑩 = 0, (4.3)

𝜕𝑬

𝜕𝑡
= 𝑐2∇ × 𝑩 − 𝑱

𝜀0
, ∇ · 𝑬 =

𝜌

𝜀0
, (4.4)

where 𝑐 = 1/√𝜀0𝜇0 is the vacuum speed of light, and 𝜀0 and 𝜇0 are the permittivity and the

permeability of free space, respectively. The evolution of the electro-magnetic fields is influenced

by the charge density, 𝜌, and current density, 𝑱. They are given by the charge-weighted sum

over all species of the number densities 𝑛s and bulk velocities 𝒘s respectively,

𝜌 (𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠𝑛𝑠 (𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠

∫
𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑣, (4.5)

𝑱 (𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠𝑛𝑠 (𝒙, 𝑡) 𝒘𝑠 (𝒙, 𝑡) =
∑︁
𝑠

𝑞𝑠

∫
𝒗 𝑓𝑠 (𝒙, 𝒗, 𝑡) d3𝑣. (4.6)

4.2.2. The particle-in-cell method

We use the PIC method to solve for the evolution of plasma species that are modelled with the

kinetic description. The PIC method initializes a number of computational macroparticles to

approximate the distribution function in a Lagrangian fashion. Each macroparticle represents

multiple physical particles and, as such, each macroparticle has a shape in position space which

can be represented by a spline function. By depositing the particle motions and positions to the

numerical grid (or computational cells), the electromagnetic fields can be computed. This step

is followed by a back-interpolation of these fields to the particle positions so that the Lorentz

forces on the particles can be computed. In our implementation, these equations are solved

using one spatial dimension and three velocity dimensions (1D3V), i.e. ∇ = (𝜕/𝜕𝑥, 0, 0)T.

The code quantities are defined as multiples of the fiducial units given for time, fields (electric
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and magnetic), charge, current density and length

𝑡0 =
√︃
𝑚0𝜖0/(𝑞20𝑛0), 𝐸0 =

√︁
𝑛0𝑚0𝑐2/𝜖0,

𝜌0 = 𝑞0𝑛0, 𝐽0 = 𝜌0𝑐, 𝑥0 = 𝑐𝑡0.
(4.7)

This enables us to select a fixed time step of

Δ𝑡 = 𝐶cfl𝑐Δ𝑥 (4.8)

where 𝐶cfl < 0.5 to satisfy the Courant-Friedrichs-Lewy (CFL) condition. The value of the

reference density 𝑛0 is chosen such that the code timescale, 𝑡0, obeys 𝜔−2p = 𝑡20. The total plasma

frequency is 𝜔p = (∑𝑠 𝜔
2
𝑠)1/2, and related to the plasma frequencies of the individual species,

𝜔2
s = 𝑞2s𝑛s/(𝑚𝑠𝜖0). We define the discretized time 𝑡𝑘 = 𝑘Δ𝑡, position 𝑥𝑖 = 𝑖Δ𝑥 and quantities at

discrete position and times as 𝑬𝑘
𝑖 = 𝑬 (𝑡𝑘 , 𝑥𝑖). For details on the PIC code SHARP, the reader is

referred to Shalaby et al. (2017b, 2021). Here, we focus on describing how SHARP is extended

to include fluid treatment of some plasma species.

4.2.3. Fluid description of plasma

A straightforward way of coarse graining the Vlasov equation (4.1) is to reduce its dimensionality.

By taking the 𝑗-th moment over velocity space, i.e.
∫
𝒗 𝑗 𝑓 d3𝑣, we retrieve the fluid quantities

and reduce the dimensionality of the 1D3V kinetic description to 1D. The number density 𝑛s

and the bulk velocity 𝒘s are defined through the zeroth and first moment of the distribution

function, respectively, while the total energy density per unit mass 𝜖𝑠 and the scalar pressure

per unit mass 𝑝𝑠 are related to the second moment (Wang et al., 2015):

𝑛s (𝒙, 𝑡) =
∫

𝑓s (𝒙, 𝒗, 𝑡) d3𝑣, (4.9)

𝒘s (𝒙, 𝑡) =
∫

1

𝑛s (𝒙, 𝑡) 𝒗 𝑓s (𝒙, 𝒗, 𝑡) d
3𝑣, (4.10)

𝜖s (𝒙, 𝑡) =
∫

1

2
𝒗2 𝑓s (𝒙, 𝒗, 𝑡) d3𝑣, (4.11)

𝑝s (𝒙, 𝑡) =
∫
(𝑣𝑥 − 𝑤s,𝑥)2 𝑓s (𝒙, 𝒗, 𝑡) d3𝑣 =

Γ − 1

2

∫
(𝒗 − 𝒘s)2 𝑓s (𝒙, 𝒗, 𝑡) d3𝑣. (4.12)

Here, the pressure tensor is under the adiabatic assumption and the degrees of freedom are

encoded in the adiabatic index 𝛤. The following relation is found from the definitions

𝜖s =
𝑝s

𝛤 − 1
+ 1

2
𝑛s 𝒘s · 𝒘s. (4.13)

The first three moments of the Vlasov equation are called the continuity, momentum, and

energy conservation equations. A set of these equations is found for each fluid species, but the
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subscript s is neglected here for simplicity:

𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛𝒘) = 0, (4.14)

𝜕𝑛𝒘
𝜕𝑡
+ ∇ · [𝑝1 + 𝑛𝒘𝒘] = 𝑞

𝑚
𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) , (4.15)

𝜕𝜖

𝜕𝑡
+ ∇ · [(𝑝 + 𝜖)𝒘] + 1

𝛤 − 1
∇ · 𝑸 =

𝑞

𝑚
𝒘 · 𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) . (4.16)

We assumed the non-relativistic limit and an isotropic pressure tensor with vanishing non-

diagonal components, i.e. the inviscid limit. The notation 𝒘𝒘 indicates the dyadic product of

the two vectors and 1 is the unit matrix. Similar to the definition of the scalar pressure in

equation (4.12) we use a definition of the heat flux vector, which is normalized to the degrees of

freedom as well

𝑸 (𝒙, 𝑡) = 𝛤 − 1

2

∫
(𝒗 − 𝒘)2 (𝒗 − 𝒘) 𝑓 (𝒙, 𝒗, 𝑡) d3𝑣. (4.17)

The electromagnetic source term is given by

𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) = 𝑛 (𝑬 + 𝒘 × 𝑩) . (4.18)

The general form of the fluid equations can be written as

𝜕𝑼̃

𝜕𝑡
+ ∇ · F(𝑼̃) = 𝑺(𝑼̃), (4.19)

where 𝑼̃ = 𝑼̃(𝒙, 𝑡) = (𝑛, 𝑛𝒘, 𝜖)T is the fluid state vector at position (𝒙, 𝑡), F is the flux matrix,

and 𝑺 is the source vector.

Numerically, the complexity of solving equation (4.19) can be reduced by splitting the operator

into less complex sub-operators using Strang operator splitting (Strang, 1968; Hakim et al.,

2006). This enables us to use the most appropriate solver for each subsystem sequentially. We

split the fluid update into three parts; the flux F excluding the heat flux (see Section 4.2.4), the

electromagnetic source 𝑺em = 𝑺𝑤𝑞/𝑚 (see Section 4.2.5), and the heat flux 𝑸 (see Section 4.2.6).

For commuting operators exp(Δ𝑡𝑸) and exp(Δ𝑡𝑺em) a second order accurate Strang splitting is

obtained as

𝑼𝑛+ 12 = e
Δ𝑡
2 FeΔ𝑡𝑸eΔ𝑡𝑺eme

Δ𝑡
2 F𝑼𝑛− 1

2 +𝑂 (Δ𝑡3). (4.20)

If 𝑸 and 𝑺em act independently on the entries 𝑝 and 𝒘 respectively, then the order of applying

them can be varied and they need to be evaluated only once. In practice the formulation of

𝑸 might partially depend on 𝒘. In this case, Strang splitting is performed on this part of the

operator 𝑸 as well, see equation (4.47). In order to apply 𝑺em (and 𝑸, which depends on the

direction of 𝑩) one needs to find the electromagnetic quantities at time 𝑡𝑛 first. The components

of 𝑬 along the simulated spatial direction can only be updated from time 𝑡𝑛−1 to 𝑡𝑛 after applying

exp(Δ𝑡/2 × F) for the first time (see Section 4.2.5). Therefore, electromagnetic quantities need

to be calculated between these updates. This is unproblematic as F is independent of the
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electromagnetic field, and we can defer updating 𝑬 without reducing accuracy.

4.2.4. Finite volume scheme

The 1D3V fluid equations are solved using a finite volume method, where the fluid equations

are averaged over the cell volume, which is an interval of length Δ𝑥 in 1D,

𝑼𝑖 (𝑡) = 1

Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 1

2

𝑼̃ (𝑥, 𝑡) d𝑥. (4.21)

This enables us to correctly conserve the overall fluid mass, fluid momentum and fluid energy,

even in the presence of large gradients, by utilizing Gauss’ theorem:

1

Δ𝑥

∫ 𝑥
𝑖+ 12

𝑥
𝑖− 1

2

𝜕𝑭(𝑼̃)
𝜕𝑥

d𝑥 =
1

Δ𝑥

[
𝑭𝑖+ 12 − 𝑭𝑖− 1

2

]
(4.22)

where the flux through an interface at 𝑥𝑖 is 𝑭𝑖 (𝑡) = 𝑭[𝑼̃(𝑥𝑖 , 𝑡)], leading to the update equation

𝜕𝑼𝑖 (𝑡)
𝜕𝑡

=
1

Δ𝑥

[
−𝑭𝑖+ 12 + 𝑭𝑖− 1

2
+

∫
𝑺
(
𝑼̃(𝑥, 𝑡))d𝑥] . (4.23)

Integrating equation (4.23) in time is achieved by using at least second-order Runge-Kutta

methods (Butcher, 2016), which is the limit set by the operator splitting scheme. We could not

find examples yet, where higher-order Runge-Kutta methods have performed noticeably different

from second-order methods in the fluid-PIC code. In contrast to the finite difference scheme used

for electromagnetic fields and particles, where electromagnetic quantities are point values, fluid

quantities discretized with the finite volume method are cell averages. This is useful, because the

finite difference method does not guarantee the conservation of the conservation equations (4.14)

through (4.16), which are governing the fluid; while on the other hand using the finite volume

method for the electromagnetic fields needs additional steps to satisfy the constraint ∇ · 𝑩 = 0.

Hybridization of both schemes to combine the advantages of each has been used before in other

contexts, i.e. Soares Frazao and Zech (2002).

The maximum time step in the 1D3V Euler equations, which allows for stable simulations,

is Δ𝑡 < 𝐶cflΔ𝑥/(|𝑤 | + 𝑐s), with the speed of sound 𝑐s = (𝛤𝑝/𝑛)1/2. For all realistic setups these

velocities are limited naturally by the speed of light, |𝑤 | < 𝑐 and 𝑐s < 𝑐, and this condition is au-

tomatically fulfilled by the time step criterion in equation (4.8). In practice, only equation (4.8)

together with a suitable Courant number of 𝐶cfl ≤ 0.5 is used to determine the time step of the

simulation.

Reconstruction

To approximate the flux at interfaces, we need to reconstruct the fluid state at cell interfaces.

The accuracy of the reconstruction has a crucial influence on the diffusivity. A lower-order

reconstruction can lead to excessive damping of waves, which might suppress relevant physical
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effects on longer timescales.

For reconstructing the point value 𝑼̃(𝑥𝑖+1/2, 𝑡), which is needed to compute 𝑭𝑖+1/2, we employ

a central weighted essentially non-oscillatory reconstruction (C-WENO) scheme of spatial order

five. The reconstruction computes two point values at each interface 𝑥𝑖+1/2, an interpolation from

the left- and right-hand side. We reconstruct the primitive variables 𝑛, 𝒘, and 𝑝 individually.

Our implementation of the C-WENO method is based on the 5th order scheme presented

in Capdeville (2008). An introduction to the topic can be found in Cravero et al. (2018a).

The C-WENO reconstruction uses a convex combination of multiple low-order reconstruction

polynomials to achieve high-order interpolations of the interface values while it employs a non-

linear limiter to degrade this high-order interpolation to a lower order if the reconstructed

quantity contains discontinuities. The fifth-order C-WENO uses three third-order polynomials

𝑃L(𝑥), 𝑃C(𝑥), 𝑃R(𝑥) for each cell 𝑖 to interpolate the four adjacent cells in the following way:

𝑃L(𝑥) interpolates values at 𝑖 − 2 𝑖 − 1 𝑖

𝑃C(𝑥) interpolates values at 𝑖 − 1 𝑖 𝑖 + 1

𝑃R(𝑥) interpolates values at 𝑖 𝑖 + 1 𝑖 + 2
while the optimal fifth-order polynomial interpolates all of them:

𝑃opt(𝑥) interpolates values at 𝑖 − 2 𝑖 − 1 𝑖 𝑖 + 1 𝑖 + 2.

We define an additional polynomial

𝑃0(𝑥) = 1

𝑑0


𝑃opt(𝑥) −

∑︁
𝑞∈[L,C,R]

𝑑𝑞𝑃𝑞 (𝑥)

, (4.24)

where 𝑑0 + 𝑑L + 𝑑C + 𝑑R = 1. The polynomials 𝑃0, 𝑃L, 𝑃C, and 𝑃R are a convex representation

of the 𝑃opt polynomial. We use 𝑑0 = 3/4, 𝑑C = 2/16, and 𝑑L = 𝑑R = 1/16.

In general, we would like to use the reconstruction provided by the 𝑃opt polynomial as fre-

quently as possible because of its high-order nature. But this high-order reconstruction can

cause oscillations similar to the Gibbs phenomenon at discontinuities. Therefore, we need to

employ a limiting strategy to avoid such behaviour. In order to accomplish this, we re-weight all

of our 𝑑-coefficients by taking the smoothness of the associated polynomial into account (Jiang

and Shu, 1996). We define

𝛼𝑞 = 𝑑𝑞

[
1 +

(
𝜏

IS[𝑃𝑞] + 10−9Δ𝑥

)2]
for 𝑞 ∈ [0,L,C,R], (4.25)

where 𝜏 is a measure for the overall smoothness of the reconstructed variables, and IS[𝑃𝑞] defines

a smoothness indicator of the low-order polynomials. Because the formulae for these smoothness

indicators are quite cumbersome, we list them in Appendix 4.A. These coefficients define a new

set of normalized weights given by

𝑤𝑞 =
𝛼𝑞

𝛼0 + 𝛼L + 𝛼C + 𝛼R
for 𝑞 ∈ [0,L,C,R] . (4.26)

The final reconstructed polynomial is then given by the convex combination of the low-order
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polynomials using this set of normalized weights:

𝑃rec(𝑥) = 𝑤0𝑃0(𝑥) + 𝑤L𝑃L(𝑥) + 𝑤C𝑃C(𝑥) + 𝑤R𝑃R(𝑥), (4.27)

which we evaluate at the cell interfaces to calculate the required left- and right-handed interface

values for the Riemann solver. We detail how these polynomials are evaluated in Appendix 4.A.

The smoothness indicators IS[𝑃𝑞] vanish if the underlying polynomials are smooth. In this

case, the re-weighted coefficients reduce to their original value 𝛼𝑞 → 𝑑𝑞 and the reconstructed

polynomial reduces to the optimal polynomial 𝑃rec(𝑥) → 𝑃opt(𝑥).

Riemann solver

The previous reconstruction step determines two, potentially different, values 𝑼̃L and 𝑼̃R for

each quantity to the left and right of every interface, thereby providing the initial conditions for

the Riemann problem:

𝜕𝑼

𝜕𝑡
= −∇ · F(𝑼̃) (4.28)

𝑼̃(𝑥, 0) =


𝑼̃L, 𝑥 < 0

𝑼̃R, 𝑥 > 0
(4.29)

An (approximate) Riemann solver is employed to compute the numerical flux F(𝑼̃). While a

number of different families of Riemann solvers have been developed with individual strengths

and weaknesses, we have decided to implement multiple solvers which can be changed on demand.

Implemented solvers in fluid-SHARP include a Roe solver with entropy fix (Roe, 1981; Harten

and Hyman, 1983) and an HLLC solver (Toro et al., 1994). While the Roe solver yields more

accurate solutions and fewer overshoots in our tests in comparison to the HLLC solver, it becomes

unstable in near vacuum flows and strong expansion shock waves. Even though differences

between the solvers are easily visible in some shock setups and artificially extreme conditions,

they are typically negligible in most applications common for thermal plasmas. We opt to

employ the HLLC solver as our standard for stability purposes and use the Roe solver in cases

where stronger shocks with overshoots are expected.

Importance of wave characteristics in approximating stable numerical fluxes

The characteristic curves of the Euler equations without sources correspond to the eigensys-

tem of the flux Jacobian 𝜕𝑭/𝜕𝑼. Approximate Riemann solvers use these characteristics for

computing fluxes across small time steps and introduce numerical dissipation to suppress spu-

rious instabilities. For the hydrodynamic Euler equations in 1D3V (without a heat flux), five

characteristics emerge with characteristic wave speeds 𝜆 = 𝑤𝑥 − 𝑐s, 𝑤𝑥 + 𝑐s, 𝑤𝑥, where the last

eigenvalue 𝑤𝑥 has a multiplicity of 3. In particular, the Roe solver (without the entropy fix)

computes the numerical flux at an interface by averaging the physical fluxes as follows (LeVeque,
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2002),

𝑭num =
1

2

[
𝑭(𝑼̃L) + 𝑭(𝑼̃R) − 𝑫𝜆(𝑼̃R, 𝑼̃L)

]
. (4.30)

The dissipation vector 𝑫𝜆 = R|Λ|R−1(𝑼̃R − 𝑼̃L) vanishes for 𝑼̃R = 𝑼̃L. The matrices R(𝑼̃L, 𝑼̃R)
and |Λ| (𝑼̃L, 𝑼̃R) are composed of eigenvectors and a diagonal of the absolute eigenvalues

��𝜆(𝑼̃L, 𝑼̃R)
��

respectively, where an appropriate averaging of left- and right-hand states at the interface is used

to derive these eigenvectors and eigenvalues. That is, the dissipation is directly based on the

jump at the interface of each wave multiplied by its characteristic wave velocity. The dissipation

vector satisfies the subcharacteristic condition, i.e. in characteristic coordinates each eigenvalue

is bounded by the dissipation −𝐷𝜆,𝑖 ≤ 𝜆𝑖 ≤ 𝐷𝜆,𝑖, and thus stabilizes the scheme without in-

troducing excessive dissipation (LeVeque and Pelanti, 2001; Chen and Liu, 1993; Hsiao, 1997;

Whitham, 1974). In multidimensional scenarios, computing the projection of the difference

(𝑼̃R − 𝑼̃L) from a Cartesian grid onto the characteristics can result in violations of this con-

dition or excessive dissipation. In these instances, it can be advantageous to artificially alter

the wave speeds entering 𝑫𝜆. Reduced wave speeds can be used to successfully counter exces-

sive dissipation leading to a wrong convergence for low Mach number flows (Dellacherie, 2010),

however, this leads to numerical instabilities when applied to high Mach number flows. On the

other hand, increased wave speeds have been found to eliminate numerical instabilities at shocks

(Peery and Imlay, 1988). While the HLLC solver makes more sophisticated approximations to

the wave speeds of the non linear system, the principle of artificially increasing selected wave

speed estimates yields the same result (Sangeeth and Mandal, 2019).

To provide an understanding of how these characteristics influence the operator splitting,

suppose the following decomposition of the total flux 𝑭t = 𝑭𝐴 + 𝑭𝐵 into two fluxes. Hence, we

need to compare the numerical estimate of the total flux to that of the individual subsystems,

denoted by 𝑭𝐴 and 𝑭𝐵. The expansion of non-linear systems provided by Strang (1968) yields

𝑼𝑛+1
𝑖 = 𝑼𝑛

𝑖 + Δ𝑡 [𝚫𝑭𝑖,𝐴(𝑼𝑛) + 𝚫𝑭𝑖,𝐵 (𝑼𝑛)] + O(Δ𝑡2), where we only use terms up to first order for

simplicity. The intracell flux Δ𝑭𝑖 = −(𝑭num,𝑖+1/2 − 𝑭num,𝑖−1/2)/Δ𝑥 is used for updating 𝑼 (see

equation 4.23). The numerical flux at an interface for one time step is thus

𝑭num =



1
2

[
𝑭t(𝑼̃L) + 𝑭t(𝑼̃R) − 𝑫𝜆,t(𝑼̃R, 𝑼̃L)

]
if unsplit

1
2

[
𝑭t(𝑼̃L) + 𝑭t(𝑼̃R) − 𝑫𝜆,𝐴(𝑼̃R, 𝑼̃L) − 𝑫𝜆,𝐵 (𝑼̃R, 𝑼̃L)

]
if split.

(4.31)

Both numerical fluxes converge to the total physical flux; for vanishing dissipation vectors, e.g.

𝑼̃R = 𝑼̃L, both formulations are equal. Intuitively, the total strength of the dissipation matrix in

the unsplit scheme is smaller tr |Λ𝑡 | ≤ tr |Λ𝐴| + tr |Λ𝐵 |, while the split scheme is stable provided

that the subsolvers are stable (Strang, 1968). As an important consequence, a split Riemann

solver only needs to account for the characteristics in the subsystem. This conveniently allows

using specific solvers for each subsystem without taking into consideration the other systems of

equations. Another possibility is to convert the divergence of a flux into a source term, which

eliminates the need for a Riemann solver but results in the loss of guaranteed conservation in

the finite volume scheme. We provide two applications, for which this is useful.

58



4.2. Numerical Method

First, the heat flux vector 𝑸, which is indeed a physical flux, results in a nontrivial change of

the wave characteristics. Instead of including this complexity in the Riemann solver here, it is

simpler to treat its divergence (∇ · 𝑸) as a source term instead (see Section 4.2.6).

Second, in the MHD limit, the evolution equation of the electromagnetic momentum 𝜖0𝜕𝑡𝑬 ×
𝑩 = −𝜌𝑬 − 𝑱 × 𝑩 + ∇ · Tem collapses to the constraint 𝑱 × 𝑩 ∼ ∇ · (𝑩𝑩 − 1𝐵2/2)/𝜇0 (see,

e.g., Braginskii, 1965), where the Maxwell stress tensor is given by Tem = 𝜖0𝑬𝑬 + 𝑩𝑩/𝜇0 −
0.5(𝜖0𝐸2+𝐵2/𝜇0)1 ≈ (𝑩𝑩−1𝐵2/2)/𝜇0. That is, the electromagnetic source term can be expressed

as a divergence of an electromagnetic flux tensor. MHD solvers make use of this constraint,

and, by including electromagnetic fluxes into their total flux, the MHD Riemann solvers add

dissipation based on the full MHD wave characteristics. Failing to do so leads to numerical

instabilities especially for large magnetic field strengths, as in general the fast magnetosonic

wave is faster than the characteristic waves treated in our scheme. However, because this

source-flux equivalency is invalid without the MHD assumptions, we must include the Lorentz

force as a source term (see the following Section 4.2.5) and consequently do not use the MHD

characteristic velocities in our Riemann solver. In Section 4.3.2, we demonstrate the accuracy

of our implemented algorithm for propagating MHD waves, demonstrating that the numerical

dissipation is sufficient to suppress potential numerical instabilities.

4.2.5. Electromagnetic interaction with charged fluids

In this section, we first introduce the Lorentz force as a source term in equation (4.15). Further-

more, we describe how the fluid influences the electromagnetic fields. With these two additional

parts, the description from an uncharged gas in Section 4.2.4 is expanded here to include plasmas.

Treatment of electromagnetic source term

Instead of integrating the energy equation (4.16), which would require evaluating the source

term on the right-hand side, we convert 𝜖 into 𝑝 before applying the source update exp(Δ𝑡𝑺em)
(see equation 4.20). Consequently, we compute the time evolution of the primitive pressure

variable, for which the electromagnetic source term conveniently vanishes:

𝜕𝑝

𝜕𝑡
+ 𝛤𝑝∇ · 𝒘 + 𝒘 · ∇𝑝 + ∇ · 𝑸 = 0. (4.32)

Then only the computation of the source term for the momentum equation (4.15) is left.

Up until now we have only applied the C-WENO method for conservation laws, however, by

adding the source term, we are left with a balance law. In C-WENO formulations for balance

laws it is customary to approximate the integral of the source term (equation 4.23) numerically

to higher orders as well (Cravero et al., 2018b). We use Simpson’s formula for approximating

equation (4.23)

∫ 𝑥𝑖+1/2

𝑥𝑖−1/2
𝑺

(
𝑼̃

)
d𝑥 =

1

6

(
𝑺(𝑼̃𝑖− 1

2
) + 4𝑺(𝑼̃𝑖) + 𝑺(𝑼̃𝑖+ 12 )

)
+O(Δ𝑥5), (4.33)
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where the intracell values 𝑼̃𝑖±1/2 are interpolated by the same C-WENO scheme as used for

solving the hydrodynamical equations, and the centre-value is computed self-consistently with

the numerical integration formula, i.e. 𝑼̃𝑖 = (6𝑼𝑖−𝑼̃𝑖+1/2−𝑼̃𝑖−1/2)/4. We also need to interpolate

the electromagnetic field values to a comparable spatial order. This is achieved by performing

finite-difference interpolations for each component from the Yee mesh discretized fields, that is

𝑬𝑖+ 12 =
150(𝑬𝑖 + 𝑬𝑖+1) − 25(𝑬𝑖−1 + 𝑬𝑖+2) + 3(𝑬𝑖−2 + 𝑬𝑖+3)

256
+O(Δ𝑥6), (4.34)

and temporal order, 𝑩𝑛 = (𝑩𝑛+1/2 + 𝑩𝑛−1/2)/2, again, for each component necessary. Lower

order approximations produce, in our tests, similar results, but converge to slightly lower wave

frequencies when compared with the analytical solution of the dispersion relation. We apply

𝑺(𝑼̃𝑖) by using an implicit velocity update,

𝒘
𝑛+ 12
𝑖 − 𝒘𝑛− 1

2

𝑖

Δ𝑡
=

𝑞

𝑚

[
𝑬𝑛
𝑖 +

1

2

(
𝒘
𝑛+ 12
𝑖 + 𝒘𝑛− 1

2

𝑖

)
× 𝑩𝑛

𝑖

]
, (4.35)

which is solved using the Boris velocity integration (Boris et al., 1970). The splitting of fluid

flux update and Lorentz force (equation 4.20) is reminiscent of pushing a particle with the PIC-

method, where the Lorentz force for a full-time step is calculated in between half-time step

updates of the position vector.

Deposition of charges

Equations (4.4) govern the electric field evolution, where Faraday’s or Gauss’ law might be

used to compute 𝑬. In this section we focus on the one-dimensional setup without particle

contributions, which are explained in Section 4.2.7. The perpendicular components’ update, 𝐸𝑦

and 𝐸𝑧, is received straightforwardly by discretizing Faraday’s Law

(
𝐸𝑦

)𝑛+1
𝑖+ 12 =

(
𝐸𝑦

)𝑛
𝑖+ 12 −

∑︁
𝑠

Δ𝑡
𝜖0

𝑞𝑠
(
𝑛𝑤𝑦

)𝑛+ 12
𝑖+ 12 ,𝑠

− 𝑐2Δ𝑡
Δ𝑥

[
(𝐵𝑧)𝑛+

1
2

𝑖+1 − (𝐵𝑧)𝑛+
1
2

𝑖

]
(4.36)

(𝐸𝑧)𝑛+1𝑖+ 12
= (𝐸𝑧)𝑛𝑖+ 12 −

∑︁
𝑠

Δ𝑡
𝜖0

𝑞𝑠 (𝑛𝑤𝑧)𝑛+
1
2

𝑖+ 12 ,𝑠
+ 𝑐2Δ𝑡

Δ𝑥

[ (
𝐵𝑦

)𝑛+ 12
𝑖+1 −

(
𝐵𝑦

)𝑛+ 12
𝑖

]
, (4.37)

where the sum is taken over all fluid species s and 𝑛𝒘 are components of the fluid vector 𝑼.

For the 𝐸𝑥 component in spatial direction however, in order to enforce charge-conservation,

Gauss’ law in discretized form needs to be enforced for all 𝑖 ≥ 1 as well

(𝐸𝑥)𝑛𝑖 = (𝐸𝑥)𝑛0 +
∑︁
𝑠

𝑞𝑠
𝜖0

𝑖−1∑︁
𝑗=0

𝑛𝑛
𝑗+ 12 ,𝑠

Δ𝑥 = (𝐸𝑥)𝑛0 +
∑︁
𝑠

𝑞𝑠
𝜖0

∫ 𝑥𝑖

𝑥0

𝑛𝑛𝑠d𝑥, (4.38)

where the second equality uses the definition of cell averages in the finite volume scheme (see

equation 4.21) and shows, that this numerical formula is exact. Another formula for updating

(𝐸𝑥)0 to the time step 𝑛 is still needed. In the analytical case Gauss’ law in combination with

the density conservation equation (4.14) for the analytical flux (or cell values) 𝐽𝑥 ∝ 𝑞𝑛𝑤𝑥 can be

60



4.2. Numerical Method

shown to be equivalent to Faraday’s law; in the numerical case this equivalency is shown using

the discretized conservation equation and corresponding numerical flux 𝐽𝑥 ∝ 𝑞𝐹𝑛 (𝑼̃) ≃ 𝑞𝑛𝑤𝑥 for

the current density 𝐽𝑥. Taking the time derivative of equation (4.38) in conjunction with the

discretized density update equation (4.23) leads to the expression

(𝐸𝑥)𝑛+1𝑖 − (𝐸𝑥)𝑛𝑖
Δ𝑡

+ (𝐸𝑥)𝑛+10 − (𝐸𝑥)𝑛0
Δ𝑡

=

∑︁
𝑠

𝑞𝑠
𝜖0Δ𝑡

∫ 𝑡𝑛+1

𝑡𝑛

[−(𝐹𝑛,𝑠)𝑖 + (𝐹𝑛,𝑠)0
]

d𝑡. (4.39)

The integration in time using Runge-Kutta methods is the same as used to solve equation (4.23).

Faraday’s law using fluxes in one spatial dimension is then given by

(𝐸𝑥)𝑛+1𝑖 = (𝐸𝑥)𝑛𝑖 −
∑︁
𝑠

𝑞𝑠
𝜖0

∫ 𝑡𝑛+1

𝑡𝑛

[
𝐹𝑛

(
𝑼̃

)]
𝑖,𝑠

d𝑡, (4.40)

and enables us to identify 𝐽𝑥 by comparison to the charge conservation equation (equation 4.14

multiplied by 𝑞s)

(𝐽𝑥)𝑛+1/2𝑖 =
∑︁
𝑠

𝑞𝑠
Δ𝑡

∫ 𝑡𝑛+1

𝑡𝑛

[
𝐹𝑛

(
𝑼̃

)]
𝑖,𝑠

d𝑡. (4.41)

Note, that the numerical flux also includes numerical diffusion and is directly related to changes

in 𝜌. Due to this, other formulations for 𝐽𝑥 violate the charge conservation equation and can

lead to numerical instabilities.

Magnetic field evolution

Because the fluid evolution influences the magnetic field only indirectly, the finite-difference

time-domain (FDTD) update for the magnetic field is unchanged from the previous SHARP

code. For completeness we reproduce the formulae here (Shalaby et al., 2021)

(𝐵𝑦)𝑛+
1
2

𝑖 = (𝐵𝑦)𝑛−
1
2

𝑖 + Δ𝑡
Δ𝑥

(
(𝐸𝑧)𝑛𝑖+ 12 − (𝐸𝑧)𝑛𝑖− 1

2

)
, (4.42)

(𝐵𝑧)𝑛+
1
2

𝑖 = (𝐵𝑧)𝑛−
1
2

𝑖 − Δ𝑡
Δ𝑥

(
(𝐸𝑧)𝑛𝑖+ 12 − (𝐸𝑦)𝑛𝑖− 1

2

)
. (4.43)

𝐵𝑥 is constant in the 1D3V model because of the requirement ∇ · 𝑩 = 0.

4.2.6. Landau closure for fluid species

The highest retained fluid moment, which is in our case the specific heat flux 𝑸, is not evolved

in our set of equations. Instead, we need to estimate its value dynamically using an appropriate

closure. The simple ideal gas closure sets 𝑸 = 0, which, however, prevents the energy dissipation

of plasma waves. One important mechanism of such a dissipation is the collisionless damping

of electrostatic waves achieved through Landau damping. Landau damping is a microphysical

kinetic wave-particle interaction, where particles resonate with the wave to exchange energy as

a function of time. In essence, the resonant particles accelerate or decelerate to approach the
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wave’s phase velocity, thereby picking up energy or releasing it, respectively. For Maxwellian

phase space distributions, there are more particles at velocities smaller than the phase velocity,

which yields a net damping, i.e., energy loss of the wave (Boyd and Sanderson, 2003).

Various attempts, e.g. by Hammett and Perkins (1990), were carried out to approximate the

heat flux 𝑸 of an almost Maxwellian distributed plasma, such that the kinetic phenomenon

of Landau damping is mimicked in the linearized fluid equations. Landau damping is a non-

isotropic effect, which can be reflected in the fluid descriptions. Accounting for the gyrotropy of

the system around the magnetic field, the double-adiabatic law with two adiabatic coefficients

parallel and perpendicular to the magnetic field can be adopted, which might be extended

using an appropriate heat flux vector (Snyder et al., 1997; Hunana et al., 2019b,a). This is

achieved by first decomposing the pressure tensor in a coordinate system that is aligned with

the direction of the magnetic field 𝒃̂ = 𝑩/|𝑩 |, yielding p = 𝑝 ∥ 𝒃̂ 𝒃̂ + 𝑝⊥(1 − 𝒃̂ 𝒃̂). The transport

of parallel and perpendicular heat along the magnetic field then corresponds to the terms 𝑄 ∥ 𝒃̂
and 𝑄⊥ 𝒃̂, respectively. In this publication, our algorithm is restricted to pressures with only one

common adiabatic coefficient for parallel and perpendicular pressure. We leave the possibility of

implementing anisotropic double-adiabatic systems open for future extensions of our algorithm.

Hence, we model only the scalar heat flux 𝑄 = 𝒃̂ · 𝑸, which is a simplification of the double-

adiabatic modelling from the aforementioned literature, i.e. 2𝑄/(𝛤 − 1) = 𝑄 ∥ + 2𝑄⊥. In our

model, we can assume an isotropized pressure tensor p = 𝑝1 using the adiabatic coefficient

𝛤 = 5/3. To do this, we set 𝑝 = 𝑝 ∥ = 𝑝⊥ everywhere without explicitly modelling 𝑄⊥. Instead,

we choose 𝑄 such that the linear Landau damping rate of the isotropic system is comparable

to that of an anisotropic electrostatic system with the same 𝑝 ∥ (for details refer to comments

below equation 4.46). This is a simplifying assumption, which does not follow from the kinetic

equations. Furthermore, isotropization mainly results from collisions, while collisionless systems

are rarely isotropic and Maxwellian as we assume. Nevertheless, this is a convenient choice

for damping waves with an isotropic background plasma when particle heating is negligible

compared to their thermal energy. A more physically motivated anisotropic pressure tensor

p = 𝑝ˆ̂𝒆𝑥 𝒆̂𝑥 is attained for 𝛤 = 3, where 𝒆̂𝑥 is the unit vector in 𝑥-direction. This approximates

the kinetic equations well when 𝑝 ≃ 𝑝 ∥ . Since we model only components of 𝑸 parallel to 𝒆̂, the

heat flux enters into the pressure evolution equation (4.32) as

𝜕𝑝

𝜕𝑡
∝ −∇ ·

(
𝒃̂𝑄

)
. (4.44)

In practice, we make the assumption of locally constant (or slowly varying) magnetic fields on

top of the 1D3V geometry, that is ∇ · ( 𝒃̂𝑄) ≃ cos(Θ)𝜕𝑥𝑄, where the angle Θ is measured between

the background magnetic field 𝑩0 and the 𝑥-axis.

Here, we will introduce two different formulae for heat flux closures. The first and most

popular collisionless electrostatic closure was proposed by Hammett and Perkins (1990). We

refer to it as the 𝑅32 closure throughout this paper, and it approximates the heat flux at a fixed
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𝛤 = 3, in Fourier space, by

𝑄 = −i sign (𝑘) 2√
𝜋

√︁
2𝜃0𝑐𝑛0𝑘B

𝑇

𝑚
≡ 𝑄𝑇 . (4.45)

Here, hats are used to denote quantities in Fourier space along the magnetic field line, i.e. 𝑄 =

F∥ (𝑄), and the subscript 0 refers to simulation box averages, that is 𝑛0 =
∑𝑁c

𝑖=0 𝑛𝑖/𝑁c is an average

over all 𝑁c cells. Furthermore 𝑘B is the Boltzmann-constant, and 𝑘B𝑇 = (𝑚𝑝 − 𝑘B𝑇0𝑛) /𝑛0. Since

the plasma average or equilibrium temperature evolves slowly as a function of time, we adjust

the background temperature 𝑇0 after every time step to synchronize it with the mean pressure,

𝑘B𝑇0(𝑡)/𝑚 = 𝑝0(𝑡)/𝑛0, while the density conservation ensures that 𝑛0 stays constant. Note also,

that 𝑄0 = 0. The dimensionless mass-normalized temperature is 𝜃0 = 𝑘B𝑇0/(𝑚𝑐2).
A more recent approximation was proposed by Hunana et al. (2018), who restricts this closure

to 𝛤 = 3 only, for reasons mentioned already. We use an ad hoc formulation of their closure

with a variable 𝛤, thereby allowing our simplified model to be used. They also introduce the

nomenclature 𝑅𝑚𝑛 adopted here, which is used to denote that the kinetic plasma response

function 𝑅 is mimicked for this closure by a Padé approximant with polynomials 𝑃𝑚/𝑄𝑛 = 𝑅𝑚𝑛

of order 𝑚 and 𝑛. We refer to their closure as 𝑅31 and it approximates the heat flux, in Fourier

space, by

𝑄 =

(
4

4 − 𝜋
− 𝛤

)
𝑝0𝑤̂︸                ︷︷                ︸

𝑄̂𝑤

+
(
−i sign (𝑘)

√
2𝜋𝜃0

4 − 𝜋
𝑐𝑛0

𝑘B𝑇

𝑚

)
︸                                 ︷︷                                 ︸

𝑄̂𝑇

. (4.46)

The 𝑅31 closure may be seen as a generalization of the 𝑅32 closure with an additional degree of

freedom in 𝑤̂, which can mimic the kinetic damping more accurately over a broader spectrum.

We choose this closure as our fiducial model because it requires only a relatively inexpensive

local derivative to compute the additional term dependent on 𝑤̂. This additional term effectively

increases the speed of sound obtained from the non-electromagnetic fluid equations and allows

retrieving the correct damping rate with our ad-hoc assumption of a specific value of 𝛤, see

Appendix 4.C. This means, that adopting a value of 𝛤, e.g., 𝛤 = 5/3 in our isotropic model, does

not change the linear dispersion relation associated with this closure. For 𝛤 = 3, we retrieve the

coefficient for 𝑤̂ from the aforementioned literature 4
4−𝜋 − 3 = 3𝜋−8

4−𝜋 .

In only one spatial dimension, as assumed in our code, the global integration along a magnetic

field line is approximated to be along the spatial direction, i.e. F∥ = F𝑥. An extension to multiple

spatial dimensions with an anisotropic pressure tensor is not straightforward because in this case,

this approach can lead to spurious instabilities (Passot et al., 2014) and the integration would

need to be carried out along magnetic field lines.

A kinetic code does not need global communication to accurately reproduce Landau damping,

since each particle (or particle bin) tracks its own interaction with each wave mode as a function

of time and accumulates this information in the particle velocity. However, after integrating

out the individual particle velocities when building the evolution equations for the phase-space

distribution function, i.e. equations (4.14)-(4.16), information about the individual particle-
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wave interaction is no longer collected. Because some information about this interaction is also

contained in the wave, such non-local information can be used to approximate the gradient

of the physical heat flux, i.e., a closure of the fluid moments that incorporates such missing

information. This non-local information is approximated in equations (4.45) and (4.46), and

is manifested by the term i sign (𝑘) in Fourier space, which is also referred to as the Hilbert

transform.

Numerically, we do not include the heat flux in the Riemann solver used to compute the fluid

fluxes. Instead, we compute the spatial derivative of the heat flux ∇∥ · 𝑸 separately. We use

Strang splitting for the 𝒘 dependent part 𝑸𝑤 and the temperature dependent part 𝑸𝑇 to expand

equation (4.20) into

𝑼𝑛+ 12 = e
Δ𝑡
2 Fe

Δ𝑡
2 𝑸𝑤eΔ𝑡𝑸𝑇eΔ𝑡𝑺eme

Δ𝑡
2 𝑸𝑤e

Δ𝑡
2 F𝑼𝑛− 1

2 +𝑂 (Δ𝑡3), (4.47)

such that only one non-global evaluation of 𝑸𝑇 is needed. Using Heun’s method together with

the fast Fourier transform (FFT) the update formulae for the pressure w.r.t. operators 𝑸𝑤 and

𝑸𝑇 are respectively

𝑝𝑛+1
��
𝑄𝑤

= eΔ𝑡𝑄𝑤 𝑝𝑛 = 𝑝𝑛 + Δ𝑡𝑎𝑤𝑝0∇∥ · 𝒘, (4.48)

𝑝𝑛+1
��
𝑄𝑇

= eΔ𝑡𝑄𝑇 𝑝𝑛 = 𝑝𝑛 + Δ𝑡F −1∥
[
|𝑘 |𝑎𝑇

(
1 + Δ𝑡

2
|𝑘 |𝑎𝑇

)
𝑇𝑛

]
, (4.49)

where the derivative in Fourier space was obtained by multiplying with i𝑘 and the inverse

FFT is denoted by F −1. For the 𝑅31 closure the coefficients are given by 𝑎𝑤 = 4/(4 − 𝜋)
and 𝑎𝑇 = (4 − 𝜋)−1(2𝜋𝜃0)1/2𝑐𝑛0𝑘B/𝑚, while for the 𝑅32 closure these are given by 𝑎𝑤 = 0 and

𝑎𝑇 = 2(2𝜃0/𝜋)1/2𝑐𝑛0𝑘B/𝑚. Both closures compute a term proportional to 𝑇 (cf. equation 4.49)

i𝑘𝑄 ∝ −i sign (𝑘) i𝑘𝑎𝑇𝑇 = |𝑘 |𝑎𝑇𝑇. (4.50)

Computing this term naively using the FFT is expensive. This is why, in the following, we present

local, semi-local, and efficient global (Fourier transform-based) numerical approximations of the

Landau closures, which we have implemented in the fluid-SHARP code.

Local approximations of the Hilbert transform

The phase shift between the wanted derivative i𝑘𝑄 and the input of 𝑇 in equation (4.50) is

exactly 0, while the amplitude is proportional to |𝑘 |. This is therefore a special case (𝑎 = 1) of

the fractional Riesz derivative 𝜕𝑎/𝜕 |𝑥 |𝑎 with Fourier representation

F
(
𝜕𝑎 𝑓 (𝑥)
𝜕 |𝑥 |𝑎

)
= −|𝑘 |𝑎 𝑓 (𝑘) , (4.51)

where 𝑎 ∈ R. Note, that all approximations mentioned here only introduce errors in the am-

plitude of |𝑘 |, but not in its phase. This makes them easier to integrate into simulations in

comparison to approximations which are not designed to prevent phase errors, because large
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Figure 4.1. The magnitude of the frequency response, which is a quantification of how much
the amplitude at a specific frequency is amplified or suppressed, of different approximations
of the derivative of the Hilbert transform. 𝑘 is given in normalized frequencies (with regards
to the Nyquist frequency), while the negative frequencies in the interval [−π, 0] are not shown
here due to the symmetric dependence of all plotted values on |𝑘 |. The FFT-based approach
reproduces the correct, linear response. The scalar and gradient driven closures are given by
equations (4.52) and (4.53) respectively with the parameter 𝑘0 marked as a grey, vertical line.
The FIR filter is described by equation (4.55).

phase errors (between π/2 and 3π/2) in any wave mode transform the damping term into an

exponentially growing numerical instability. The local approximations make use of the fact,

that the fractional Riesz derivative is local and cheap to evaluate for the special case 𝑎 = 2𝑚

with 𝑚 ∈ N0, where it reproduces the usual derivative 𝜕2𝑚/𝜕 |𝑥 |2𝑚 = (−1)𝑚+1 𝜕2𝑚/𝜕𝑥2𝑚. Wang

et al. (2015) use 𝑎 = 0, while Allmann-Rahn et al. (2018) and Ng et al. (2020) approximate the

non-isotropic pressure tensors with 𝑎 = 2. These approximations are scaled to a characteristic

wavenumber 𝑘0 at which the damping is expected to occur.

The choice of 𝑎 = 0 means, that the approximation is a scalar

i𝑘𝑄 ∝ |𝑘0 |𝑇, (4.52)

while the gradient-driven closures with 𝑎 = 2 use

i𝑘𝑄 ∝ 𝑘2

|𝑘0 |𝑇. (4.53)

The gradient-driven closures are equal to the FFT solution at two wavelengths, 0 and 𝑘0, while

the scalar closure is only exact at 𝑘0, see figure 4.1. Since i𝑘𝑄 is not computed alongside with

the conservative fluxes in the Riemann solver, energy conservation is only preserved if the mean

energy does not increase. To achieve this, the approximation for the derivative of the heat flux

needs to vanish at wavenumber 0, which the scalar approximation does not fulfil.

Because fluid closures are only approximately mimicking kinetic Landau damping anyway,

these local approximations to the fluid closures are useful to save computational cost. Further-
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more they are easier to implement, especially when the full pressure tensor is computed. How-

ever, they may lead to misleading results in multiscale simulations, where multiple characteristic

damping lengths are present and depend on the estimate of 𝑘0. For example, Allmann-Rahn

et al. (2022) show a case where ion and electron heating intensities are switched qualitatively.

Semi-local approximations of the Hilbert transform

While the less accurate local approximations use an arbitrary value of 𝑘0, the FFT is expensive

and depends on periodic boundary conditions. Here, we aim to have a fallback algorithm as a

compromise between both approaches.

A digital finite impulse response (FIR) filter can be designed to approximate the non-local

effects by convolving the simulation data with adjacent auxiliary data points, where the filter

length determines the maximum distance. For example, an asymmetric filter with an even

number of entries is applied on an input 𝑥 using filter coefficients 𝑏 𝑗 , producing the output 𝑦:

𝑦𝑖+0.5 =
𝑁 𝑓 /2−0.5∑︁

𝑗=−(𝑁 𝑓 /2−0.5)
𝑏 𝑗𝑥𝑖+ 𝑗+0.5. (4.54)

A numerical derivative is then an asymmetrical filter with 𝑁 𝑓 = 2 and coefficients 𝑏±0.5 =

±1/Δ𝑥, such that 𝑦𝑖+0.5 = (𝑥𝑖+1 − 𝑥𝑖)/Δ𝑥. Figure 4.1 shows the magnitude of the frequency

response. The gradient driven case shows a quadratic 𝑘2 dependence, which is suppressed for

larger 𝑘. This is due to the relatively small uneven filter length of 7 used here; the filter

length is an important parameter, since it influences the accuracy of the approximation. With

a filter length corresponding to the simulation box size the results can converge to the FFT-

based algorithm (i.e. the 𝑘2 dependence is not suppressed at higher 𝑘), if the filter is designed

appropriately. As noted previously, the local closures do not converge to 𝜕/𝜕 |𝑥 |. A correct

convergence for approximating 𝜕/𝜕 |𝑥 | is obtained through the high order formulation by Ding

et al. (2015). However, this filter violates energy conservation for smaller filter length and is

thus, not suitable for our case. Instead, we construct the filter by adopting a convolution of two

sub-filters, each of which has an odd amount of asymmetric entries (termed a Type IV filter)

similar to the numerical derivative mentioned already. By design, their output has a vanishing

mean, thereby guaranteeing energy conservation. A symmetric splitting into the sub-filters

𝜕/𝜕 |𝑥 | = (𝜕1/2/𝜕 |𝑥 |1/2)2 is possible, however its frequency response is not monotonic (and has

visible ripples) for small filter lengths. This leads to the nonphysical case that some waves at a

particular wavenumber 𝑘 are damped less than their slightly larger scale waves at 𝑘 − 𝛿𝑘.

Instead, we opt to use the intuitive splitting of 𝜕/𝜕 |𝑥 | = 𝜕/𝜕𝑥H where the Hilbert-transform

filter H is equivalent to −i sign (𝑘) in Fourier space. The filter H has coefficients 𝑏 𝑗 = 1/(𝜋 𝑗).
We derive an equivalent formulation to equation (4.49), which is first order in time, by applying

the derivative and Hilbert-transform filters successively, i.e.

𝑝𝑛+1 = 𝑝𝑛 + Δ𝑡𝑎𝑇 𝜕

𝜕𝑥

𝑁 𝑓 /2−0.5∑︁
𝑗=−(𝑁 𝑓 /2−0.5)

1

𝜋 𝑗
𝑇𝑛
𝑖+ 𝑗+0.5. (4.55)

66



4.2. Numerical Method

Note, that the derivative is also computed by convolution and has a separate filter length cor-

responding to its spatial order. We opt to use the same spatial order as in the C-WENO

reconstruction for the finite volume scheme.

Even for small Hilbert-transform filter lengths in comparison to the number of cells, e.g.,

𝑁 𝑓 /𝑁c = 0.04 as shown in figure 4.1, this formulation dramatically improves the accuracy of

multiscale problems in comparison to local approximations. Here, 𝑁 𝑓 is critical for the accuracy

at small wavenumbers 𝑘, while the spatial order of the derivative is critical for the accuracy

at large 𝑘. Most importantly, this semi-local approach does not require setting an arbitrary

damping scale 𝑘0 such as the local approximations mentioned before. The only parameter of

this approach is the filter length, which should be chosen to be sufficiently large.

Efficient FFT-based computation of the Hilbert transform

Provided the plasma background is uniform and periodic, the most accurate while computation-

ally most expensive results are achieved by computing the heat flux of the fluid in Fourier space.

While the FFT is easy to compute on a single computer using standard numerical libraries, our

code is parallelized using MPI and an efficient one-dimensional FFT is needed. The computation

of the Fourier transform is expensive for two reasons:

1. globally, each Fourier component needs to be informed about data from every other com-

putational cell (which may be stored on a different processor), and

2. the Fourier transform is not easily parallelizable in one dimension, which precludes an

efficient scalable Fourier algorithm.

This naturally limits the overall computational scalability of the fluid part of the code. Commu-

nication over multiple MPI processes is time consuming because of latency and finite bandwidth.

For this reason, parallel FFT algorithms are prone to become a computational bottleneck. How-

ever, using non-blocking MPI routines to perform communication in the background can be

used while the high computational load of the particles is carried out. Thus, in our case of a

combined fluid and PIC algorithm, the communication required for an accurate FFT-based heat

flux computation is comparatively computationally cheaper, even with relatively small numbers

of PIC particles. Hence, in our case the FFT algorithm does not necessarily become a bottleneck

for larger problems.

In order to distribute the computational load of the FFT, we employ a four-step algorithm

in the first step of the computation (Bailey, 1990; Takahashi and Kanada, 2000), which extends

the Cooley-Tukey algorithm (Cooley and Tukey, 1965) for multiple processors. We shortly

describe the algorithm for complex input data as found in the literature and afterwards adapt

the parallel FFT for real input data in our implementation. The four-step algorithm interprets

the complex data vector 𝑥 𝑗 of length 𝑁 as a two-dimensional vector 𝑥 𝑗 = 𝑥 𝑗1, 𝑗2 with lengths 𝑛1

and 𝑛2 respectively, and volume 𝑛1𝑛2 = 𝑁. The mapping 𝑗 = 𝑗1 + 𝑗2𝑛1 and 𝑘 = 𝑘2 + 𝑘1𝑛2 is
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inserted into the definition of the discrete Fourier transform, where Ψ = exp{−2𝜋i}

𝑥𝑘 =
𝑁−1∑︁
𝑗=0

𝑥 𝑗Ψ
𝑗𝑘/𝑁 , (4.56)

𝑥𝑘2,𝑘1 =
𝑛1−1∑︁
𝑗1=0

𝑛2−1∑︁
𝑗2=0

𝑥 𝑗1, 𝑗2Ψ
𝑗2𝑘2/𝑛2Ψ 𝑗1𝑘2/𝑁Ψ 𝑗1𝑘1/𝑛1 . (4.57)

This way, a complex-to-complex parallel FFT of length 𝑁 is distributed to 𝑛1 local FFTs of

length 𝑛2, a multiplication by the twiddle factors Ψ 𝑗1𝑘2/𝑁 and finally 𝑛2 FFTs of length 𝑛1,

with a communication intensive transpose in between. All-to-all communication takes place two

times, in the first step – cyclically distributing 𝑗 to 𝑗1 and 𝑗2 – and for the transpose. A third

all-to-all communication would be needed to properly sort the values in Fourier space. However,

a scrambled output suffices for computing the heat flux. Furthermore, since often two FFTs,

i.e. electrons and ions, need to be computed simultaneously, they can be computed on different

nodes. This has the advantage, that the second all-to-all communication for the transpose is

not completely global resulting in reduced communication times.

Adapting this algorithm to a real-to-complex FFT, where due to Hermitian symmetry only

values of 𝑘 ≤ ⌊𝑁/2⌋ need to be computed, a large amount of computational and communicational

savings can be realized. A real-to-complex parallel FFT of length 𝑁 is distributed to 𝑛1 local

real-to-complex FFTs of length 𝑛2, a multiplication by the twiddle factors Ψ 𝑗1𝑘2/𝑁 and, now

only, ⌊𝑛2/2⌋ + 1 complex-to-complex FFTs of length 𝑛1. Up to two of the latter FFTs can

be replaced by real-to-complex FFTs, along the axes 𝑘2 = 0 and, if 𝑛2 is even, 𝑘2 = 𝑛2/2. A

scrambled output is received, which, due to Hermitian symmetry, needs to be partially complex

conjugated.

A key point in ensuring the efficiency of the parallel four-step algorithm consists in choosing

large 𝑛1 and 𝑛2. 𝑛1 ≃ 𝑛2 ≃
√
𝑁 is the optimal choice for the distributed complex-to-complex FFT,

the real-to-complex FFT should prefer 𝑛1 ≃ ⌊𝑛2/2⌋ + 1 ≃ (√2𝑁 + 1 + 1)/2. The computational

scaling with 𝑃 processors and roughly optimally distributed 𝑛1 and 𝑛2 is akin to O (𝑁/𝑃 log 𝑁),
but degrades if 𝑁 is a prime number, or, more generally, if 𝑛1 or 𝑛2/2 is smaller than the number

of processors. This easily avoidable because 𝑁 is a free parameter, and so are 𝑛1 and 𝑛2. While

this does not scale favourably in comparison to the O (𝑁/𝑃) scaling that dominates the rest of

the fluid code, still, the FFT is trivially independent of the numbers of particles per cell 𝑁pc. The

PIC-module on the other hand scales as O
(
𝑁pc𝑁/𝑃

)
and typical applications have 𝑁pc ≳ 100. In

many applications the cost of the Fourier transform is, even with worse scaling, subdominant in

comparison to the cost of the PIC part. In the remaining cases, local approximations, discussed

above, are favourable.

4.2.7. Current-coupled fluid-PIC algorithm

The coupling in our code between various fluid and kinetic (PIC) species is achieved through a

current-coupling scheme. Namely, both fluid and kinetic species contribute to the charge and

current densities. The electromagnetic fields then evolve in response to the total contributions.
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𝑥𝑖 𝑥𝑖+ 12
𝑡𝑛 𝐸𝑥 𝐸𝑦 , 𝐸𝑧 , 𝜌

𝑡𝑛+
1
2 𝐵𝑦 , 𝐵𝑧 , 𝐽𝑥 (𝐽𝑦 , 𝐽𝑧),𝑼f

Table 4.1. The grid assignment and time staggering of the fluid-SHARP-1D3V code. 𝑼f refers
to the fluid state vector. Note that it is sufficient to compute either 𝜌 or 𝐽𝑥, but not both.

The fields are staggered on a Yee-mesh and are updated with the FDTD scheme. Subsequently,

both fluid and kinetic species evolve in response to the new electromagnetic fields. That is

our current-coupling scheme does not make any assumption on the velocity distribution of the

species modelled using the kinetic description (Park et al., 1992).

The PIC species, using fifth-order spline interpolation, are deposited to specific points on

the Yee-grid for which the charge density is defined at full-time steps while the current density

is defined at half-time steps as discussed by Shalaby et al. (2017b, 2021). Table 4.1 gives an

overview on the staggering of our implementation of the fluid-PIC method. We initialize the

staggered quantities directly, with one exception: (𝐽𝑥)f , see equation (4.41), necessitates an

integral over the flux from 𝑡0 to 𝑡1. We approximate the integral between 𝑡0 and 𝑡1/2 using an

interpolation at 𝑥𝑖 of the cell center values 𝐽𝑥 ≃ 𝑞 𝑛𝑤 |𝑡1/2 , while the remaining part of the integral

to 𝑡1 is obtained through the fluxes again. If 𝐸𝑥 is updated using 𝐽𝑥, then 𝜌 does not need to be

calculated and vice versa. Otherwise, another complication may be seen when obtaining 𝜌 from

equation (4.5), which necessitates 𝑼 to be defined at full-time steps. While 𝑼 is formally defined

only at half-time steps, we define 𝑼𝑛∗ = exp(Δ𝑡/2 × F)𝑼𝑛−1/2 (i.e. the first part of the splitting in

equation 4.20), from which 𝜌 is obtained. Note, that 𝜌s = 𝑞𝑠𝑛𝑠 stays constant when computing

the Lorentz force and heat flux updates and therefore 𝜌𝑛 = 𝜌𝑛∗ is defined consistently, while

bulk velocity and pressure are not well-defined at full time steps.

Our algorithm does not apply any approximations to the electrical field components or to

Ohm’s law, requiring electron timescales and motions to be fully resolved. Consequently, we

apply the same algorithm to fluid electrons and protons. This is accomplished using the modular

design of the fluid SHARP code where each fluid species is represented by initializing a fluid code

class. Each instance of this code class is initialized using the values of the mass and the charges

of their respective particle species. The algorithms which define the evolution of each particle

species are implemented as functions of the fluid class. This allows us to set up simulations with

multiple species, all of which are evolved with the same numerical algorithms, with little effort.

In figure 4.2 the main loop of the fluid-PIC algorithm is presented schematically. It can be seen

that the usual PIC-algorithm loop of electromagnetic update, interpolation to particle position,

particle push, and field deposition is retrieved when no fluid species is initialized. On the other

hand, without PIC particles, we retrieve a multispecies fluid plasma code. While our fluid-PIC

algorithm can simulate an arbitrary mixture of species, it is most efficient if fluids are used for

background species and particles for non-thermal particle distributions. Possibilities for task

parallelization are shown in figure 4.2 by dashed lines, which allows maximizing computation-

communication overlap. The full main loop of our algorithm can be schematically described as
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Heat flux

Fluid Module

Particle Module

Electromagnetic Module

Flux - half step

Update 

Update 

Lorentz force

Flux - half step

Lorentz force

Deposition

Back interpolation

Figure 4.2. Schematic representation of the interaction of the different modules in the fluid-
SHARP code. Red boxes belong to the particle class, violet boxes to the electromagnetic class
and blue boxes to the fluid class. Dashed lines show branches which are task parallelizable,
i.e. where non-blocking MPI communication can be used for overlapping communication and
computation. The particle and fluid modules might be instantiated arbitrarily often, where
each instance represents a species.

follows (referencing the corresponding equations):

initialize quantities at corresponding grid points(table 4.1)

particle deposition

while 𝑡 < 𝑡max:

fluid deposition of 𝐽𝑦 , 𝐽𝑧 (equations 4.36-4.37)

fluid flux update by half step (Section 4.2.4)

fluid deposition of 𝐽𝑥 or 𝜌 (equation 4.41)

electromagnetic update on Yee grid (Sections 4.2.5-4.2.5)

𝑤-dependent heat flux update by half step (equation 4.48)

start 𝑇-dependent heat flux update (FFT, equation 4.49)

fluid electromagnetic source update (Section 4.2.5)

particle interpolation

particle push

particle deposition

end 𝑇-dependent heat flux update (FFT, equation 4.49)

𝑤-dependent heat flux update by half step (equation 4.48)

fluid flux update by half step (Section 4.2.4)

𝑡 = 𝑡 + Δ𝑡

Our fluid implementation is included within the SHARP code, which uses a fifth-order spline

function for deposition and back-interpolation for PIC species (Shalaby et al., 2017b, 2021). The
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Test 𝑥0 𝑛l 𝑤l 𝑝l 𝑛r 𝑤r 𝑝r

1 0.3 1 0.75 1 0.125 0 0.1

2 0.8 1 -19.59745 1000 1 -19.59745 0.01

Table 4.2. Parameters adopted for the shock tube tests described in Section 4.3.1. 𝑥0 divides the
domain into two halves, where values to the left of 𝑥0 (𝑥 < 𝑥0) are initialized by the parameters
with subscript l. Similarly, subscript r indicates parameters to the right of 𝑥0.

PIC part of the code does not make use of filtering grid quantities and results in comparatively

small numerical heating per time step, which (if present) would affect the reliability of the

simulation results on long timescales (see section 5 in Shalaby et al. 2017b). This property

is important because we are specifically interested in studying microphysical effects on long

timescales with our fluid-PIC code. Noise generated by the PIC particles could influence the

fluid through the electromagnetic coupling. The CFL condition keeps the propagation of this

noise within a single cell during one time step, and the PIC noise at the next time step will be

uncorrelated with this noise so that we do not expect a systematic numerical error emerging

from this. Indeed, we have not yet observed a case where this leads to a numerical instability.

It has also been observed, that the larger physical dissipation through Landau closures replaces

the need for numerical dissipation completely (Passot et al., 2014).

Due to the modularity of our code, each part can be tested individually. These tests, ranging

from the uncharged fluid solver to full fluid-PIC simulations, are shown in the next section.

4.3. Code validation tests

In this section, we present the results of various code tests. We start with two shock-tube

tests in Section 4.3.1, where only the fluid solver presented in Section 4.2.4 without sources

(electromagnetic module) is used. Next, we provide tests of the electromagnetic coupling between

ion and electron fluids, as described in Section 4.2.5. The two-fluid model consists of an ion

and electron fluid described by equations (4.14)-(4.16), coupled via Maxwell’s equations (4.3)-

(4.4). We show that our code is able to accurately capture all six branches of the two-fluid

dispersion relation (Section 4.3.2). The Landau closures tested for Langmuir wave damping of

only one electrostatic electron fluid with a fixed ion background (Section 4.3.3) and, using the

two-fluid model, for two interacting Alfvén waves generating a new, longitudinal wave along

the magnetic field (Section 4.3.4). In Section 4.3.5, we test the entire fluid-PIC code with

a simulation of the gyrotropic CR streaming instability, where PIC CRs are streaming in a

stationary electron-proton fluid background, utilising two fluid and two PIC species coupled

through Maxwell’s equations. Finally, we demonstrate the successful parallelization strategy of

our code by performing scaling tests in Section 4.3.6.
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(a) Shock tube test 1, a modified Sod shock tube, at
time 0.2 (code units).
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(b) Shock tube test 2 at time 0.012 (code units).

Figure 4.3. 1D1V hydrodynamical shock tube tests with initial conditions given in Table 4.2.
The simulations carried out with the HLLC and Roe Riemann solvers are compared to the exact
solutions. Density, bulk velocity in 𝑥-direction and pressure are plotted for each test.

4.3.1. Shock tube

As the fluid approximation will be primarily used for background plasmas without excessive

gradients, the accuracy of resolving sharp discontinuities is of secondary importance in practical

applications. Still, we stress test our implementation of the fluid equations without electro-

magnetic coupling to ensure its numerical robustness and to compare the numerical dispersion

for different Riemann solvers. For the shock tests a numerical grid of 100 cells is used with

a constant CFL number 𝐶cfl = 0.2. The boundary conditions are transmissive and the initial

conditions for the tests are given in Table 4.2 with the adiabatic coefficient of 𝛤 = 1.4. These

test setups are the same as used by Toro (2009), where, unlike the tests performed here, a CFL

number of 0.2 × 0.95 is used only in the first five steps and 0.95 afterwards. The units used for

these non-electromagnetic tests are arbitrary units and do not coincide with the usual simulation

units.

Test 1, as shown in figure 4.3a, is a modified Sod shock tube test. The sonic rarefaction wave

on the left-hand side as well as the shock front on the right are well resolved without noticeable

oscillations. The contact discontinuity in the middle introduces small oscillations in the density

and is smeared out more than the shock front. While the Roe and HLLC solvers yield almost

the same results, the HLLC solver is slightly better at resolving the sonic point at the head (to

the left) of the sonic rarefaction wave, which the Roe solver can only resolve because an entropy
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fix is applied.

Figure 4.3b shows a test of a stationary contact discontinuity with a shock front of a high

Mach number travelling to the right and a rarefaction wave to the left. It can be seen, that

while the HLLC method introduces more oscillations, it is also better at resolving the contact

discontinuity.

In low-density flows the Roe solver is not suitable because it is not robust without further

modifications (Einfeldt et al., 1991), making the HLLC method slightly more robust while the

Roe method is slightly less dispersive. We use the HLLC solver as our default, however, for

most practical applications, both methods produce similar results.

A natural extension to the hydrodynamic shock tubes are the MHD shock tubes, which also

test the evolution of shocks in the electromagnetic variables. A two-fluid model is not expected

to exactly replicate the MHD shock tubes used to test MHD codes, because the characteristic

waves are different for both system of equations. Finite-volume two-fluid models have been used

to replicate the MHD shock tubes with some success, even without informing the Riemann solver

about the MHD characteristic wave velocity (Shumlak and Loverich, 2003; Hakim et al., 2006).

Because the Maxwell-solver in our implementation uses the finite-difference scheme, the most

common choice for PIC codes, it is unable to capture electromagnetic shock tubes properly. Their

relevance for two-fluid codes rarely extends beyond testing purposes, as physical shocks stretch

over a length scale larger than 𝑐/𝜔i ≫ 𝑐/𝜔e, which appears smooth in simulations resolving the

electron skin depth. However, shock acceleration is not properly captured using the fluid-PIC

algorithm at the shock interface. This is because efficient shock acceleration mechanisms are

only experienced by the computational particles, but not the fluids. Injection prescriptions for

cosmic rays might be used to mitigate this (e.g., Pfrommer et al., 2017). We focus on cases

where the electromagnetic quantities are smoothly varying, i.e. wave transport. The choice of

the Riemann-solver and its characteristic waves are less important for smooth waves, especially

when employing a high-order interpolation routine. This is because different Riemann solvers

should converge to the same results when the interface state is unambiguous, for example if

𝑼̃L = 𝑼̃R (cf. equation 4.29).

4.3.2. Two-fluid dispersion relation

To test the interplay of the fluid solver with the electromagnetic coupling, we perform a test

where the linear waves of an ion-electron plasma are reproduced. For an ideal two-fluid plasma

the dispersion relation can be solved for six different wave branches (Stix, 1992). We show

the solutions to the dispersion relation of a two-fluid plasma in figure 4.4 for a realistic mass

ratio of 𝑚i = 1836𝑚e, 𝛽i = 𝑛𝑘B𝑇i/[𝐵2
0/(2𝜇0)] = 0.2 in an isothermal plasma and 𝛤 = 3. 𝐵0

is oriented along the 𝑥-axis and the Alfvén velocity is 𝑣A = 𝐵0/(𝜇0𝑛i𝑚i)1/2 = 5.83 × 10−3𝑐.

Multiple simulations at different wavenumbers have been initialized that have all six wave modes

simultaneously present and were run for a total time of 14 × 2𝜋/min (𝜔) (20 × 2𝜋/min (𝜔) for

the smallest scale), where 𝜔 denotes the wave frequencies, which are always completely real

for an ideal fluid. Consequently, the waves should be undamped in the linear regime. Initial
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extrema of the discrete Fourier-transformed fluid simulation outputs at each wavenumber with
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the dispersion relation of the three MHD waves at scales larger than the ion inertial length,
1/𝑘 > 𝑐/𝜔i.
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Figure 4.6. The linear dispersion relations of a Langmuir wave with immobile ions. Shown
are, on the left-hand side, the real frequency components and, on the right-hand side, the
negative imaginary frequency components (which are responsible for damping). The crosses
present data points obtained from simulations with the respective closure while the theoretical
result is shown with a solid line. The relative error between simulation and theoretical results
(𝜔sim − 𝜔theor)/𝜔theor is shown in the lower panels. For reference, the red crosses display the
data points as given in table 1 of Shalaby et al. (2017b).

conditions for all of our fluid simulations of waves are obtained as eigenvectors (in 𝑼, 𝑬, 𝑩) while

theoretical predictions of 𝜔 are obtained as eigenvalues using an extended algorithm based on the

dispersion solver by Xie (2014), which can take into account the effects of both heat flux closures.

We calculate the initial conditions to double precision, the machine precision of the simulation

code. We normalise the amplitude of the eigenvectors by setting the maximum amplitude in

any quantity to 10−4 for each wave mode, to suppress non linear effects. The resolution is

Δ𝑥 = 0.1 𝑐/𝜔e for all simulations. The box size for the intermediate scale is 𝐿𝑥 = 214.2 𝑐/𝜔e,

covering waves with 𝑘 = 𝑛w𝑘0 of 𝑛w = 1, 3, 5, 10, 25, where 𝑘0 = 2𝜋/𝐿𝑥. The largest and smallest

scales use box sizes of 𝐿𝑥 = 2142 𝑐/𝜔e (𝑛w = 1) and 𝐿𝑥 = 21 𝑐/𝜔e (𝑛w = 3) respectively. A Fourier

analysis in time has been performed and the six largest local extrema are shown as encircled

bars extending over a Fourier bin in figure 4.4. It can be seen, that the simulation results are in

excellent agreement with the analytical results. In the Fourier-analysis of the slowest two waves,

the Fourier mode closest to the theoretical wave frequency is always observed. The largest error

measured in this analysis occurs in the whistler branch for 𝑘 ∼ 31𝑐/𝜔i with less than 0.5 per

cent.

Because our Riemann solver is not explicitly informed about MHD wave speeds, for which

the coupling between fluids and electromagnetic fields is especially strong, one could naively

expect large errors or numerical instabilities in the MHD limit. In order to test the fidelity of

the coupling, we set up a wave with a wave speed well separated from the propagation speeds

of the uncoupled fluid Riemann and electromagnetic solvers, i.e. 𝑐s ≪ 𝑣𝜑 = 𝜔/𝑘 ≪ 𝑐. We test

a fast magnetosonic wave (𝑣𝜑 = 0.03728𝑐 in two-fluid vs. 𝑣fast = 0.03703𝑐 in MHD) at very low

𝛽∥ ,i = 𝛽⊥,i = 0.02 (corresponding to an oblique propagation angle of 𝜃 = 45◦ in the 𝐵𝑦−𝐵𝑥 plane).

The parameters of 𝑘, Δ𝑥, etc., are the same as for the parallelly propagating waves in the MHD
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limit in the previous test. While parallelly propagating electrostatic (electromagnetic) waves

can be described using 1D1V (1D2V) models, oblique propagation requires the 1D3V model. In

figure 4.5 the time evolution of two representative quantities along and perpendicular to the box

size direction are shown. The time evolution of the different quantities are taken from the first

cell in the simulation box. The fast magnetosonic wave is captured well, short and long term,

without introducing numerical instabilities at low dissipation. The simulated wave velocity is

0.027 per cent slower than the theoretical prediction. In conclusion, the current-coupled fluid

and electromagnetic solvers numerically approximate the analytical dispersion relation with high

fidelity.

4.3.3. Langmuir wave damping

The electrostatic wave modes are directly subject to linear Landau damping, and thus present

a good test for the heat flux closures. To test this, we initialize standing Langmuir waves in

an electron plasma with immobile ions. We use the same grid layouts as in table 1 of Shalaby

et al. (2017b), supplemented with fluid simulations run at 𝑘/𝑘D ∈ {0.1, 0.2, 0.3} with a resolu-

tion of λ/Δ𝑥 = 68 cells per wavelength and a domain size of length 𝐿 = 10λ wavelengths. The

wavenumber associated with the Debye length is the ratio of plasma frequency to thermal veloc-

ity, i.e. 𝑘D = 𝜔p/𝜃1/2𝑐. The amplitude of the wave is chosen, such that the density fluctuation

to background ratio is fixed to 𝛿𝑛/𝑛0 = 10−3.
In order to find the numerical dispersion relation we perform curve fitting with the Powell

algorithm on the time series for times up to 80𝜔−1p , while the simulations at 𝑘/𝑘D = 0.01 and

0.05 with small damping are analysed up to 240𝜔−1p . The computation of the heat fluxes for

the 𝑅31 and 𝑅32 closures is performed using the FFT-based method. The results are shown

in figure 4.6, where the ideal gas closure and the kinetic results are also depicted for reference

(using 𝛤 = 3).

Generally, it can be seen, that at small scales the closures show larger deviations from each

other, which is also where the fluid description starts breaking down naturally as the particle

distribution is not in equilibrium. At larger scales, the various descriptions of Landau damping

converge and approach zero. The numerical relative error of the fluid code is small and stays

below 0.003 per cent for real frequencies and below 0.02 per cent for decay rates in this setup.

The simulation at 𝑘/𝑘D = 0.05 performs worse than the one at 𝑘/𝑘D = 0.1 due to the significantly

lower resolution. The error in 𝜔 decreases at second-order with increasing spatial resolution, as

shown in Appendix 4.B.

4.3.4. Interacting Alfvén waves

A single Alfvén wave is purely transversal and not directly affected by Landau damping. How-

ever, two or more Alfvén waves drive a longitudinal electrostatic wave, which is susceptible to

Landau damping, see figure 4.7. This leads to particle heating as a result of the collisionless

damping of the Alfvén wave, also known as non-linear Landau damping (Lee and Völk, 1973).

Restricting ourselves to a setup of pairwise interacting waves, we can identify two distinct
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Figure 4.7. Two different Alfvén waves, with magnetic and velocity vectors 𝑩1, 𝑩2 and 𝒘1,𝒘2,
propagate transversally along the 𝑥-axis, where the electromagnetic vectors rotate (counter-
)clockwise around it. Because of their phase difference Δ𝑘𝑥 the overall Lorentz force (𝒘1 +𝒘2) ×
(𝑩1 + 𝑩2) in 𝑥-direction is non-zero, thereby generating the longitudinal wave shown in dark
yellow.

cases. In the first case counter-propagating waves are interacting. In consequence, both waves

damp, lose energy to the longitudinal wave and subsequently heat the particles. In the second

case the waves are co-propagating. Here the wave with the smaller wavelength will not only

transfer energy to the particles, but also to the other Alfvén wave. Lee and Völk (1973) describe

this mechanism in detail and formulate the following coupled set of differential equations while

adopting a measure for the magnetic energy of a wave, 𝐼 𝑗 =
��𝐵 𝑗

��2, where 𝑗 ∈ {1, 2}:

d

dt
𝐼 𝑗 = 2Γ 𝑗 𝐼 𝑗 . (4.58)

The coupling between the differential equations is implicit because the damping coefficient has

the dependency Γ1 ∝ 𝐼2. For the counter-propagating case with an isothermal ion-electron-

plasma in the high beta limit 𝛽i = 2𝜇0𝑛i𝑘B𝑇i/𝐵2
0 = 2 ≫ 1, where 𝐵0 is the background magnetic

field strength, the damping rate Γ 𝑗 is approximately equal for both wave polarizations with

similar frequencies 𝜔 𝑗 and may be approximated by (Holcomb, 2019)

Γ1 = −
√
𝜋

16

𝐼2

𝐵2
0

√︁
𝛽i𝜔1. (4.59)

Note that Γ2 is found by substituting the subscripts 1 → 2 and 2 → 1. This prediction is

using kinetic physics and also includes damping effects due to modulation in 𝐵⊥ (see figure 4.5),

which can electromagnetically heat or even trap particles analogous to Landau damping in the

electrostatic case. This is not captured in the Landau fluid approximation. Therefore, we do not
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Figure 4.8. Time evolution of the magnetic energy of a linearly polarized Alfvén wave in our fluid
simulations with Landau damping. Time is measured in units of the period of the mean wave
frequencies 𝑃𝜔 = 4𝜋(𝜔1 + 𝜔2)−1. Analytical predictions for the damping rate are taken from
Lee and Völk (1973, labelled L&V) and Hollweg (1971). The fluid simulations are presented
with the different heat flux closures 𝑅31 and 𝑅32. We compare the time evolution of the total
magnetic wave energy (top panel) and the magnetic wave energy of the different polarization
states (bottom panel). The RCP wave has a higher phase velocity and loses energy more quickly
in comparison to the LCP wave.

expect our analytical and simulated damping rates to exactly match. However, they provide a

good insight into whether wave modes are qualitatively correctly captured. Another prediction

by Hollweg (1971) uses the fluid picture to derive the amplitude of the secondary, electrostatic

wave, which is then damped according to kinetic prescriptions. This prediction agrees with our

model. However, this analysis does not differentiate different wave types and therefore does not

make individual predictions about interacting waves. In the case considered in the following,

the damping rates are coincidentally similar.

In figure 4.8 we show simulations of a linearly polarized Alfvén wave, which consists of two

counter-propagating waves of equal amplitude. The pure fluid simulations are shown with a box

size of 𝐿 = 252 𝑐/𝜔i and wavelengths λ = 𝐿/3. Right- and left-hand circularly polarized waves

are initialized with phase velocities 𝜔RCP/𝑘 = 0.0342 and 𝜔LCP/𝑘 = 0.0318 with a perpendicular

magnetic field amplitude of 𝛿𝐵 = 0.1 𝐵0. A reduced mass-ratio of 𝑚i/𝑚e = 100 is adapted here.

Our simulations are carried out with the different heat flux closures 𝑅32 and 𝑅31, as shown in

figure 4.8. Both closures reproduce the theoretical predictions quite well. A PIC simulation with

similar parameters has been shown in figure 6.4 by Holcomb (2019), which reproduces half of the

predicted damping rate until 𝑡 ∼ 2𝑃𝜔 and shows a quenching of the damping rate afterwards.

In comparison to kinetic simulations, there is no saturation of the Landau-damping effect in

fluids. This is because the distribution of the fluid particles is always assumed to be roughly
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Maxwellian and resonant particles are not depleted as a function of time. Hence, Landau fluids

are implicitly assumed to have small thermalization timescale in comparison to the damping

timescale. On the other hand, PIC simulations are plagued by Poisson noise and an insufficient

resolution of velocity space might lead to a reduced Landau damping rate.

4.3.5. Gyrotropic CR streaming instability

To test the entire code, we run CR streaming instability simulations, where electron and ion

CRs are modelled with the PIC method and the background electron and ion plasmas are

modelled as fluids. The initial CR momentum distribution for ions (electrons) is assumed to be

a gyrotropic distribution with a non-vanishing (zero) pitch angle, while both CR electrons and

ions are assumed to drift at the same velocity 𝑣dr. Namely, the phase space distributions for the

electron and ion CR species 𝑠 ∈ {e, i} are given by (Shalaby et al., 2021, 2023)

𝑓cr,𝑠 (𝒙, 𝒖) =
𝑛cr,𝑠
2𝜋𝑢⊥

𝛿(𝑢 ∥ − 𝛾𝑠𝑣dr)𝛿(𝑢⊥ − 𝛾𝑠𝑣⊥,𝑠), (4.60)

where 𝛾𝑠 = (1−𝑣2dr/𝑐2−𝑣2⊥,𝑠/𝑐2)−1/2 is the Lorentz factor and 𝑣⊥,𝑠 is the perpendicular component

of the CR velocity. We choose 𝑣⊥,e = 0 and 𝑣⊥,i = 13.1𝑣A, where the ion Alfvén velocity is given

by 𝑣A = 𝐵0/(𝜇0𝑛i𝑚i)1/2 = 0.01𝑐 with the background magnetic field pointing along the spatial

direction, and 𝑣dr of 5𝑣A resulting in a pitch angle for the ions of tan−1(𝑣⊥,i/𝑣dr) = 69.1◦. The

thermal background species are isothermal with the temperatures 𝑘B𝑇/(𝑚𝑐2) = 10−4 and a

mass ratio 𝑚i/𝑚e = 1836. We use a periodic box of length 𝐿𝑥 = 10 971.5 𝑐/𝜔p and resolution

Δ𝑥 = 0.1 𝑐/𝜔p. The CR to background number density ratio 𝛼 = 𝑛cr,i/𝑛i = 0.01.

We run two simulations where the background plasmas are modelled as fluids. The first

one uses an ideal gas closure without accounting for Landau damping (FPIC ideal gas) while

we include the heat flux source term in the second simulation to mimic the impact of linear

Landau damping using the 𝑅31 closure of equation (4.46) (FPIC Landau 𝑅31). We compare these

two fluid-PIC simulations against PIC simulations where both CRs and background plasmas

are modelled as PIC species. The number of CR ions per cell is 𝑁pc = 25 (75) and we call

this simulation “PIC normal (high) 𝑁pc” (Shalaby et al., 2021). Like the “PIC normal 𝑁pc”

simulation, the fluid-PIC simulations also use 25 particles per cell for modelling CRs.

Growth rates of the instability in the linear regime can be computed from the linear cold

background plasma dispersion relation (Holcomb and Spitkovsky, 2019; Shalaby et al., 2022):

0 =1 − 𝑘2𝑐2

𝜔2
+ 𝜔2

i

𝜔
(−𝜔 ±Ωi,0

) + 𝜔2
e

𝜔
(−𝜔 ±Ωe,0

) + 𝛼𝜔2
e

𝛾e𝜔2

(
𝜔 − 𝑘𝑣dr

𝑘𝑣dr − 𝜔 ±Ωe,0

)

+ 𝛼𝜔2
i

𝛾i𝜔2

(
𝜔 − 𝑘𝑣dr

𝑘𝑣dr − 𝜔 ±Ωi
− 𝑣2⊥/𝑐2

(
𝑘2𝑐2 − 𝜔2

)
2 (𝑘𝑣dr − 𝜔 ±Ωi) 2

)
. (4.61)

The non-relativistic and relativistic cyclotron frequencies of each species are given by Ωs,0 =

𝑞𝑠𝐵0/𝑚𝑠 and Ωs = Ωs,0/𝛾s respectively. The wavelength of the most unstable wave mode at the

gyroscale is λg = 2𝜋(𝑣dr − 𝑣A)/Ωi, which is properly captured in our setup using a box size of
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growth phases roughly coincide.
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Figure 4.10. Growth of the perpendicular magnetic field as a function of time at different scales
for a gyrotropic CR streaming setup. We show mean values of the fields that are averaged
over a range of wave vectors 𝑘, as indicated in the legends. The maximum growth rates at the
gyro scale and the intermediate scale are given by Γgyro = 0.498Ωi and Γinter = 2.299Ωi, and
indicated by the grey dotted and dashed lines, respectively. At wavenumbers corresponding to
cascading scales, there is no instability expected according to the linear dispersion relation, and
wave growth solely arises as a result of cascading from other (unstable) scales.
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𝐿𝑥 ∼ 10.15λg.

We show the amplification of the perpendicular magnetic field components as a function of

time for this unstable setup in figure 4.9 for various simulations. It shows that the noise level

of the fluid-PIC simulations is orders of magnitude lower in comparison to the “PIC normal

𝑁pc” resolution, even though the number of CR particles per cell is the same. Especially up to

the saturation point (𝑡Ωi ∼ 10) the fluid-PIC simulation compares more favourably to the PIC

results with lower noise than to the PIC simulation with fewer 𝑁pc.

After saturation, i.e. when Alfvén waves at many scales have built up and their interaction

has created an electrostatic field, these waves start to lose some energy to Landau damping of

the electrostatic waves (see Section 4.3.4). At that point, the Landau closure becomes relevant.

Qualitatively the ideal gas closure has no efficient mechanism for dissipating such electrostatic

waves, resulting in a prolonged growth period leading to saturation at higher values at the

cascading and intermediate scales. Utilization of a Landau closure leads to some damping,

albeit it is quantitatively smaller than in the PIC simulations. While figure 4.6 indicates faster

damping for the Landau closures in comparison to the kinetic results in the electron electrostatic

branches, damping in the ion-acoustic branch might be underestimated in the Landau closures.

We have compared the expected damping between kinetic and Landau fluid in the ion-acoustic

branch for multiple wavenumbers, which confirmed that this is a likely scenario. The accuracy

of this approximation is not the same at all scales, which can be seen in figure 4.10, where the

magnetic field amplifications at various ranges of scales are compared. Especially in the highly

Landau-damped scales, differences between fluid-PIC and PIC emerge. At ion gyro scales, where

most of the magnetic energy is stored at saturation, there is a good agreement over the entire

time period. Exponential growth at every scale is also in good agreement between PIC and

fluid-PIC simulations at all scales. The initial exponential growth can also be compared to

the expected growth rates from the linear dispersion relation. The growth rates of the two

local maxima are plotted alongside the simulated data, one at the intermediate scales around

𝑐𝑘 = 4.91𝜔i and one at the gyro scale at 𝑐𝑘 = 0.38𝜔i. The intermediate scale starts an inverse

cascade to larger scales almost immediately, which causes a reduced growth rate in comparison

to the expectation from linear theory. By contrast, the gyro scale instability follows linear

expectations to very good approximation.

While our fluid-PIC and PIC results are promisingly similar, differences after the satura-

tion level might be attributed to multiple reasons. First, the Landau closures do not exactly

reproduce the correct damping, and therefore will deviate quantitatively. Second, due to the

high electron temperature chosen, relativistic effects might occur in PIC, but not in the non-

relativistic fluid that we assumed for the background plasma. Third, the PIC method might

exhibit more numerical dissipation at the given 𝑁pc in comparison to the fluid method. However,

figure 4.10 seems to indicate numerical convergence at the intermediate and gyro scale.

Even though our simulations were run at unrealistically high 𝛼, the background particles did

not deviate significantly from the Maxwellian distribution at the end of the simulation time. The

pressure anisotropy measured from the PIC thermal particles is below 2%. This indicates, that

an isotropic fluid description for background species is a valid approach for this setup, especially
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Figure 4.11 Strong scaling of the fluid-
PIC code, with and without Fourier-based
Landau closures. Shown is the wall-clock
time needed to simulate 1250 time integra-
tion steps with 180000 cells at 1000 parti-
cles per cell at a varying number of proces-
sors. We show the perfect strong scaling
that is proportional to the inverse num-
ber of processors as the grey dashed line
for reference. For the disabled fluid mod-
ule no background plasma was initialized
and only CRs are initialized, showing that
the bulk of the computational work is per-
formed by the PIC routines.
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for smaller, more realistic values of 𝛼.

4.3.6. Computational scaling

We show the strong scaling properties of our fluid-PIC code in figure 4.11. The tests were

run on Intel Cascade 9242 processors with 96 processors per node at the HLRN Emmy cluster.

Simulations with 3000 processors or more typically cause severe bottlenecks due to the latency

and/or the finite bandwidth of input/ouput operations. For this number of processors the

Fourier-based closures are roughly 20 per cent more costly in comparison to the ideal gas closures.

This is in stark contrast to pure PIC simulations, which scale with the inverse ratio of CR-to-

background density 𝛼−1, consequently the fluid-PIC algorithm leads to a speed-up of a factor of

100 for the simulation performed in Section 4.3.5, which adopted unrealistically large 𝛼.

The bottleneck in the communication procedure of our implementation is currently the “Iall-

toallv” MPI routine, which is not optimized for hierarchical architecture networks as of now.

Further optimizations to this might provide fruitful in increasing the code’s scalability further

if necessary.

The fluid-PIC simulations in Section 4.3.5 used only 𝑁pc = 25 and seem to be sufficiently

resolved. For such a low particle number, the FFT is the bottleneck for scalability because the

overlap of communication and computation is small, i.e. we measure a 260 per cent increase

in time with 2880 processors, while at 192 processors the increase is below 20 per cent. This

indicates that scalability of fluid-only simulations is dominated quickly by the FFT, while the

cost is almost negligible for fluid-PIC simulations. Still, simulations with only a few particles per

cell are computationally inexpensive so that there is no reason for performing such a simulation

on thousands of processors. Furthermore, the example of a mono-energetic cold CR beam is not

very demanding regarding the phase-space resolution. More realistic scenarios include power

law distributions for the CR population as well as larger spatial density inhomogeneities, both

resulting in an increased requirement for the number of particles per cell in order to accurately

resolve the velocity phase-space distribution along the entire spatial domain.
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4.4. Conclusion

In this paper, we introduce a new technique termed fluid-PIC, which uses Maxwell’s equations

to self-consistently couple the PIC method to the fluid equations. This technique is particularly

aimed at simulating energetic particles like CRs interacting with a thermal plasma. This enables

us to resolve effects on electron time and length scales and to emulate Landau damping in the

fluid by incorporating appropriate closures for the divergence of the heat flux. The underlying

building blocks of our implementation are the SHARP 1D3V PIC-code extended by a newly

developed fluid module and the overall algorithm is second-order accurate in space and time.

While an ideal fluid does not exhibit Landau damping, we have implemented two different

Landau fluid closures and studied their performance. Here we summarize our main findings:

• We developed a multi-species fluid code that is coupled to explicit PIC algorithm. In

order to couple multi-fluid equations to Maxwell’s equations, very often implicit and semi-

implicit methods have been used for stability reasons. However, the resulting interdepen-

dency between all fluids complicates their coupling to explicit PIC methods. To ensure

numerical stability, Riemann solvers that provide some numerical diffusion are used. How-

ever, we demonstrate that the level of numerical diffusivity needs to be small enough

so that it does not numerically damp physical small-amplitude plasma waves or quench

plasma instabilities. We confirm the numerical stability and small dissipation of our im-

plementation by employing a diverse range of test setups that test the coupling between

the fluid and electromagnetic modules. Most importantly, our new fluid-PIC code fully

resolves the electron timescales, precluding the need to adopt any simplifying assump-

tions to the electrical field components or to Ohm’s law. This enables the versatility of

our implementation, allowing to instantiate an arbitrary number of species, which can be

modelled individually either as a fluid or as particles.

• We compare various Landau fluid closures and demonstrate that local closures only produce

reliable results close to a characteristic scale while they are prone to fail in multi-scale

problems. By contrast, semi-local spatial filters or global (Fourier-based) methods to

estimate Landau fluid closures produce reliable results for a large range of scales. Most

importantly, we demonstrate that the inclusion of communication intensive (Fourier-based)

fluid closures only have a minimal impact on our code performance (through the usage

of non-blocking background communication) because the majority of the computational

workload is taken up by the much more cost-intensive PIC module. This enables us to

make use of the more accurate Fourier-based Landau closure for the fluid instead of relying

on local approximations only.

• In numerical tests, our implementation of the multi-species fluid module showed excellent

agreement with theoretical frequencies and damping rates of Langmuir waves, oscillation

frequencies of various two fluid wave modes, as well as the non-linear Landau damping of

Alfvén waves.
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• First simulations of the CR streaming instability with our combined fluid-PIC code provide

very good agreement with the results of pure PIC simulations, especially for the growth

rates and saturation levels of the gyro-scale and intermediate-scale instabilities. This

success is achieved at a substantially lower Poisson noise of the background plasma at

the same number of computational CR particles per cell. Most importantly, the numerical

cost of the fluid-PIC simulation is reduced by the CR-to-background number density ratio.

However, we find that the late-time behaviour of the CR streaming instability differs for

our fluid-PIC and PIC simulations. More work is needed to understand the reason for this,

which could be either resulting from (i) numerical damping due to Poisson noise resulting

from the finite number of PIC particles, (ii) missing relativistic (electron) effects in our

non-relativistic fluid dynamics, or (iii) missing physics in our fluid closures that may be

underestimating other relevant collisionless wave damping processes.

Three possible future extensions of the algorithm are left open here. (i) Extending the fluid

formulation with a full pressure tensor, (ii) extending the code to two or three spatial dimen-

sions, and (iii) the inclusion of direct interaction terms between the various fluids to explicitly

incorporate scattering processes such as ion-neutral damping. The novel fluid-PIC framework

greatly extends the computationally limited parameter space accessible to pure PIC methods

whilst not compromising on some of the most important microphysical plasma effects. This

opens up many possibilities for studying CR physics in physically relevant parameter regimes,

such as the growth and saturation of the CR streaming instability in different environments,

and including the effect of partial ionization, ion-neutral damping and inhomogeneities of the

background plasma.
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Appendix

4.A. C-WENO coefficients

We list all coefficients needed to implement the C-WENO reconstruction in this section. Be-

cause our reconstruction procedure is applied component-wise to each of the primitive variables,

we assume for this appendix that we are reconstructing a single quantity 𝑢. The smoothness

indicator for the low-order polynomials are given by (Jiang and Shu, 1996):

IS[𝑃L] = 13

12
(𝑢𝑖−2 − 2𝑢𝑖−1 + 𝑢𝑖)2 + 1

4
(𝑢𝑖−2 − 4𝑢𝑖−1 + 3𝑢𝑖)2 , (4.62)

IS[𝑃C] = 13

12
(𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)2 + 1

4
(𝑢𝑖+1 − 𝑢𝑖−1)2 , (4.63)

IS[𝑃R] = 13

12
(𝑢𝑖 − 2𝑢𝑖+1 + 𝑢𝑖+2)2 + 1

4
(3𝑢𝑖 − 4𝑢𝑖+1 + 𝑢𝑖+2)2 , (4.64)

while four auxiliary variables are defined

𝐷1 =
(6𝑤0 − 1) (𝑢𝑖−2 + 𝑢𝑖+2) − 2 (18𝑤0 − 1) (𝑢𝑖−1 − 𝑢𝑖+1)

48𝑤0
, (4.65)

𝐷2 =
(2𝑤0 − 3) (𝑢𝑖−2 + 𝑢𝑖+2) − 2 (2𝑤0 + 9) 𝑢𝑖 + 12 (𝑢𝑖−1 + 𝑢𝑖+1)

16𝑤0
, (4.66)

𝐷3 =
−𝑢𝑖−2 + 2 (𝑢𝑖−1 − 𝑢𝑖+1) + 𝑢𝑖+2

12𝑤0
, (4.67)

𝐷4 =
𝑢𝑖−2 − 4𝑢𝑖−1 + 6𝑢𝑖 − 4𝑢𝑖+1 + 𝑢𝑖+2

24𝑤0
, (4.68)

to define the smoothness indicator for the 𝑃0 polynomial:

IS[𝑃0] = 𝐷2
1 +

13

3
𝐷2

2 +
3129

80
𝐷2

3 +
87617

140
𝐷2

4 +
1

2
𝐷3𝐷1 + 21

5
𝐷2𝐷4. (4.69)

The overall smoothness indicator is given by (Cravero et al., 2018a):

𝜏 = |IS[𝑃L] − IS[𝑃R] | . (4.70)

The low-order polynomials are evaluated at the left-hand interface of a given cell via:

𝑃L

(
𝑥𝑖− 1

2

)
=

1

6
(−𝑢𝑖−2 + 5𝑢𝑖−1 + 2𝑢𝑖), (4.71)

𝑃C

(
𝑥𝑖− 1

2

)
=

1

6
(2𝑢𝑖−1 + 5𝑢𝑖 − 𝑢𝑖+1), (4.72)

𝑃R

(
𝑥𝑖− 1

2

)
=

1

6
(11𝑢𝑖 − 7𝑢𝑖+1 + 2𝑢𝑖+2), (4.73)
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Figure 4.12 Relative error��(𝜔sim − 𝜔theor)/𝜔theor
�� of the simu-

lated frequency of a Langmuir wave at
𝑘 = 0.05𝑘D. The same simulation setup
is used in figure 4.6, where we use a
resolution of 68 cells per wavelength.
The resolution here is varied between
68/4 = 17 to 68 × 10 cells per wavelength.
The grey line is a reference line for the
second-order scaling of the error.
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while they evaluate to

𝑃L

(
𝑥𝑖+ 12

)
=

1

6
(2𝑢𝑖−2 − 7𝑢𝑖−1 + 11𝑢𝑖), (4.74)

𝑃C

(
𝑥𝑖+ 12

)
=

1

6
(−𝑢𝑖−1 + 5𝑢𝑖 + 2𝑢𝑖+1), (4.75)

𝑃R

(
𝑥𝑖+ 12

)
=

1

6
(2𝑢𝑖 + 5𝑢𝑖+1 − 𝑢𝑖+2), (4.76)

at the right-hand interface. The optimal polynomial evaluates to

𝑃opt

(
𝑥𝑖− 1

2

)
=

1

60
(−3𝑢𝑖−2 + 27𝑢𝑖−1 + 47𝑢𝑖 − 13𝑢𝑖+1 + 7𝑢𝑖+2)

=
1

10

[
3𝑃L

(
𝑥𝑖− 1

2

)
+ 6𝑃C

(
𝑥𝑖− 1

2

)
+ 𝑃R

(
𝑥𝑖− 1

2

)]
, (4.77)

𝑃opt

(
𝑥𝑖+ 12

)
=

1

10

[
𝑃L

(
𝑥𝑖+ 12

)
+ 6𝑃C

(
𝑥𝑖+ 12

)
+ 3𝑃R

(
𝑥𝑖+ 12

)]
, (4.78)

at both interfaces of the cell. The interface values of 𝑃0 can be derived from equation (4.24).

4.B. Convergence order

In order to numerically prove a second order scaling of the plasma frequency for the different

heat flux closures, the linear dispersion of the Langmuir wave setup described in Section 4.3.3

is simulated at different resolutions of λ/Δ𝑥. We concentrate here on the convergence of a wave

with wavenumber 𝑘/𝑘D = 0.05. The results are shown in figure 4.12 and demonstrate a very

good match with the predicted errors assuming a second order convergence. At first sight, the

Landau closures do not seem to scale ideally for higher resolutions. However, this is the result

of physical plasma heating due to wave damping in our setup leading to a non-linear increase in

the expected plasma frequency. The accuracy of the spatial integration of our code is currently

limited by the Yee grid to second order; the time integration of the code is also second order

accurate, which is limited by the operator splitting of the fluid, the Yee grid as well as the

leapfrog integration of the particles.
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4.C. 𝑅31 closure and adiabatic coefficients

While the 𝑅32 closure assumes a fixed adiabatic index 𝛤 of 3, the 𝑅31 closure introduces a

term proportional to 𝑤̂ which alters the pressure equation in such a way that it increases the

effective adiabatic index. To show this, we simplify equation (4.46) by introducing the numerical

coefficients 𝑎𝑤 and 𝑎𝑇 which are defined by comparing

𝑄 = 𝑎𝑤𝑝0𝑤̂ + i sign (𝑘) 𝑎𝑇𝑇. (4.79)

to equation (4.46). Using this ansatz and perturbing the pressure equation (4.32) with 𝑝 =

𝑝0 + 𝑝1, where 𝑝1 is the perturbation to the mean pressure 𝑝0, in the absence of direct Landau

damping (𝑎𝑇 = 0), we have

𝜕𝑝1
𝜕𝑡

= (−𝛤𝑝 − 𝑎𝑤𝑝0) ∇ · 𝒘 − 𝒘 · ∇𝑝 = (−𝛤eff 𝑝0 − 𝛤𝑝1) ∇ · 𝒘 − 𝒘 · ∇𝑝, (4.80)

where 𝛤eff = 𝑎𝑤 + 𝛤 = 4/(4 − 𝜋) ≃ 4.66 can be interpreted as the effective adiabatic index of

the fluid. The evolution of sound waves of a non-electromagnetic fluid in the linear regime

is governed by the linear term 𝛤eff 𝑝0∇ · 𝒘 while the term 𝛤𝑝1∇ · 𝒘 adds non-linearity to this

equation. In the linear approximation, the speed of sound becomes 𝑐s = (𝛤eff 𝑝0/𝑛0)1/2 which

coincides with the typical expression for the sound speed 𝑐s = (𝛤𝑝0/𝑛0)1/2 in the limit of 𝑎𝑤 = 0.

This implies that the speed of sound is increased for the 𝑅31 closure even if direct Landau

damping is not present (𝑎𝑇 = 0). Interestingly, the effective adiabatic index and the speed of

sound are independent of the choice of 𝛤. If direct Landau damping, as described by the 𝑅31

closure, is affecting the fluid (i.e., 𝑎𝑇 ≠ 0), then the effective adiabatic index attains somewhat

smaller values in comparison to 𝑎𝑤 + 𝛤 while the wave frequency becomes complex because of

the associated damping. Both are still independent of the choice of 𝛤.

This has consequences for simulations that model mildly relativistic fluids. If a simulation

setup includes a fluid with an associated speed of sound near the speed of light 𝑐s ≲ 𝑐, then a

simulation that uses this setup with the 𝑅31 closure can become unstable because 𝑐s can now

exceed the speed of light because of the aforementioned reason.
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5. Quasilinear Theory of Cosmic Ray Streaming

The Vlasov equation (2.1) governs the evolution of a particle distribution function 𝑓 = 𝑓 (𝒙, 𝒗, 𝑡)
in phase space. For transparency, we suppress the subscript 𝑠 labeling different species in

this chapter, as all species-specific quantities refer to CRs unless explicitly stated otherwise.

Quasilinear theory (QLT) provides a systematic approximation by decomposing the distribution

function into 𝑓 = 𝑓0+𝛿 𝑓 . 𝑓0 represents a slowly-varying background distribution and 𝛿 𝑓 denotes

a small perturbation (𝛿 𝑓 ≪ 𝑓0) with vanishing mean ⟨𝛿 𝑓 ⟩ = 0, where the mean is obtained

as an average over phase space. In distinction to linear theory, QLT allows the background

distribution to evolve temporally at a slow pace, constrained by 𝜕/𝜕𝑡 𝑓0 ≪ 𝜕/𝜕𝑡 𝛿 𝑓 .
With this approximation, the Vlasov equation is reformulated into the Fokker-Planck equation

(Section 5.1), which describes statistical diffusion processes. Following the historical develop-

ment, we first examine the diffusion rate of CRs interacting with Alfvén waves (Jokipii, 1966) in

Section 5.2, and thereafter derive the growth rates of Alfvén waves for CR streaming (Wentzel,

1968) in Section 5.3. This chapter emphasizes the fundamental approximations in QLT and

their implications for theoretical predictions.

We base the presentation in this chapter on the comprehensive treatments given by Schlickeiser

(2002) and Kulsrud (2004), as well as the useful series of papers by Skilling (1975a,b,c) that

provide a concise overview, and the more recent summaries found in the dissertations by Holcomb

(2019) and Thomas (2022).

5.1. The Fokker-Planck Equation

We reformulate the Vlasov equation (2.1) using the relativistic momentum 𝒑 = 𝛾𝑚𝒗 and the

electromagnetic force 𝑭 = 𝑞(𝑬 + 𝒗 × 𝑩). With ∇𝒑 · 𝑭 = 0, we obtain

d 𝑓

d𝑡
=

𝜕 𝑓

𝜕𝑡
+ 𝒗 · ∇ 𝑓 + ∇𝒑 · (𝑭 𝑓 ) = 0. (5.1)

Analogous to the linearization of 𝑓 , we also decompose the force into 𝑭 = 𝑭0 + 𝛿𝑭, likewise

requiring a vanishing mean ⟨𝑭⟩ = 𝑭0. Averaging (5.1) yields

〈
d 𝑓

d𝑡

〉
=

𝜕 𝑓0
𝜕𝑡
+ 𝒗 · ∇ 𝑓0 + ∇𝒑 · (𝑭0 𝑓0 + ⟨𝛿𝑭𝛿 𝑓 ⟩) = 0. (5.2)

The second-order fluctuation term ⟨𝛿𝑭𝛿 𝑓 ⟩ is the only second-order term we will keep in QLT,
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5. Quasilinear Theory of Cosmic Ray Streaming

as it is the dominant contribution to 𝑓0. The evolution of 𝛿 𝑓 is given by

d

d𝑡

(
𝑓 − 𝑓0

)
=

d𝛿 𝑓

d𝑡
=

𝜕𝛿 𝑓

𝜕𝑡
+ 𝒗 · ∇𝛿 𝑓 + ∇𝒑 · 𝑭0𝛿 𝑓︸                               ︷︷                               ︸

= d𝛿 𝑓
d𝑡

���
adv.

+ ∇𝒑 · 𝛿𝑭 𝑓0︸      ︷︷      ︸
=− d𝛿 𝑓

d𝑡

���
source

+∇𝒑 (𝛿𝑭𝛿 𝑓 − ⟨𝛿𝑭𝛿 𝑓 ⟩)︸                      ︷︷                      ︸
→0

= 0, (5.3)

where the second order fluctuations are negligible with respect to the first-order fluctuations,

and we identify a term describing advection in phase space as well as a source term that does

not explicitly depend on 𝛿 𝑓 .

A formal solution of this equation requires expressing the advection through the use of a

Green’s function (Chavanis, 2008), but we are only interested in the ensemble average over

phase space ⟨𝛿𝑭𝛿 𝑓 ⟩. Thus, we follow a phase space element along its trajectory 𝒙(𝑡) and 𝒗̃(𝑡),
which changes according to the source term

����d𝛿 𝑓 (𝒙, 𝒗, 𝑡)d𝑡

����
adv.

=
d𝛿 𝑓

d𝑡

����
source

= −𝛿𝑭 · ∇𝒑 𝑓0 (5.4)

⇒ 𝛿 𝑓 (𝒙(𝑡), 𝒗̃(𝑡), 𝑡) = −
∫ 𝑡

−∞
𝛿𝑭(𝜏) · ∇𝒑 𝑓0(𝜏)d𝜏 ≈ −

[∫ 𝑡

−∞
𝛿𝑭(𝜏)d𝜏

]
· ∇𝒑 𝑓0. (5.5)

The slow variation of 𝑓0 relative to 𝛿 𝑓 and its induced forces 𝛿𝐹 justifies extracting 𝑓0 from the

integral. Substituting equation (5.5) into equation (5.2) yields the Fokker-Planck equation:

𝜕 𝑓0
𝜕𝑡
+ 𝒗 · ∇ 𝑓0 + 𝑭0 · ∇𝒑 𝑓0 = ∇𝒑 ·

[
D(𝒗) · ∇𝒑 𝑓0

]
, (5.6)

D( 𝒑) =
∫ 𝑡

−∞
⟨𝛿𝑭(𝜏)𝛿𝑭(𝑡)⟩ d𝜏 =

∫ ∞

0
⟨𝛿𝑭(𝜏)𝛿𝑭(0)⟩ d𝜏. (5.7)

We adapted the integration bounds assuming invariance of time translation, such that the dif-

fusion tensor D visibly follows the Green–Kubo relation

D =
∫ ∞

0
d𝜏

〈
𝛿 ¤𝑨(𝜏)𝛿 ¤𝑨(0)〉 (5.8)

for the observable 𝑨 = 𝒑 with ¤𝑨 = d 𝒑/d𝑡 = 𝑭 (Green, 1952; Kubo, 1957). The Fokker-

Planck equation describes diffusive particle transport arising from random force fluctuations.

While these fluctuations preserve the mean particle trajectory, they lead to irreversible entropy

production in the system. This irreversibility presents an apparent paradox, as our starting

point was the time-reversible Vlasov equation (5.1).

To resolve this paradox, we note that we neglected the diffusion term ⟨𝛿𝑭𝛿 𝑓 ⟩ in equation (5.3)

while it was included in equation (5.2). If we had kept the term in both equations, we could

add them to find the original Vlasov equation d/d𝑡 ( 𝑓0 + 𝛿 𝑓 ) = 0. However, we deliberately

discarded this expression in the evolution of 𝛿 𝑓 . Without the knowledge about the evolution

of the microstates of 𝛿 𝑓 , we can not reconstruct previous macrostates of 𝑓0, which is expressed

by the increase in entropy. The irreversibility thus emerges not from any fundamental physical

law, but from our practical choice to describe the system through its statistical properties that
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depend entirely on the autocorrelation of stochastic force perturbations.

5.2. Pitch Angle Diffusion in the Presence of Random Alfvén Waves

The Fokker-Planck equation depends on the diffusion tensor D, which we will derive in the

following. Initially, we assume that CRs are test particles, which scatter off of one preexisting

Alfvén wave. This generalizes with ease to the case of a spectrum of Alfvén waves later on, as

long as all waves have the same velocity.

Coordinates along the Magnetic Field. CRs primarily follow magnetic field lines when their

gyroradius is small compared to the characteristic scale of magnetic field variations. This allows

us to decompose the particle momentum into parallel and perpendicular components relative to

the background magnetic field 𝒃̂ = 𝑩0/𝐵0. We express the plane perpendicular to 𝒃̂ using the

orthogonal unit vectors 𝒄̂ and 𝒅̂

𝒑 = 𝑝 ∥ 𝒃̂ + 𝑝⊥
(
cos(𝜓) 𝒄̂ + sin(𝜓) 𝒅̂

)
where 𝑝 ∥ = 𝑝𝜇 and 𝑝⊥ = 𝑝

√︁
1 − 𝜇2, (5.9)

where 𝜓 represents the azimuthal angle, while the pitch angle cosine is 𝜇 ∈ [−1, 1].

Estimating Wave Forces in Ideal MHD. In the ideal MHD framework, we focus on transverse

Alfvén waves that can directly resonate with collisionless CRs, while the longitudinal waves in

ideal MHD are acoustic waves that interact through collisions.

We already established an expression for 𝛿𝑬 in the linear case, see equation (2.70), which

allowed us to determine the wave frequency 𝜔 = ±𝒌 · 𝒗A, where 𝒗A and 𝒌 are parallel to the mag-

netic field 𝒃̂. We exclude oblique waves from the analysis, as these grow slower than the parallel

waves excited by the streaming instability. Using Faraday’s law (2.3) we find an expression for

the perturbed force of a forward/backward (±𝑣A) moving Alfvén wave that depends only on 𝛿𝑩.

𝛿𝑬 = −(±𝒗A) × 𝛿𝑩, (5.10)

𝛿𝑭 = 𝑞(𝛿𝑬 + 𝒗 × 𝛿𝑩) = 𝑞 (𝒗 ∓ 𝒗A) × 𝛿𝑩. (5.11)

Restricting the Propagation Direction, Transformation into Wave Frame. For analytical

tractability, we consider waves propagating in a single direction. We shift into the wave frame

defining 𝑣′∥ = 𝑣∥ ∓ 𝑣A, while 𝑣′⊥ = 𝑣⊥. Since 𝑣A ≪ 𝑐, we neglect relativistic corrections in this

transformation, assuming 𝛾 ≈ 𝛾′. This choice of frame is advantageous because it conserves CR

energy, d𝑝′/d𝑡 = 0 = 𝛿𝐹′𝑝′ where 𝑝′ = | 𝒑′ |, causing momentum-related diffusion coefficients to

vanish 𝐷 𝑝′𝑝′ = 𝐷 𝑝′𝜇′ = 0. The pitch angle cosine is given by

𝜇′ = (𝑣𝜇 ∓ 𝑣A)/𝑣′ = 𝑝′∥/𝑝′, (5.12)
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and the force acting on the pitch angle is

d𝜇′

d𝑡
= 𝛿𝐹′𝜇′ =

𝑞

𝑝′
[𝒗′ × 𝛿𝑩]𝜇′ =

𝑞

𝑝′
𝑣′⊥ × 𝛿𝐵⊥ sin(𝜑′) = 𝑞

𝛾′𝑚

√︁
1 − 𝜇′2𝛿𝐵⊥ sin(𝜑′), (5.13)

where the gyrophase 𝜑′ = Ω𝑡 − 𝒌 · 𝒙(𝑡) +𝜓′ −𝜓′𝑩 = Ω𝑡 − 𝑘𝜇′𝑣′𝑡 +𝜓′ denotes the angle between the

magnetic field perturbation and the CR velocity vector in the plane perpendicular to 𝑩0. We

calibrated the phase shift of the wave 𝜓′𝑩 to 0 without loss of generality. 𝜑′ does not explicitly

depend on the wave frequency, because the wave is static in the wave frame. However, the wave

appears Doppler-shifted to the moving CRs, introducing a term that depends on 𝑘𝜇′𝑣′𝑡. For

now, we restrict ourselves to a single 𝑘 value, i.e., a single wave mode.

Random Phase approximation. Substituting the force into equation (5.7) gives

𝐷𝜇′𝜇′ =
∫ ∞

0

〈(
𝑞

𝛾′𝑚
𝛿𝐵(𝑘)

√︁
1 − 𝜇′2

)2
sin(Ω𝑡 − 𝑘𝜇′𝑣′𝑡 + 𝜓′) sin(𝜓′)

〉
d𝑡

= Ω2 𝛿𝐵
2

𝐵2
0

(1 − 𝜇′2)
∫ ∞

0

1

2
[cos(Ω𝑡 − 𝑘𝜇′𝑣′𝑡) − ⟨cos(2𝜓′ +Ω𝑡 − 𝑘𝜇′𝑣𝑡)⟩] d𝑡. (5.14)

We utilize the random phase approximation that assumes uniformly distributed 𝜓′, which sets

the ensemble average to 0 in the equation above. The motivation behind this approximation

is, that only 𝑩0 introduces an anisotropy in the physical system and the plane perpendicular

to it should be fully symmetric (also called gyrotropic). However, this assumption becomes

questionable in the presence of Alfvén waves, as the perpendicular magnetic field breaks the

symmetry in this plane. We might estimate the deviation from a fixed phase approximation,

such as 𝜓′ = 0. In this case, the pitch-angle diffusion in Equation (5.14) trivially vanishes. This

can be important for CR streaming, and we will return to this point at the end of this Chapter,

and in Chapter 6.

The random phase approximation also prevents interactions between different wave modes,

thereby excluding important nonlinear phenomena that naturally arise in the MHD fluid equa-

tions. For example, wave-wave coupling enables processes such as wave steepening and shock

formation, which are essential features of plasma dynamics. Maron and Goldreich (2001) (Fig-

ures 18–21) illustrates the impact of the random phase approximation by artificially randomizing

the phases of magnetic field fluctuations in a developed MHD turbulence simulation. Their vi-

sualization effectively demonstrates how the random phase approximation fundamentally alters

the nature of plasma dynamics by eliminating the spatial correlations that give rise to organized

structures. The random phase approximation represents a significant departure from realistic,

nonlinear behavior in plasma systems, potentially limiting the applicability of QLT to linear

rather than quasilinear systems.
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Infinitely Thin Resonance Width. We continue with the QLT derivation, noticing that the

remaining integral of equation (5.14) is the Fourier transform of 1

∫ ∞

0

1

2
cos(Ω𝑡 − 𝑘𝜇′𝑣′)d𝑡 =

∫ ∞

−∞

1

4
cos(Ω𝑡 − 𝑘𝜇′𝑣′)d𝑡 =

∫ ∞

−∞

1

8

(
1 × ei𝑡 (Ω−𝑘𝜇

′𝑣′ ) + 1 × e−i𝑡 (Ω−𝑘𝜇
′𝑣′ )

)
d𝑡

=
𝜋

2
𝛿(Ω − 𝑘𝜇′𝑣′), (5.15)

The resulting delta function implies an exact resonance condition where the Doppler-shifted

wave frequency must precisely match the particle’s gyrofrequency,

𝑘𝜇′𝑣′ = 𝑘 (𝑣∥ ∓ 𝑣A) = Ω. (5.16)

If we limit ourselves to one propagation direction of CRs in the wave frame (without loss of

generality), this equation can only be fulfilled if 𝑘 > 0. In the background frame, particles

can resonate with both, forward and backward propagating waves (traveling at ±𝑣A) with their

respective conditions 𝑣∥ > ∓𝑣A. These constraints emerge in ideal MHD and will be refined in

Section 7.1.1.

The result in equation (5.15) is peculiar, as the particles have to exactly fulfill the resonance.

As the pitch angle cosine approaches 𝜇′ → 0 corresponding to a pitch angle of 𝜃′ = 90°, the

resonance condition becomes impossible to satisfy. This creates an unphysical scenario where

cosmic rays that scatter to 90° pitch angles become permanently trapped at this angle, unable

to continue their diffusive evolution; thus, coining the term 90° problem. This artificial behavior

arises from the 𝛿-shaped resonance in QLT. As shown by Shalchi et al. (2004), more sophisticated

nonlinear theories predict a broadened resonance condition that better reflects physical reality.

We continue by incorporating equation (5.15) into equation (5.14), which gives the diffusion

coefficient

𝐷𝜇′𝜇′ =
1 − 𝜇′2

2
𝜋Ω2 𝛿𝐵

2(𝑘)
𝐵2
0

𝛿(Ω − 𝑘𝜇′𝑣′)
︸                           ︷︷                           ︸

=d𝜈′
QLT

/
d𝑘

. (5.17)

Here we identify d𝜈′QLT/d𝑘 as the scattering rate associated with a single wave according to

QLT.

Spectrum of Waves Propagating in Identical Direction. Expanding this to a spectrum of

waves with different modes 𝑘, the scattering rate is expressed as

𝜈′QLT =
∫ ∞

−∞

d𝜈′QLT

d𝑘
d𝑘 = 𝜋Ω

Ω
|𝜇′𝑣′ |︸︷︷︸
=𝑘res

𝛿𝐵2(𝑘res)
𝐵2
0

, (5.18)

where 𝑘res represents the wave number 𝑘 fulfilling the resonance condition (5.16). The scattering

rate thus is proportional to the intensity of waves 𝛿𝐵2(𝑘res)
/
𝐵2
0 at resonance with the particle,

but it is independent of all other magnetic fluctuations.
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We will not derive the diffusion coefficient for 𝜓′, which we assumed to be uniformly dis-

tributed, implying 𝜕 𝑓 /𝜕𝜓′ = 0 and therefore the absence of diffusion along this coordinate.

The diffusion coefficients are often given in the background frame, which we derive using the

coordinate transform

𝑣2 = (𝑣′∥ ± 𝑣A)2 + 𝑣′2⊥ = 𝑣′2 ± 2𝜇′𝑣′𝑣A + 𝑣2A, (5.19)

⇒ 2𝑣
d𝑣
d𝑡

= (2𝑣′ ± 2𝜇′𝑣A) d𝑣′

d𝑡︸︷︷︸
=0

±2𝑣A𝑣
′d𝜇

′

d𝑡
, (5.20)

⇔ d𝑝

d𝑡
= 𝛿𝐹𝑝 = (±𝑣A) 𝑝

′

𝑣
𝛿𝐹′𝜇′ . (5.21)

This transformation generates non-zero momentum diffusion in the background frame. We have

already computed 𝐷𝜇′𝜇′ from 𝛿𝐹′𝜇′ and thus can express the other diffusion coefficients using

the appropriate prefactors

𝐷𝜇′𝜇′ =
1 − 𝜇′2

2
𝜋Ω𝑘res

𝛿𝐵2(𝑘res)
𝐵2
0

, (5.22)

𝐷𝜇′𝑝 = 𝑝′
±𝑣A
𝑣

𝐷𝜇′𝜇′ , (5.23)

𝐷 𝑝𝑝 =
(
𝑝′
𝑣A
𝑣

)2
𝐷𝜇′𝜇′ . (5.24)

Up to leading order in these equations, we can approximate 𝜇′ ≈ 𝜇 and 𝑝′ ≈ 𝑝, leading

to the diffusion coefficients often quoted in the literature (more accurate transformations are

given by Skilling, 1975a). The momentum diffusion in the background frame, while non-zero,

remains small and arises purely from the frame transformation. In the wave frame, cosmic

rays undergo pure pitch-angle diffusion and are constrained to move along surfaces of constant

particle energy. This results in the cosmic ray population’s mean velocity approaching the wave

velocity ±𝑣A. This outcome relies on dispersionless waves propagating at constant speeds in

identical directions. It turns out that CRs can significantly influence the wave velocity, leading

to nonlinear oscillations as we will explore in Section 6.5.3.

The presence of both forward- and backward-propagating waves substantially enhances mo-

mentum diffusion (compare Figures 7 and 11 of Schlickeiser, 1989; Shevchenko et al., 2002).

This bidirectional wave field allows particles to scatter between two reference frames, thereby

breaking the confinement to surfaces of constant particle energy in one wave frame, and leading

to more complex steady-state distributions.

5.3. Linear Stability Analysis

Our previous analysis treated cosmic rays as test particles interacting with a pre-existing spec-

trum of Alfvén waves, explaining their tendency to approach the Alfvén velocity. However, these

waves are not merely coincidental - they arise through the streaming instability. In this section,

we are not primarily concerned with the growth rates themselves, but will derive them in order
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to understand the physical basis of the instability.

The linear stability analysis parallels our earlier wave analysis from Chapter 2, but here we

expect a complex valued wave frequency 𝜔 = 𝜔𝑟 + iΓ, where Γ represents the instability growth

rate. We restrict ourselves to growth rates that are small compared to the wave frequency, i.e.,

Γ ≪ 𝜔𝑟 , even though this assumption is not generally valid (Section 7.2.3). Building on the

thermal species’ transverse conductivity tensor from equation (2.70), we now incorporate CR

contributions through the dispersion relation

𝑘2𝑐2

𝜔2
= 𝜒bg + 𝜒cr = 𝑐2

𝑣2
A

+ 𝜒cr (5.25)

⇒ 𝑘2𝑐2 − 𝑐2

𝑣2
A

[
𝜔2
𝑟 + 2iΓ𝜔𝑟 +��Γ2

]
= 𝜔2𝜒cr (5.26)

⇒ Γ ≈ −𝜔
2

𝑣2A
𝑐2

Im(𝜒cr). (5.27)

To determine the transverse CR susceptibility 𝜒cr, wed the linear relationship between current

and electric field, 𝑱 = i𝜔𝜖0𝜒cr𝑬. The perturbed current density in QLT is

𝛿𝑱 =
∫

d3𝑝𝑞𝒗𝛿 𝑓 =
∫

d3𝑝𝑞𝒗
∫ 0

−∞
d𝑡𝛿𝑭 · ∇𝒑 𝑓0(𝒙(𝑡), 𝒑(𝑡), 𝑡). (5.28)

Working in the wave frame with the random phase approximation, such that 𝐹′𝑝′ = 𝐹′𝜓′ = 0, we

obtain

𝛿𝑱′ =
∫

d3𝑝′𝑞𝒗′
∫ 0

−∞
d𝑡𝛿𝐹′

𝜕 𝑓0
𝜕𝜇′

=
∫

d3𝑝′𝑞𝒗′
∫ 0

−∞
d𝑡𝑞

𝑣′

𝑝′
√︁

1 − 𝜇′2 sin(𝜑′)𝛿𝐵⊥ 𝜕 𝑓0
𝜕𝜇′

. (5.29)

The velocity vector 𝒗′ in Cartesian coordinates is given as 𝒗′ =
(
𝑣′∥ , 𝑣′⊥ sin(𝜓′), 𝑣′⊥ cos(𝜓′)

)
with 𝑣′⊥ = (1 − 𝜇′2)1/2𝑣′. For analytical convenience, we introduce the complex perpendicular

velocity vector 𝒗′⊥ = (𝑣′𝑦 + i𝑣′𝑧)𝑒⊥ = 𝑣′⊥ exp(i𝜓′) 𝒆̂⊥. Applying the random phase approximation

and integrating over 𝜓′ and 𝑡 as in equations (5.14)–(5.15), we obtain

∫ ∞

0
d𝑡

∫
d𝜓′𝒗′⊥ sin(𝜑′)𝛿𝐵⊥ =

∫ ∞

0
d𝑡

∫
d𝜓′

i

2

(
−ei𝜑

′ + e−i𝜑
′ )
𝑣′⊥ei𝜓

′
𝒆̂⊥𝛿𝐵⊥

=
∫ ∞

0
d𝑡

i

2

©­­­­
«
−

∫
d𝜓′ei2𝜓

′

︸        ︷︷        ︸
=0

ei(Ω𝑡−𝑘𝜇
′𝑣′𝑡−𝜓′𝑩 ) +

∫
d𝜓′e−i(Ω𝑡−𝑘𝜇

′𝑣′𝑡−𝜓′𝑩 )
ª®®®®
¬
𝑣′⊥𝛿𝐵⊥ 𝒆̂⊥

=
∫ ∞

0
d𝑡

∫
d𝜓′

1

2
e−i𝑡 (Ω−𝑘𝜇

′𝑣′ )𝑣′⊥
(
i𝛿𝐵⊥ei𝜓

′
𝑩 𝒆̂⊥

)
=

∫
d𝜓′

𝜋

2
𝛿(Ω − 𝑘𝜇′𝑣′)𝑣′⊥

(
i𝛿𝑩′⊥

)
. (5.30)

We leave the last 𝜓′ integral unevaluated to shorten the notation in the following, and introduce

the complex perpendicular magnetic field perturbation 𝛿𝑩′⊥ defined analogous to 𝒗′⊥. The parallel

component depends on 𝑣∥ sin(𝜑′), which averages to 0 assuming random phases. Thus, we

focus on the perpendicular component of the current perturbation 𝛿𝑱, retrieved by substituting
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equation (5.30) into (equation 5.29)

𝛿𝑱′⊥ =
(
i𝛿𝑩′⊥

) 𝜋
2

∫
d3𝑝′𝑞2

𝑣′2

𝑝′
(
1 − 𝜇′2

)
𝛿(Ω − 𝑘𝜇′𝑣′) 𝜕 𝑓0

𝜕𝜇′
. (5.31)

In ideal MHD the electric field 𝑬 is always perpendicular to 𝑩. We express i𝛿𝑩′⊥ = −𝛿𝑬⊥/(±𝑣A)
using Faraday’s law in order to transform back to the background frame to stay consistent with

equation (5.27). This allows us to readily identify the linear relationship between 𝑱⊥ and 𝑬⊥.

Using 𝑱⊥ = i𝜔𝜖0𝜒cr𝑬⊥, we retrieve the growth rate of the transverse Alfvén waves:

Γ = 𝑞2
𝜋

2𝜖0

±𝑣A
𝑐

∫
d3𝑝′

𝑣′2

𝑝′𝑐

(
1 − 𝜇′2

)
2

𝛿 (Ω − 𝑘𝜇′𝑣′) 𝜕 𝑓0
𝜕𝜇′

, (5.32)

which is the instability growth rate according to QLT, which depends primarily on the pitch angle

gradient of 𝑓 in the wave frame. A direct comparison to 𝜒cr derived without QLT (equation 2.22)

reveals that the physical resonance is significantly broader, effectively replacing 𝛿(Ω−𝑘𝜇′𝑣′) with

1/(Ω − 𝑘𝜇′𝑣′).
While further analytical simplification of equation (5.32) is possible, practical evaluation of

growth rates is best accomplished through numerical tools, such as the Mathematica script

provided by Holcomb (2019) or the more general dispersion relation solvers by Verscharen et

al. (2018) and Xie (2019). Thus, instead of pursuing further analytical simplifications, let us

examine the physical implications of these results.

Physical Interpretation. We find that pitch-angle diffusion (equation 5.7) and instability growth

(equation 5.32) depend on 𝜕 𝑓0/𝜕𝜇′ . Thus both processes can occur unless the distribution has

uniformly distributed pitch angles, which would correspond to a CR mean velocity of ±𝑣A.

Furthermore, the resonance conditions for diffusion and wave growth are identical, ensuring

that instability growth is always accompanied by diffusion. As Alfvén waves at 𝑘res become

large enough, the resulting diffusion flattens the distribution function at resonant pitch angles

( 𝜕 𝑓0/𝜕𝜇′ |𝜇′res → 0), naturally limiting instability growth at that wave number in the nonlinear

regime. However, we previously found that the pitch angle diffusion coefficient can vanish if

we assume fixed phases with 𝜓 = 0 (all CRs align with the magnetic field) instead of random

phases, see equation (5.14). An important question is thus, whether we obtain random or fixed

phases in the nonlinear regime.

Equation (5.31) establishes that the instability grows as a result of the perpendicular CR

current that is excited in response to the magnetic field perturbation. The physical origin

of this effect is not at all obvious from the dispersion relation. We know, that 𝛿𝑱⊥ has to

form a wave-like structure that is coherent with the perturbation 𝑩⊥ introduced by the Alfvén

waves (as it grows in response to the perturbation). Thus, we can infer that it must happen

through a consolidation or bunching of the CRs’ gyrophases 𝜑, i.e. CRs have to align their

(mean) perpendicular velocity with the magnetic perturbation up to a phase shift. This already

answers whether such a bunching process must happen to grow the instability, but it does not

specify the phase shift in the nonlinear regime. Notably, this bunching results from linear forces
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acting on the CRs’ pitch angle cosine 𝜇, not through a direct influence on the polar angle

𝜓. We will develop a physical intuition for this effect in the following Chapter 6, detailing the

mechanism for driving gyroresonant instabilities and its implications for the nonlinear, saturated

regime without the MHD and QLT approximations. We will conclude that the instability growth

mechanism bunches CRs’ gyrophases with a small phase shift relative to the wave perturbation,

which thereby heavily reduces diffusion and enables other saturation mechanisms.
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6. Growth and Saturation Mechanism of the

Gyroresonant Instabilities

This chapter is based on the paper by Lemmerz, R.; Shalaby, M.; Thomas, T.; Pfrommer, C.:

Accepted for publication in The Astrophysical Journal under doi:10.3847/1538-4357/ad8eb3.

Cosmic ray (CR) feedback is critical for galaxy formation as CRs drive galactic winds,

regularize star formation in galaxies, and escape from active galactic nuclei to heat the

cooling cores of galaxy clusters. The feedback strength of CRs depends on their coupling

to the background plasma and, as such, on the effective CR transport speed. Tradi-

tionally, this has been hypothesized to depend on the balance between the wave growth

of CR-driven instabilities and their damping. Here, we study the physics of CR-driven

instabilities from first principles, starting from a gyrotropic distribution of CR ions

that stream along a background magnetic field. We develop a theory of the underlying

processes that organize the particles’ orbits and in particular their gyrophases, which

provides an intuitive physical picture of (i) wave growth as the CR gyrophases start to

bunch up lopsidedly towards the local wave magnetic field, (ii) instability saturation as

a result of CRs overtaking the wave and damping its amplitude without isotropizing

CRs in the wave frame, and (iii) CR back-reaction onto the unstable plasma waves as

the CR gyrophases follow a pendulum motion around the wave magnetic field. Using

our new fluid-particle-in-cell code fluid-SHARP, we validate our theory on the evolution

and excitation of individual unstable modes, such as forward and backward propagat-

ing Alfvén and whistler waves. We show that these kinetic simulations support our

theoretical considerations, thus potentially foreshadowing a revision of the theory of

CR transport in galaxies and galaxy clusters.
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6.1. Introduction

6.1.1. Astrophysical motivation

Stellar feedback drives galactic winds, which is crucial for understanding the underpinnings of

galaxy formation, most prominently the declining star conversion efficiency of gas from the scale

of Milky Way-sized galaxies towards dwarf galaxies (Moster et al., 2013). Several physical pro-

cesses have been suggested to drive those winds: energy and momentum deposition by exploding

supernovae can self-regulate the interstellar medium and drive galactic fountains (Girichidis et

al., 2016, 2018; Simpson et al., 2016, 2023; Kim and Ostriker, 2018). Ultraviolet radiation emit-

ted by young stellar populations photoionizes the molecular environment and pushes on the gas

via radiation pressure, which opens up channels in the optically thick, gas-enshrouding regions,

enabling star formation. Radiation can then escape along those channels without providing

much feedback (Rosdahl et al., 2015).

By contrast, cosmic rays (CRs) have long cooling times and dominate the pressure budget

in the nearby interstellar medium (Boulares and Cox, 1990), making a strong case for efficient

feedback (see Ruszkowski and Pfrommer, 2023, for a review). CRs stream and diffuse through

the galaxy to build up an extended pressure distribution from the disk into the galactic halo.

As they are advected by galactic outflows above the disk, CRs gradually deposit momentum

and energy via wave-particle interactions far from their generation sites, thereby re-energizing

and further accelerating galactic winds that can reach out to the virial radius of galactic halos

(Uhlig et al., 2012; Booth et al., 2013; Salem and Bryan, 2014; Pakmor et al., 2016; Ruszkowski

et al., 2017b; Thomas et al., 2023). This may even cause CRs to dominate the pressure budget

in the inner circumgalactic medium, which promotes the formation of a colder and smoother

thermal plasma while increasing the amount of mass and energy expelled from the galaxies into

their circumgalactic medium (Rathjen et al., 2021; Thomas et al., 2024; Sike et al., 2024). This

has dramatic consequences for the transport of angular momentum of the accreting gas onto the

galactic disks and the spatial extents of stellar disks that form from the gaseous phase (Buck

et al., 2020; Ji et al., 2020). In the cores of galaxy clusters, CRs escape the lobes of AGN jets,

and can heat the surrounding cooling plasma to mitigate the cooling-induced collapse and star

formation (Guo and Oh, 2008; Pfrommer, 2013; Ruszkowski et al., 2017a; Jacob and Pfrommer,

2017b,a).

6.1.2. CR transport and CR-driven instabilities

To make progress, it is crucial to better understand the physics of CR transport in galaxies and

clusters. The CR streaming instability (Rowlands et al., 1966; Lerche, 1967; Wentzel, 1968)

plays a critical role in the interaction between CRs and their surrounding medium. In the

classic picture of CR self-confinement in the galaxy set forth by Kulsrud and Pearce (1969), this

instability hinges on the interplay between CRs driving resonant waves and scattering off of these

self-induced waves. The framework of quasi-linear theory has been foundational in estimating

the CR scattering frequency (Jokipii, 1966; Wentzel, 1969; Skilling, 1971; Schlickeiser and Miller,
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1998). Quasi-linear theory of CR transport is a perturbation method concerned with updating

a slowly evolving ground state (the gyrotropic CR distribution) around a first-order fluctuation

(the perturbed CR distribution). In order to simplify statistical analysis, the random phase

approximation is typically employed, which assumes that the rotational phases of the waves and

particles are random and uncorrelated.

The scattering frequency of CRs is closely linked to the intensity of the saturated waves,

and thus the saturation mechanism is of particular importance. The amplitude of the resonant

waves can saturate as a result of the competition between wave growth and damping processes.

Viable damping processes are thought to include wave damping through ion-neutral collisions

(Kulsrud and Pearce, 1969; Zweibel and Shull, 1982; Ivlev et al., 2018), collisionless nonlinear

Landau damping (Kulsrud and Pearce, 1969; Völk and Cesarsky, 1982) and turbulent damping

(Eastman et al., 1981; Lazarian, 2016; Lazarian and Xu, 2022; Cerri, 2024). Provided there is

sufficient wave energy available, CR scatter frequently and isotropize in the wave frame and,

thus, stream at the wave velocity.

Alternatively, CRs are thought to align their gyrophases with the self-induced wave (Brice,

1963; Sudan and Ott, 1971). Observational evidence of gyrophase bunching has been docu-

mented for suprathermal ions upstream of the Earth’s bow shock (Gurgiolo et al., 1981; Eastman

et al., 1981; Thomsen et al., 1985). This phenomenon has been attributed to the gyroresonant

instability inducing forward-moving Alfvén waves (Greenstadt et al., 1982; Winske and Leroy,

1984; Hoshino and Terasawa, 1985; Zachary et al., 1989). These observations have been suc-

cessfully replicated using simplified models involving field-aligned ion beams. However, cosmic

rays are more likely to interact with magnetic field lines at arbitrary angles, which can effec-

tively initiate gyroresonant instabilities across various scales. In this paper we further explore

the mechanism of gyrophase bunching and show, that it is an integral part of explaining the

instability growth and saturation of the different CR gyroresonant instabilities for single-mode

excitation.

Computational advances in recent years have allowed studying the gyroresonant CR streaming

instability using particle-in-cell (PIC) simulations (Holcomb and Spitkovsky, 2019; Shalaby et

al., 2021), which follow the orbits of macro particles representing individual particles of a plasma,

which are subject to electromagnetic fields that obey Maxwell’s equations. Alternatively, this

can be done with hybrid-PIC (Weidl et al., 2019b; Haggerty et al., 2019; Schroer et al., 2022)

methods, in which the electron timescale is integrated out, representing the electron population

as an adiabatic fluid while treating the ions as macro particles within the kinetic PIC model.

The large scale separation inherent to the streaming problem has also led to the development of

new methods, such as improved hybrid-PIC methods (Burrows et al., 2014; Amano, 2018) and

MHD-PIC (Zachary and Cohen, 1986; Lucek and Bell, 2000; Reville and Bell, 2012; Bai et al.,

2015, 2019; Mignone et al., 2018; Lebiga et al., 2018; van Marle et al., 2018; Sun and Bai, 2023),

which has been used to study ion-neutral damping (Plotnikov et al., 2021; Bai, 2022; Bambic

et al., 2021). MHD-PIC describes the thermal plasma using the magnetohydrodynamic (MHD)

approximation while capturing the kinetic physics of the CRs using the PIC method. This

method has been commonly applied together with a scheme to randomize the CR gyrophases,
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Figure 6.1. CRs drifting and gyrating along the magnetic field can resonantly excite unstable
wave modes at different scales. The top panel shows the rotation rate of the CR ion cyclotron
mode (red color) as well as the normal modes in the background (black), ranging from forward
moving Alfvén waves to whistlers to electron cyclotron waves on the upper branch and on the
bottom branch, they change character from backward moving Alfvén waves to ion cyclotron
waves on small scales. The bottom panel shows the instability growth rate of the CR ion cy-
clotron wave that is maximized at the points of resonances with the background modes. We
obtain the solutions by solving the dispersion relation of drifting CRs in a high-density back-
ground (equation 6.42) and evaluate them in the background rest frame. Solely for visualization
purposes, we choose parameters that yield comparable grow rates and only a small scale sepa-
ration: 𝑛cr = 10−6𝑛bg, 𝑣A = 10−4𝑐, 𝑚𝑟 = 36, 𝑣⊥ = 𝑣A, and 𝑣dr = 2.7𝑣A < 𝑣A

√
𝑚𝑟/2. This choice

fulfills the condition for exciting the intermediate-scale instability (Shalaby et al., 2023).

which enforces the random-phase approximation inherent to the theoretical framework of quasi-

linear theory, for details see (Bai et al., 2019).

More recently, the fluid-PIC method (Lemmerz et al., 2024b) has been devised, which treats

the thermal plasma in the warm plasma approximation. This approach allows investigating

physics at scales smaller than the ion skin-depth, where the MHD approximation breaks down,

and in particular, it correctly captures gyroresonant streaming instabilities on these scales.

Moreover, this method allows emulating nonlinear Landau damping.
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6.1.3. Idea to elucidate the physics of CR-driven instabilities

In this work, we attempt to gain an intuitive picture of the growth and saturation of the resonant

CR streaming instability by adopting an approach of isolating the physics of wave growth and

wave interactions when studying the saturation behavior. To this end, we run three different

simulations, each tailored to excite a single unstable mode at different spatial scales in the back-

ground with the goal to understand the essential physics of the instabilities. Specifically, CRs

drifting at a mean velocity 𝑣dr along the mean magnetic field of strength 𝐵0 can excite forward

propagating Alfvén waves (denoted by F), backward propagating Alfvén waves (denoted by B),

both via the CR streaming instability (Kulsrud and Pearce, 1969), and whistler and electron

cyclotron waves via the intermediate-scale instability (denoted by IW and IE, and collectively

denoted by I, see Shalaby et al., 2021, 2023). This is visualized in Figure 6.1, which shows the

wave rotation rates (top) and growth rates of unstable modes that result from the interaction of

CR and background modes (bottom). CRs transfer energy fastest to the background modes at

those wave numbers 𝑘 at which the rotation rate of the CR ion cyclotron mode, 𝜔 = 𝑘𝑣dr − Ωcr

matches the rotation rate of the background modes, which get modified as a result of the CR-

wave interaction (as we will show later in this work). Here, Ωcr = 𝑞𝐵0/(𝛾𝑚) is the relativistic

gyro frequency of a particle of charge 𝑞, mass 𝑚, and Lorentz factor 𝛾. While this explains

the possibility for instability growth in the linear regime, here we will specifically address the

processes causing linear growth and nonlinear saturation of single wave modes.

In future work, we will study extensions of this picture arising from 1. interacting wave

modes, 2. varying CR-to-background density ratios and Alfvén speeds, and 3. varying the CR

energy and pitch angle distributions, where the pitch angle is measured between an individual

CR momentum and the mean magnetic field. We acknowledge that our idealized approach of

restricting ourselves to the growth of single wave modes does not necessarily capture the full

physics of power-law distributed CRs. However, this enables us to grasp the underlying physics

in this simple setup and to construct an analytic model for the feedback loop, which explains

the wave growth, as well as the overall interplay of CRs with waves at the resonance.

The paper is structured as follows. We first introduce our numerical method and setup

in Section 6.2, which is followed by theoretical considerations about CR particle orbits and

derivation of the pendulum equation for CR-wave interactions in Section 6.3. We explain the

microphysical mechanism for the linear wave growth in Section 6.4, while the nonlinear phase

of the instabilities and wave saturation is discussed in Section 6.5. We conclude our paper

in Section 6.6. We discuss our conventions and compare them to other popular choices in

Appendix 6.A. To address the accuracy of our method, we compare a fluid-PIC and a PIC

simulation of the intermediate-scale instability in Appendix 6.B and discuss the solution to the

dispersion relation in the background frame in Appendix 6.D. Throughout this work, we use the

SI system of units.
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6.2. Numerical Method and Setup

In this section, we describe the numerical method and clarify our specific setups and choices for

our parameters.

6.2.1. Method

We use the fluid-PIC code fluid-SHARP (Shalaby et al., 2017b, 2021; Lemmerz et al., 2024b),

which is an advantageous method for simulating energetic particle transport in a much denser

background plasma in comparison to the pure PIC method. The fluid-PIC method combines a

hydrodynamic solver, which allows us to treat background particles as a computationally cheap

fluid, with a PIC solver that integrates the individual orbits of the energetic particles in the

fully kinetic picture. Both components, the background and energetic particles are coupled via

Maxwell’s equations. Here, we give a brief overview of this method.

The CR particles are treated by the SHARP PIC code (Shalaby et al., 2017b, 2021), which

advances macroparticles that represent CR ions and electrons in one spatial and three velocity

dimensions. Moving charges generate currents that induce electromagnetic fields according to

Maxwell’s equations. These electromagnetic fluctuations create Lorentz forces that accelerate

charged particles, altering the charge distribution and currents. The PIC method evolves this

system by numerically iterating this loop on a fraction of the electron plasma timescale, thereby

self-consistently taking micro-instabilities driven by these particles into account.

The more numerous background particles would result in a large computational cost if they

were to be treated kinetically, but because they are not driving the instability, they can instead

be approximated as a thermal fluid composed of electrons and protons. This corresponds to the

“warm plasma” model, according to the definition found in many textbooks such as Stix (1992),

which naturally captures Alfvén, whistler, electron cyclotron, ion cyclotron and Langmuir and

ion acoustic waves. As such, CRs can resonate with the waves carried by the fluids and thus

trigger resonant streaming instabilities. For convenience, we quote the fluid equations solved by

the fluid-SHARP code (Lemmerz et al., 2024b), which are the fluid continuity, momentum, and

energy conservation equations:

𝜕𝑛

𝜕𝑡
+ ∇ · (𝑛𝒘) = 0, (6.1)

𝜕𝑛𝒘
𝜕𝑡
+ ∇ · [𝑝1 + 𝑛𝒘𝒘] = 𝑞

𝑚
𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) , (6.2)

𝜕𝜖

𝜕𝑡
+ ∇ · [(𝑝 + 𝜖)𝒘] + 1

𝛤 − 1
∇ · 𝑸 =

𝑞

𝑚
𝒘 · 𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) . (6.3)

The number density is denoted by 𝑛, the bulk velocity is 𝒘 and the energy and pressure are 𝜖

and 𝑝, respectively. These are evolved for both ion and electron background species separately,

which are each characterized by the charge 𝑞 and particle mass 𝑚. The dyadic product of the

two vectors is 𝒘𝒘 and the unit matrix is denoted by 1, indicating an isotropic pressure tensor

of the background species. The energy density and pressure of thermal protons and electrons
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are separably coupled via the adiabatic index 𝛤ad = 5/3:

𝜖 =
𝑝

𝛤ad − 1
+ 1

2
𝑛𝒘 · 𝒘. (6.4)

Maxwell’s equations are used to solve for the electric and magnetic fields 𝑬 and 𝑩, which exert

a force on the fluid that is captured by the source term,

𝑺𝑤 (𝑛,𝒘, 𝑩, 𝑬) = 𝑛 (𝑬 + 𝒘 × 𝑩) . (6.5)

Even though collisionless physics is not modeled from first principles in this fluid model, it

can still be approximated by using appropriate closures. We use a Landau closure, which models

electrostatic Landau damping through a non-local approximation of the heat flux 𝑸. For further

details, we refer the reader to Lemmerz et al. (2024b) or the notes by Hunana et al. (2019b).

As we will demonstrate below, in our setups we intentionally only excite individual wave modes,

implying that the interference between different modes, and thus the impact of nonlinear Landau

damping, is minimized.

6.2.2. Setup

CRs are naturally distributed over space, velocity and time, 𝑓 (𝒙, 𝒗, 𝑡). In the following, we

work in a coordinate system where one of the coordinate axes is aligned with the direction of

the static background magnetic field 𝑩0. Particles that are gyrating because of this magnetic

field have rotating velocity components that lie in the plane perpendicular to 𝑩0. We denote

the rotation phase of this gyration by 𝜓. The full particle velocity vector 𝒗 further depends on

the velocity magnitude 𝑣 and the pitch angle 𝜃. These definitions completely describe our phase

space geometry, which we depicted in Figure 6.2. The presence of the background magnetic field

naturally introduces a decomposition of the velocity vector into a parallel component 𝑣∥ = 𝜇𝑣

and a perpendicular component 𝑣⊥ =
√︁

1 − 𝜇2𝑣.

We investigate the interplay of charged particles with transverse waves, which have magnetic

field components that also rotate in the plane perpendicular to the background magnetic field 𝑩0.

With no additional information about the distribution of particles in the perpendicular plane, it

is customary to assume that all particles are distributed uniformly in rotation angle 𝜓 because in

the absence of any transverse magnetic fields there is no distinct direction in the perpendicular

plane which could function as a reference direction. We will show that the presence of transverse

magnetic fields introduce such a reference direction which ultimately break symmetry and cause

anisotropic CR distributions in 𝜓.

Here, we perform three simulations, showcasing instabilities at different scales. We study the

action of the gyroresonant instability (Kulsrud and Pearce, 1969), which excites Alfvén waves

at scales larger than the ion skin depth. This instability is further separated into a forward

(F) and backward (B) moving wave, as illustrated in Figure 6.1. In addition, we will study the

intermediate-scale instability (I, Shalaby et al., 2021, 2023), which excites whistler waves (IW)

and electron cyclotron waves (IE) below the scale of the ion skin depth (see Figure 6.1).

105



6. Growth and Saturation Mechanism of the Gyroresonant Instabilities

Because we are interested in studying single-mode wave growth for these instabilities, it is

convenient to use the simplifying setup of a cold, gyrotropic ring distribution of CRs, which is

visualized in Figure 6.2, and given by

𝑓cr =
𝑛cr

2𝜋𝑢⊥
𝛿(𝑢 ∥ − 𝑢dr,0)𝛿(𝑢⊥ − 𝑢⊥,0). (6.6)

Here, 𝒖 = 𝛾𝒗 is the relativistic particle velocity, where the Lorentz factor is 𝛾 =
[
1 − (𝒗/𝑐)2]−1/2

and 𝛿 is the Dirac delta function. For this distribution, the pitch angle cosine 𝜇 = 𝑣∥/𝑣 is

fixed, while all angles 𝜓 around the parallel axis are equally likely. The advantage of this setup

is, that it exhibits well-defined peaks in the linear dispersion relation while the physically and

observationally motivated power-law distributions excite waves over a large spectrum of wave

numbers 𝑘, making it more difficult to understand the underlying physics.

To enforce the quasi-neutrality assumption

𝜃

𝜓

𝒗 ∥ ∥ 𝑩0

𝒗⊥,1

𝒗⊥,2

𝑣A

𝑣

𝑣⊥

𝑣dr

1
Figure 6.2. Visualization of the geometry of our
initial CR distribution in velocity space. Two
angles are defined, the pitch-angle cos(𝜃) =
𝜇 = 𝑣∥/𝑣 and the rotational angle tan(𝜓) =
(𝑣⊥,2/𝑣⊥,1). The CR ion initial conditions are
shown as a red circle, with fixed 𝜃 and uniformly
distributed 𝜓. A neutralizing CR electron beam
at the same 𝑣dr but with 𝑣⊥ = 0 is initialized as
well.

and to suppress initial parallel currents, we

initialize a parallel electron beam with the

same 𝑣dr as the CR ion beam. The existence

of this electron beam is motivated numeri-

cally and not observationally, which is why we

compare an alternative setup of drifting ther-

mal electrons for the neutralizing electrons in

Appendix 6.C. As expected, both methods

lead to identical results (after the initial lin-

ear growth phase, where we observe a small

difference in the noise properties of both se-

tups).

This research has been triggered after ob-

serving a strong correlation between the ro-

tational phases of the CR velocity and the

wave magnetic field in the fluid-PIC and PIC

streaming simulations presented in Lemmerz

et al. (2024b), which also excite a broad spec-

trum of waves over time. In those simulations,

the box is large enough so that CRs cannot

travel across it before the instabilities satu-

rate, suggesting that the finite box size has

no influence on the simulated instability and is rooted in plasma physical processes. In the

following, we design a simulation suite in which we limit the simulation box size and vary the

simulation parameters so that the individual CR-driven instabilities are excited separately. This

helps us to analyze the instabilities and their saturation in isolation and to understand the

emerging phase correlation as it is observed in our previous simulation.

The numerical resolution samples the dispersion relation at discrete values in 𝑘-space (Shalaby
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et al., 2017a). As such, a wave mode can only be resolved in simulations with periodic boxes

if the absolute value of the wave vector 𝒌 is an exact multiple of 2𝜋/𝑳, where 𝑳 is the length

vector of the box. Typically, the goal is to reproduce the analytical dispersion relation by

densely sampling the modes in 𝑘-space, i.e., using large box sizes 𝐿. In this paper, however,

we concentrate our attention on the growth of only one resonant wave vector 𝒌res and try to

prevent the growth of neighboring 𝒌, which would complicate the interpretation of the results

because of possible mode-mode interactions masking the growth and saturation of an individual

mode. In order to achieve this, we choose the one-dimensional box length to be only a few times

the scale of interest. That is 𝐿𝑥 = 2 × 2𝜋/𝑘res for the B simulation, where 𝑘res is the scale of the

largest growing wave mode of interest, while the simulation box is 3 times (F) and 6 (I) times

the scale 2𝜋/𝑘res in the other simulations. In the I simulation, this restriction also eliminates

the growth of gyroscale instabilities, as Alfvén modes larger than the ion skin depth 𝑑𝑖 = 𝑐/𝜔𝑖

remain unresolved. Here, the plasma frequency for a species 𝑠 is given by 𝜔𝑠 = (𝑞2𝑠𝑛𝑠/𝑚𝑠𝜖0)1/2
and the overall plasma frequency is 𝜔𝑝 = (∑𝑠 𝜔

2
𝑠)1/2.

On the other hand, the intermediate-scale instability is eliminated from the F&B simulations

by violating its growth condition, 𝑣dr/𝑣A <
√
𝑚𝑟/2 (Shalaby et al., 2021), where the mass ratio

is given by 𝑚𝑟 ≡ 𝑚𝑖/𝑚𝑒 and the Alfvén velocity is 𝑣A = 𝐵0/(𝜇0𝑛i𝑚i)1/2. Thus, we performed this

simulation with an unrealistic mass ratio of 𝑚𝑟 = 100 and 𝑣dr/𝑣A = 10, such that the intermediate

scale would only be triggered if the particles scatter below 𝑣dr/𝑣A <
√

100/2 = 5, which is not

seen in our setup. The I simulation uses a lower 𝑣dr/𝑣A = 5 and a realistic mass ratio for two

reasons: First, together with an increase of the mass ratio, this ensures that the growth condition

is satisfied. Second, this choice moves the unstable peak of IE to a smaller scale of 𝑘𝑑𝑖 = 362.32,

increasing the scale separation and causing it to saturate at a smaller level, as demonstrated

in Sec. 6.5.2. The I simulation is designed to best sample the peak of the whistler regime, IW,

while suppressing the impact of IE.

As 𝑣dr is different between the F&B and I simulations, the remaining 𝑣⊥ parameter is chosen,

such that the total velocity, 𝑣 = |𝒗 | ≈ 0.14𝑐, for CR ions is initially approximately the same in

every simulation. In the following, we describe the common setup for all simulations while the

different parameters are given in Table 6.2.2. All simulations use 75 particles per cell for CRs per

species, at a density contrast of 𝑛cr/𝑛bg = 10−4. In order to enforce charge density and current

neutrality, we initialize and evolve an electron beam without a perpendicular velocity but with

the same drift velocity as the CR proton beam. The background temperature for the isotropic

fluid species is set to 𝑘B𝑇𝑠/(𝑚𝑖𝑐
2) = 10−4, where 𝑘B is the Boltzmann constant and the different

background species are denoted by the variable 𝑠 ∈ (𝑖, 𝑒). All electromagnetic fields and fluid

velocities are initialized as 0, except for the background magnetic field 𝐵0, which is along the

box direction, 𝑥. This implies, that the background is at rest and the CRs and waves move in

the simulation frame. We set the (ion) Alfvén velocity 𝑣A = 𝐵0/√𝜇0𝑚𝑖𝑛𝑖 = 0.01𝑐. Note that our

three simulations differ in the assumed ion-to-electron mass ratio 𝑚𝑟 = 𝑚𝑖/𝑚𝑒 and hence, also

in the implicit ion cyclotron frequency of Ω𝑖 = 𝑞𝐵0/𝑚𝑖, which serves as a physically motivated

timescale. The cell size resolves the plasma skin depth, Δ𝑥 = 0.1𝑐/𝜔𝑝, and the time step size

resolves the speed of light 𝑐 = 1, Δ𝑡 = 0.4Δ𝑥/𝑐. We adopt periodic boundary conditions in our
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6. Growth and Saturation Mechanism of the Gyroresonant Instabilities

Table 6.1. Simulation parameters including the initial CR drift and perpendicular velocities,
as well as the scale and growth rate of the associated dominant resonant wave mode.

Simulation 𝐿𝑥 𝑚𝑖/𝑚𝑒 𝑣dr 𝑣⊥ 𝑘res Γres[
𝑐/𝜔𝑝

] [𝑣A] [𝑣A]
[
𝑑−1𝑖

] [Ω𝑖]

B 1333.3 100 10 10 0.094 0.0579
F 1735.7 100 10 10 0.109 0.0640
I 346.8 1836 5 13.1 4.656 0.4880

simulation domain.

We compare our results for the standard PIC and fluid-PIC methods using the parameters of

simulation I in Appendix 6.B. This shows that the fluid-PIC method provides similar results at

a significantly reduced computational cost.

6.3. Particle motions and wave growth

The interaction of the CRs with the waves can be trivially broken down into two parts: the

impact of the CRs on the wave and the impact of the wave on the CRs. In this section, we

introduce the momentum equation to understand the former, as well as an evolution equation

for the trajectories of individual CRs to understand the latter. Here, we will treat the CRs

in isolation without accounting for the effect of waves on the CRs and discuss the resulting

shortcomings. These equations serve then as a building block for later sections, which focus

primarily on the wave-particle interaction.

6.3.1. Momentum balance

The intensity of the growing waves is one of the most relevant quantity pertaining to CR stream-

ing, and momentum conservation can be used to derive a useful equation relating it to changes

in the CR velocity. The CR momentum of an individual particle along the background mag-

netic field is 𝑝𝑥 = 𝛾𝑚cr𝑣𝑥, thus the CR momentum density can be expressed as Pcr = 𝑛cr𝛾𝑚𝑖𝑣dr,

where 𝛾 is a relativistic prefactor obtained from averaging the CR distribution (Bai et al., 2019).

Because of momentum conservation, changes in the parallel momentum density of CRs corre-

spond to changes in the parallel momentum density of the excited electromagnetic waves. The

momentum density of the plasma waves is assumed to be stored predominantly in the move-

ment of background particles, which needs to be taken into account. As the Poynting vector

characterizes electromagnetic momentum without matter, which is negligible compared to the

momentum carried by the background particles, it is appropriate to use the Minkowski mo-

mentum 𝑺M ≡ 𝑫 × 𝑩 instead, which additionally accounts for the inertia in the wave-carrying

background particles. The electric displacement field is 𝑫 = 𝜖bg𝑬 and 𝜖bg denotes the electric

permittivity of the background plasma (Chapter 2 of Groot and Suttorp 1972, Kemp 2011). Be-

cause 𝑣wave = (𝜖bg𝜇bg)−1/2 and the magnetic susceptibility of the background plasma is almost
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Figure 6.3 Top two panels: evolution of 𝐵⊥ over
time for the different simulations in units of 1/Ω𝑖

of the corresponding simulation and in units of
the respective inverse growth rate 1/Γ. The lat-
ter units are useful for comparing the simula-
tions at specific times 𝑡1–5. Third panel: energy
lost by the CRs to the unstable modes as a func-
tion of time, which corresponds to the energy
gain of the modes (see the second panel) up to
numerical precision. Bottom panel: evolution
of 𝑣dr over time, with one standard deviation of
𝑣dr indicating the spread around the mean value.
Note that the mean velocity of CRs does not ap-
proach 𝑣A as it is usually assumed but saturates
at a much larger value.

the same as in vacuum, 𝜇bg ≈ 𝜇0, the parallel momentum of the wave is

𝑆M =
𝑬 × 𝑩

𝜇0𝑣2wave

����
∥
=

𝐵2
⊥

𝜇0𝑣wave
. (6.7)

The last equality assumes a single, transverse wave mode traveling at a phase speed of 𝑣wave, for

which 𝑬⊥ = −i𝑣wave𝑩⊥ follows according to Faraday’s law. Evaluating the momentum balance

of CR momentum lost by driving the unstable wave yields

Δ𝑆M + ΔPcr = 0 ⇒ Δ𝐵2
⊥

𝐵2
0

= − 𝑛cr
𝑛bg

𝑣waveΔ (𝛾𝑣dr)
𝑣2
A

, (6.8)

where Δ𝑥 = 𝑥(𝑏) − 𝑥(𝑎) is the difference between the times 𝑎 and 𝑏.1 This means, that the wave

intensity mostly depends on the difference in drift velocity of the CR population.

1For forward moving waves (𝑣wave > 0), CRs slow down in the linear regime so that Δ𝑣dr < 0.
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6. Growth and Saturation Mechanism of the Gyroresonant Instabilities

The magnetic field growth for both simulations is shown in Figure 6.3. We note, that the

saturation levels of the F&B and I simulations do not necessarily coincide if we were to use the

same initial CR pitch angle. We postpone a systematic study of this topic to future work.

Although instability growth at the gyroscale takes significantly longer in physical time units,

all simulations exhibit a similar behavior when the time is scaled to their maximum growth

rates Γ. We mark 5 times of interest: first, the initialization, second, the phase of linear growth,

third, the transition to the nonlinear regime, fourth, the time of saturation, and fifth, the

rebound point, to which we will refer throughout the paper. The momentum equation (6.8)

states that changes in the drift velocity affect the magnetic field strength as Δ𝐵2
⊥ ∝ −𝑣waveΔ𝑣dr.

The simulation B is qualitatively different from the other simulations as the CRs are accelerated

rather than slowed down in the parallel direction. This is expected from the momentum equation

because 𝑣wave is negative and as energy is transferred to these backward-propagating modes, 𝑣dr
needs to increase over time. However, we can infer from the third panel of Figure 6.3 that CRs

still lose energy, which stems from a decrease in perpendicular velocity 𝑣⊥.

The wave velocity of the fastest driven modes of the intermediate-scale instability is faster

than that driven by the gyroscale instabilities, i.e., 𝑣wave,I ≈ 6.52𝑣wave,F. Thus, it generates a

larger magnetic field with the same Δ𝑣dr as can be inferred from equation (6.8). As a result, the

pitch angle scattering of the intermediate-scale instability is significantly reduced because similar

levels of magnetic field amplification are reached in all simulations. This effect is captured in the

standard deviation around the drift velocity, which serves as a measure of this pitch angle scat-

tering and can be compared between the simulations (see the bottom panel of Figure 6.3). After

saturation, all simulations show oscillatory periods of wave growth and decay (corresponding

to particle acceleration and deceleration) with a similar periodicity. This oscillatory behavior

in the wave intensity is observed in most single wave mode instabilities, e.g., the electrostatic

two-beam instability (Morse and Nielson, 1969; Shoucri, 1979), and beam-plasma instabilities

(Shalaby et al., 2018, 2020).

6.3.2. Evolution of the instability without CR back-reaction: the pendulum

equation

While the evolution of 𝑣dr plays a crucial role, it is instructive to study the angle 𝜓cr = arg(𝒗⊥) of

the particles (cf. Figure 6.2). For all perpendicular vectors, we use the shorthand complex nota-

tion 𝒗⊥ = (𝑣𝑦 + i 𝑣𝑧)𝒆⊥, where 𝑦 and 𝑧 span the plane perpendicular to 𝑩0, see also Appendix 6.A

for our notation convention. It simply follows, that 𝑣⊥ = |𝒗⊥ |.
To motivate the following calculations, we first analyze the simulated structure of the dis-

tribution of rotation angles of CR ions, 𝜓cr, as well as 𝜓𝐵 = arg 𝑩⊥. These are shown as CR

distributions and lines, respectively, as a function of 𝑥 position and rotation angles in Figure 6.4.

The magnetic field is initially randomly aligned but the dominant wave mode is quickly excited

and structures the perpendicular magnetic perturbation at 𝑡2. The CR distribution is still mostly

uniform, but changes significantly before entering the nonlinear stage at 𝑡3. At every position 𝑥,

the CRs have now bunched up to a narrow distribution in 𝜓cr so that we obtain a broader helical
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Figure 6.4. We show the CR distribution as a function of local rotational phase of CR ions, 𝜓cr,
and the position along the initial magnetic field, 𝑥, at the five different times 𝑡1–5 as defined in
Figure 6.3. These are overplotted with white lines, indicating the local rotation phase of the
perturbed magnetic field vector, 𝜓𝐵. The angle 𝜓𝐵 of the magnetic wave follows a straight, white
line with slope of −𝑘, according to 𝜓𝐵 ∝ arg{𝐵⊥ exp[i (𝜔𝑡𝑖 − 𝑘𝑥)]} = −𝑘𝑥, except at initialization
where it is random. An illustration of the particle resonance is shown in Figure 6.5. The average
CR density is 𝑛cr(𝑥) = 10−4𝑛bg, which is retrieved when contracting the 𝜓 dimension in this plot.
We only show a part of the simulation boxes so that 2 cycles of the dominant wave mode are
captured in all plots. Clearly, the action of the instability causes the CR phases to bunch up
close to the local phase of the excited magnetic field.

structure that winds around the mean magnetic field 𝐵0. This bunching has also been observed

in other simulations (Hoshino and Terasawa, 1985; Zachary et al., 1989). The CR helix has

exactly the same winding angle in comparison to the helix delineated by the unstable magnetic

wave. However, the helical structures of the CRs and the magnetic wave are offset with respect

to one another: we obtain 𝜓cr > 𝜓𝐵 for forward moving waves (Gary et al., 1986a) and 𝜓cr < 𝜓𝐵

for backward moving waves. At saturation, the spread in the 𝜓cr angles is again larger so that

they form a broader strip that extends over the magnetic field line. At 𝑡5 a “ghost” strip can be

seen, which is the result of particles escaping from the main strip to the left and to the right,

overlapping in between. Even though the spatial and temporal scales are very different, the

F and I simulations share the same features.

When comparing the distributions of CRs and magnetic perturbations in Figure 6.4, it is

obvious that 𝜓cr and 𝜓𝐵 are closely related. It is therefore useful to define the gyrophase

𝜑(𝑥, 𝑡) = 𝜓cr(𝑡) − 𝜓𝐵 (𝑥, 𝑡) = arg(𝒗⊥𝑩†⊥) (𝑥, 𝑡) (6.9)
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Figure 6.5. The left panel shows a zoom into the middle panel (F at 𝑡3) of Figure 6.4. The
electromagnetic wave is shown to have a slope of −𝑘res𝑥, while two particles are indicated at
a relative angle 𝜑. The right panel shows an illustration of the left panel, which explains the
conundrum that the CRs follow a helical structure that has the same winding angle as the
magnetic field of the unstable wave, despite the fact that they are much faster than the wave.
We show the wave and the dense, narrow CR band while we omit their periodic wrapping for
clarity. According to the resonance condition, a CR particle (red) not only moves at 𝑣dr but
also rotates at its gyrofrequency Ωcr. Thus, the particles distributed along the helix at 𝑡 (solid
red) are mapped onto a somewhat displaced helix at 𝑡 + Δ𝑡 (dashed red). By contrast, the wave
moves by 𝑣waveΔ𝑡 along 𝑥, but its movement can alternatively be understood as a rotation of 𝜔Δ𝑡
along 𝜓, thus mapping the wave from 𝑡 (solid black) to 𝑡 +Δ𝑡 (dashed black). This explains how
the CR helix maintains the same distance from that of the magnetic field vector of the wave.

for each particle. Here, † denotes the complex conjugate. Essentially, the particle angle 𝜑 is now

defined in a helical coordinate system, where the helix is given by the electromagnetic wave.

We can estimate the gyration period as 𝜓cr(𝑡) ∼ −Ωcr𝑡 (where Ωcr = Ω𝑖/𝛾) while the moving

particles experience the magnetic field at 𝑩(𝑥0 + 𝑣dr𝑡, 𝑡). Given that arg(𝑩⊥) (𝑥, 𝑡) = −𝑘𝑥 +𝜔𝑡 (for

parallel waves with phase speed 𝑣wave and rotation rate 𝜔 = 𝑘𝑣wave), it follows trivially that the

gyrophase changes over time as

𝜑(𝑥, 𝑡) = 𝑘 (𝑥0 + 𝑣dr𝑡) − 𝜔𝑡 −Ωcr𝑡

= 𝜑0 + [𝑘 (𝑣dr − 𝑣wave) −Ωcr]𝑡, (6.10)

where we chose 𝜑0 = 𝑘𝑥0. Enforcing 𝜑(𝑥, 𝑡) to be approximately constant over time, we recover

the resonance condition (Kulsrud, 2004)

R(𝜔, 𝑘) ≡ 𝑘 (𝑣dr − 𝑣wave) −Ωcr

= 𝑘 𝑣dr − 𝜔 −Ωcr = 0. (6.11)

From this condition, one can find multiple waves with a given 𝜔(𝑘) and 𝑘, which are resonant.

Furthermore, equation (6.11) implies that resonant particles move in lockstep along the wave.

This picture is geometrically illustrated in Figure 6.5. Interestingly, even though single particles

move significantly faster than the wave, collectively they experience the wave as a static elec-

tromagnetic field. Thus, the CRs form a coherent, wave-like structure, which moves at velocity
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𝑣dr − Ωcr/𝑘. This excites waves, which move at the same velocity. Furthermore, if 𝑣dr < Ωcr/𝑘,

then the CR band moves backwards and can excite backward moving waves.

We can expand on the previously described simplified picture, which only included the force

exerted by 𝐵0 on a particle. In the following, we compute a single particle trajectory that results

from the full Lorentz force introduced by the wave.

In the wave frame, we can neglect contributions to the electric field so that the CR particle

energy and its relativistic Lorentz factor 𝛾′ remain constant. For this reason, we adopt this frame

in order to derive the time evolution of the particle velocity with 𝑣′∥ = 𝑣∥ − 𝑣wave and 𝑣′⊥ = 𝑣⊥
(Lutomirski and Sudan, 1966, see also the non-relativistic results by Roberts and Buchsbaum,

1964; Bell, 1965):
𝜕 [𝛾′𝑣′∥ (𝑡)]

𝜕𝑡
=

𝑞

𝑚
[𝒗′ × 𝑩] ∥ = −

𝑞

𝑚
𝐵⊥(𝑡)𝑣′⊥(𝑡) sin (𝜑(𝑡)) . (6.12)

An equation for the perpendicular particle velocity can be easily derived by using the energy

conservation in the wave frame, that is 𝜕𝑡𝛾
′ = 0 implying that 𝜕𝑡 (𝑣′2⊥ + 𝑣′2∥ ) = 0. Thus,

𝜕 [𝛾′𝑣′⊥(𝑡)]
𝜕𝑡

= −
𝛾′𝑣′∥
𝑣′⊥

𝜕𝑣′∥
𝜕𝑡

=
𝑞

𝑚
𝐵⊥(𝑡)𝑣′∥ (𝑡) sin (𝜑(𝑡)) , (6.13)

which is a projection of the Lorentz force term 𝒗′∥ × 𝑩⊥𝑞/𝑚. Specifically, if 𝒗⊥ points along this

Lorentz force term (i.e., for 𝜑 = 𝜋/2) only the magnitude of 𝒗⊥ is increased without changing

its direction. In the case of 𝒗⊥ ∥ 𝑩⊥ (i.e., for 𝜑 = 0), the length of 𝒗⊥ remains invariant, but

the Lorentz force on the particle causes it to change its rotational velocity. Assuming that both

𝜓cr and 𝜓𝐵 are measured from the same starting point in the plane perpendicular to 𝑩0, the

remaining part of the Lorentz force term 𝒗′∥×𝑩⊥𝑞/𝑚 is projected onto 𝜓. Evaluating the angular

velocity of the particle in the lab frame yields

𝜕𝜓cr

𝜕𝑡
= −Ωcr + 𝑞

𝛾𝑚
𝑣′∥𝐵⊥(𝑡)

cos(𝜑(𝑡))
𝑣⊥(𝑡) . (6.14)

In equation (6.10), we assumed 𝑣∥ = 𝑣dr at all times. However, the 𝑥-coordinate of an individual

particle is correctly defined as 𝑥(𝑡) =
∫ 𝑡

0
𝑣∥ (𝜏)d𝜏. Taking the time derivative of 𝜑 (as defined in

equation 6.9) and eliminating 𝑥(𝑡) and 𝜕𝑡𝜓cr (equation 6.14) yields

𝜕𝜑

𝜕𝑡
= −Ωcr + 𝑘𝑣′∥ (𝑡) +

𝑞

𝛾𝑚
𝑣′∥ (𝑡)𝐵⊥(𝑡)

cos(𝜑(𝑡))
𝑣′⊥(𝑡)

. (6.15)

Due to the different time dependent quantities, this equation is complicated to solve. As be-

fore, 𝜕𝜑/𝜕𝑡 = 0 can be interpreted as a resonance condition. However, we further make the

approximation that 𝑞𝐵⊥/(𝛾𝑚𝑣⊥) ≪ 𝑘, which is equivalent to 𝐵⊥/𝐵0 ≪ 𝑘𝑑𝑖 × 𝑣⊥/𝑣A, and drop the

last term of equation (6.15) from subsequent calculations. Thus, we retrieve the same resonance

condition as before, but now in the comoving wave frame. With this simplification, the evolution
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of 𝜑 can be further investigated, yielding

𝜑(𝑡) = −Ωcr𝑡 + 𝑘
∫ 𝑡

0
𝑣′∥ (𝜏)d𝜏 + 𝜑0, (6.16)

𝜕𝜑(𝑡)
𝜕𝑡

= −Ωcr + 𝑘𝑣′∥ (𝑡), (6.17)

𝜕2𝜑(𝑡)
𝜕𝑡2

= −𝑘 𝑞𝐵⊥(𝑡)𝑣⊥(𝑡)
𝛾′𝑚

sin 𝜑(𝑡). (6.18)

This shows that in the limit of weak perturbations, the angle 𝜑 between 𝒗⊥ and 𝑩⊥ obeys a

pendulum equation. We also see that the parallel Lorentz force from equation (6.12) multiplied

with the wavenumber 𝑘 can be interpreted as a pseudo torque on 𝜑. This is because the gyrophase

is defined in relation to a helical coordinate system spanned by 𝑩⊥. This pseudo torque is absent

from the evolution of 𝜓cr, which is defined in an inertial frame.

While equation (6.17) shows that resonantly driven waves will not change the relative phase

between the CR and the local wave magnetic field (i.e., up to zeroth order in 𝐵⊥/𝐵0) if the

parallel velocity stays constant. Up to first order, these waves exert a parallel force given in

equation (6.12) such that the particles accelerate towards locations where 𝜑(𝑡) is close to zero.

The set of equations (6.12)–(6.15) allows for two constants of motions (Bell, 1965): energy

conservation in the waveframe, described by 𝑣′2∥ + 𝑣′2⊥ = const., and an invariant connecting linear

and angular momentum in the helical symmetry,

𝐶 |𝐵⊥=const. =
1

2
𝑣2⊥ +

Ωcr

𝑘

[
𝑣∥ + 𝑣⊥

𝐵⊥
𝐵0

cos(𝜑)
]
. (6.19)

An extended derivation of the non-relativistic case by Otani (1988) shows that energy conser-

vation in the wave frame holds only if the wave velocity and intensity are constant. Notably,

changes in the wave velocity are not necessarily small in the non-linear regime, as will be dis-

cussed in Section 6.5.3, and the wave amplitude grows during the linear phase of the instability.

On the other hand, changes to the CRs’ Lorentz factor 𝛾 are small, extending the applicability

of the results to the relativistic case. The complete constant of motion 𝐶 is (Otani, 1988)

𝐶 =
1

2
𝑣2⊥ +

Ωcr

𝑘

[
𝑣∥ + 𝑣⊥

𝐵⊥
𝐵0

cos(𝜑)
]
+ 1

2

(
Ωcr

𝑘

𝐵⊥
𝐵0

)2
, (6.20)

which includes one additional term in comparison to equation (6.19). For 𝐵⊥ ≪ 𝐵0, this can be

simplified to
𝜕𝑣⊥
𝜕𝑡
≈ −Ωcr/𝑘

𝑣⊥

𝜕𝑣∥
𝜕𝑡

. (6.21)

The presupposed energy conservation in a constant wave frame implies that,

𝜕𝑣⊥
𝜕𝑡

= − (𝑣∥ − 𝑣wave)
𝑣⊥

𝜕𝑣∥
𝜕𝑡

, (6.22)

which is equivalent to equation (6.21) only when the resonance condition 𝑣∥ − 𝑣wave = Ωcr/𝑘 is

satisfied. Although we focus on the gyroresonant case with low wave intensity, where energy-
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Figure 6.6 We show three CR particles at the
same position 𝑥 and perpendicular velocity 𝑣⊥,
which are in resonance with an electromag-
netic wave (shown in blue), i.e., the angle 𝜑
changes only slowly over time. While the parti-
cles share a spatial position 𝑥, they experience
different parallel forces, which depend on their
gyrophases 𝜑. The Lorentz forces on the parti-
cles act to minimize 𝜑, meaning that the parti-
cles align themselves with the local orientation
of the magnetic field vector. This is achieved by
means of accelerating (decelerating) the particle
in the parallel direction, which in turn increases
(decreases) the Doppler-shifted gyration of the
particles, 𝑘𝑣𝑥 − Ωcr, and thus acts as a pseudo-
force in the 𝜑 direction. The particle’s trajec-
tory can be shown to follow a pendulum motion
in a potential well that is centered on the local
orientation of the perpendicular magnetic field.

conserving scattering is a reasonable approximation, caution is needed as particles move further

away from resonance (Section 6.5.1).

6.3.3. Discussing the pendulum picture of CR motions

Figure 6.6 visualizes the parallel Lorentz force acting on three test particles at the same position

𝑥 in the gray plane. Particles aligned with the perpendicular magnetic field do not experience a

parallel Lorentz force while the unaligned particles are moving parallel to 𝐵0 towards the closest

field line. As they move along 𝑥, their relative gyrophase 𝜑 = 𝜓cr − 𝜓𝐵 is minimized – while this

movement along 𝑥 has no influence on the evolution of the angle 𝜓cr (equation 6.14) in the static

coordinate system.

Interestingly, equation (6.18) is equivalent to the pendulum differential equations, and thus,

the CRs are trapped in potential wells that are centered on the local direction of the magnetic

perturbation, around which they oscillate. This potential well not only depends on the local

magnetic field strength 𝐵⊥, but also on the gyrophase of each particle. This differentiates it

from a magnetic bottle, which is localized in space. Note that the adiabatic invariance of 𝛾𝜇B,

where the magnetic moment is 𝜇𝐵 = 𝛾𝑚𝑣2⊥/(2𝐵), cannot be used to understand resonant CRs

because there is no effective cyclotron motion with respect to the electromagnetic wave, which

precludes the applicability of the adiabatic assumption.

If the wave amplitude saturated its growth and if changes in the CR velocities are small, the

change in the pitch angle of a CR due to an interaction with a wave packet can be approximated

(Chapter 12.2. of Kulsrud, 2004). Starting from a gyrotropic distribution of CRs, we are faced

with another problem: the time average of the term
∫ 𝜋

−𝜋 sin(𝜑(𝑡))d𝜑 ∼ 0 averages out, which
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is equivalent to stating that ¤𝜑 averages out for the CR population. This in turn means that

Δ𝑣dr(𝑡) ∼ 0. Thus, no wave growth would occur according to the momentum equation (6.8),

contrary to what our simulations and solutions of the dispersion relation show.

Using the linear dispersion relation, Gary et al. (1986b) show that the average 𝜑 angle of

the resonant instabilities is non-vanishing, a necessity to transfer energy gyroresonantly from

the CRs to the waves (Gary et al., 1986a). In the following we explore, how this misalignment

between the CR perpendicular velocity 𝑣⊥ and their local magnetic field vector 𝐵⊥ arises and is

sustained over the growth period of the instability.

One possible approach for explaining the surplus in transferred momentum assumes the inter-

action with individual wave packets of length 𝑑. The particles transit through the wave packet

in time 𝑡𝑑 = 𝑑/𝑣∥ . Hence, particles that are accelerated in 𝑣∥ traverse the wave packet faster

than decelerated particles. The change in momentum depends on the force times the time spent

interacting with the wave packet, Δ𝑝 ∥ = 𝐹∥ 𝑡𝑑. Because 𝑡𝑑 is smaller for fast particles, a stochastic

imbalance between accelerated and decelerated particles occurs. If, for a forward moving wave,

the faster CRs take momentum from the wave and the slower CRs give momentum to the wave,

there would be a surplus of momentum given to the wave because of the longer interaction times

of slower particles, which would amplify the wave. This mechanism is similar to second order

Fermi acceleration, however particles are not reflected but pass through the wave packet and

thus lose energy (Fermi, 1949; Tsytovich, 1985).

However, this argument would also predict a damping of backward moving waves, for which

slower CRs take momentum from the wave and faster CRs give momentum to the wave, even

though the unstable waves are still expected to grow. Because our simulations use a periodic

box, 𝑑 is effectively infinitely long and this effect is eliminated in our setup. Therefore, instability

growth cannot be caused by differences in the transit time and motivates the search for another

explanation. In Section 6.4 we investigate the underlying mechanism leading to a surplus of

CRs giving momentum to the wave, creating the imbalance that is necessary for wave growth.

Before doing so, we point out two more intricacies, which differentiate the description of

parallel CR motions from a traditional pendulum, complicating the application of this physical

picture during the linear growth phase. A traditional pendulum oscillates at a frequency of

(𝑔/𝑙)1/2, where 𝑙 is the length of the pendulum and 𝑔 is the gravitational acceleration, both

of which are approximately constant. Analogously, the CR pendulum frequency depends on

the amplitude of 𝐵⊥(𝑡). During wave growth, 𝐵⊥(𝑡) grows exponentially and is even closely

related to Δ𝑣∥ through the momentum equation (6.8). Thus, the gyrophase of CRs in the linear

growth phase resembles a pendulum whose length is shortened exponentially over time. Second,

these equations are derived for the interaction of a single CR with a single wave mode and

constant Ωcr, while a realistic situation has many CRs interacting with multiple wave modes.

A traditional analogue is a coupled pendulum, which further complicates an accurate analytical

treatment.
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Figure 6.7. A drawing explaining the processes leading to instability. We show the 𝜑 angle
of the streaming CRs in relation to their local direction of the perpendicular magnetic and
electric fields, 𝑩⊥ and 𝑬⊥, respectively. On the left-hand side, we show the initial seed wave
with random particles at a given position 𝑥 and use the same color coding of the three particles
defined in Figure 6.6 (while we color code the additional particles with yellow). As explained
in Figure 6.6, the parallel Lorentz force, 𝑞𝒗⊥ × 𝑩⊥, causes all particles except for the brown
one to move along 𝑩0 and 𝒙, implying a change in 𝜑(𝑡), which we indicate by green arrows at
each particle. Particles on the left (in the red semicircle) get accelerated out of the plane into
the propagation direction of the wave, and hence take momentum from it to ensure momentum
conservation while particles on the right (blue semicircle) are accelerated into the plane and
transfer momentum to the wave. Thus, we would expect all particles to converge to the local
magnetic field direction 𝑩⊥ (albeit at different locations on the 𝑥 axis). This situation is shown
in the drawing on the right-hand side, which shows the particle distribution in 𝜑 at a later
time. However, this bunching up of CRs implies a downwards pointing CR current, 𝑱cr,⊥. After
adding the background current, 𝑱bg,⊥, the total current, and hence the perturbed magnetic field
𝑩⊥, is shifted to the left. Thus, the back-reaction of the CR current causes more CRs to be
found in the blue region, in which there is a net transfer of CR momentum to the wave. This
explains the inner workings of the resonant instability. The background velocities 𝒗𝑖,⊥ and 𝒗𝑒,⊥
determine the orientation of 𝑱bg,⊥ = 𝑛bg (𝒗𝑖,⊥ − 𝒗𝑒,⊥) while 𝜑av denotes the averaged phase angle
of the CRs.
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6.4. The physics of wave growth and decay

As derived earlier, the gyro angles of CRs obey the pendulum equation with the force pointing in

the direction of the local 𝑩⊥. However, we do not observe the oscillating behavior of a pendulum

during the linear growth phase but only after saturation. In this section, we concentrate on the

linear phase and the physical mechanism behind wave growth. This section is structured in

the following way: first, we provide an intuitive physical picture of the resonant wave growth

and discuss its implications. To this end, the different equations and corresponding effects are

discussed in succession. This model is then compared with the dispersion relation, which is an

exact solution to the linearized wave equation and the CR Vlasov equation, capturing all effects

simultaneously while making it difficult to extract a simple physical meaning underlying the

equations. Finally, we connect these considerations through our simulation results.

6.4.1. Deconstructing the instability’s feedback loop

Exponential growth processes often have an underlying feedback loop, which we will describe

for the resonant CR-driven instabilities in the following. In essence, the CRs try to align their

gyrophase with the perpendicular magnetic field, as pointed out in Figure 6.6. However, the

resulting CR current does not only intensify the wave, but also modify its wave speed. Thus, the

wave and the associated potential wells move constantly, but slowly away from the particles at

resonance – leading to an asymmetry, which on average forces CRs to transfer momentum to the

wave. In the following, we detail the individual physical processes leading to instability growth

for a forward moving wave (defined by 𝑣wave > 0) with a wave vector 𝑘 > 0 (cf. Figure 6.7).2

• A (seed) electromagnetic wave travelling at 𝑣wave introduces an electromagnetic field per-

pendicular to its propagation direction. This is the starting point of the initial magnetic

bunching provided by the magnetic perturbation 𝑩⊥ of the seed wave.

• CRs are accelerated by the parallel Lorentz force, and hence experience a pseudo-torque

by moving along the propagation direction of the rotating wave (cf. Figure 6.6). In result,

the parallel motion of the CRs decreases 𝜑 and thus accelerates them toward 𝑩⊥ with an

amplitude depending on 𝑩⊥ (magnetic bunching).

• As the CRs’ perpendicular velocity vectors are bunching up in 𝜑, this generates a perpen-

dicular CR current density 𝑱cr,⊥ (see Figure 6.7).

• The seed electric field 𝑬wave,⊥ is perpendicular to the magnetic field. Adding the CR

current, 𝑱cr,⊥, induces an additional electric field, 𝑬cr,⊥, which opposes this current. As a

result, the total electric field, 𝑬⊥ = 𝑬cr,⊥ + 𝑬wave,⊥ is no longer perpendicular to 𝑩⊥.

• The electric field 𝑬⊥ leads to guiding center drifts of the background species 𝑠. This is the

dominant effect for the background species because their perpendicular and drift velocities

2In our convention, we have 𝒂 ∥ × 𝒃⊥ = i 𝑎 ∥ 𝒃⊥, ∇→ −i 𝑘, 𝜕𝑡 → (i𝜔 + Γ) so that ∇ × 𝒃⊥ = −i2 𝒃⊥ (Appendix 6.A).
A phase shift by i corresponds to a 90°counterclockwise rotation in Fig. 6.7.
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are small and as such, their magnetic bunching due to the term 𝒗𝑠,⊥ × 𝑩⊥ is negligible.

These guiding center drifts are the 𝑬 × 𝑩 drift (Sturrock, 1994),

𝒗𝐸×𝐵 = 𝑬⊥ × 𝑩0/𝐵2
0 = −i𝑬⊥/𝐵0, (6.23)

and the polarization drift (Sturrock, 1994),

𝒗pol = (𝜕𝑬/𝜕𝑡)/(Ω𝑠𝐵0) = (i𝜔 + Γ)𝑬⊥/(Ω𝑠𝐵0), (6.24)

where we assumed a single transverse, plane-parallel wave in the last step.3 Combining

both drifts introduces a perpendicular velocity component for the background ions and

electrons:

𝒗⊥ = 𝒗𝐸×𝐵 + 𝒗pol. (6.25)

This leads to a perpendicular current from the background ions and electrons,

𝑱bg,⊥ = 𝑛bg (𝑞𝑖𝒗𝑖,⊥ + 𝑞𝑒𝒗𝑒,⊥) = 𝑛bg (𝒗𝑖,⊥ − 𝒗𝑒,⊥). (6.26)

• The induced magnetic field is well approximated using Ampère’s law without the displace-

ment current (see footnote 2),

∇ × 𝑩⊥ = 𝑘 ∥𝑩⊥ = 𝜇0𝑱⊥ = 𝜇0(𝑱cr,⊥ + 𝑱bg,⊥). (6.27)

According to this equation, 𝑱⊥ and 𝑩⊥ are necessarily aligned for 𝑘 > 0. Imagine a situa-

tion, where an initial 𝑩⊥ gives rise to the magnetic bunching of CRs and the background

particle drifts described above. The resulting total perpendicular current is not aligned

with this initial 𝑩⊥. But the induced change of the magnetic field by the total current will

realign 𝑩⊥ with 𝑱⊥ and hence rotates 𝑩⊥ in the perpendicular plane.

• Because the magnetically bunched CR current 𝑱cr,⊥ is misaligned with 𝑱bg,⊥, so are 𝑱cr,⊥
and 𝑩⊥. As a result, the average Lorentz force on the CRs, 𝑱cr,⊥ × 𝑩⊥ leads to a par-

allel deceleration of the CRs on average (see Figure 6.7). This parallel momentum is

transferred from the CRs to the background particles and the corresponding wave, as

𝑱bg,⊥×𝑩⊥ = −𝑱cr,⊥×𝑩⊥ (which is obtained by taking the cross product of equation (6.27)

with 𝑩⊥). These changes in momentum are directly coupled to the wave intensity, accord-

ing to the momentum equation (6.8), and thus lead to wave growth.

• The graphical representation of this feedback loop in Figure 6.7 reveals that as the CRs

try to align their perpendicular velocities with 𝑩⊥, 𝑩⊥ rotates away from them. CRs try

to realign with the rotated 𝑩⊥, which thus leads to a constant rotation of 𝑩⊥. This is best

3The drift for Alfvén waves is dominated by the polarization drift of the ions as the 𝑬 × 𝑩 currents of ions and
electrons exactly cancel each other. For whistlers, the guiding center approximation of the ions breaks down
so that they can be considered to be immobile on this scale, leaving the electron 𝑬 × 𝑩 drift.
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described as a frequency shift of the wave rotation rate by 𝜔 → 𝜔 + 𝛿𝜔, which represents

a rotation in the resonance condition

R(𝜔 + 𝛿𝜔, 𝑘) = −Ωcr + 𝑘𝑣dr − (𝜔 + 𝛿𝜔) = −𝛿𝜔, (6.28)

as opposed to the expected resonance condition R(𝜔, 𝑘) = 0 (see equation 6.11). For

forward moving waves, we have 𝛿𝜔 < 0, which implies that the wave frequency is reduced

and 𝜔 + 𝛿𝜔 < 𝜔.

In Figure 6.7, we assumed that 𝑣wave is aligned with the direction of 𝐵0. Wave growth only

occurs at 𝑘 > 0 (according to our convention), but growth is not constrained by the direction

of 𝑣wave, which can be either positive or negative. Growth of backwards moving Alfvén waves

is explained by simply mirroring the field vectors of Figure 6.7 about its vertical axis. When

changing the sign of 𝑣wave, the sign of 𝜔 changes likewise. The direction of 𝑱bg, which stems

from the polarization drift (proportional to 𝜔), thus changes sign as well. The drawing on the

right-hand side of Figure 6.7 would then show the magnetic field 𝑩⊥ and 𝑱bg preceding 𝑱cr.

This would lead to a parallel acceleration of CRs on average and (as the sign of the momentum

equation switches likewise) wave growth of the backward moving wave. Similar to the forward

moving wave, the wave rotation is counteracted as well, that is 𝛿𝜔 > 0. The growth of a backward

moving wave can be observed in Figure 6.3, which shows that the particle drift velocity is growing

over time, while the 𝜑 angle during growth is on average less than 0, as shown at 𝑡3 in the left

panels of Figure 6.4. In the latter figure, it is instructive to directly compare the backwards

moving wave of B with the forward moving wave of F, revealing the mirroring of the particles

with respect to the field vector.

A corollary of these considerations is that the induced wave velocity, 𝑣ind, is always slower

than the pristine wave velocity without CRs, 𝑣prist, irrespective of whether it propagates in the

forward or backward direction. This can be seen by considering forward moving waves (𝜔 > 0

and 𝛿𝜔 < 0), which obey 𝑣ind = (𝜔 + 𝛿𝜔)/𝑘 < 𝜔/𝑘 = 𝑣prist. For backward moving waves (𝜔 < 0

and 𝛿𝜔 > 0), we also have a slower moving induced wave as 𝑣ind = |𝜔 + 𝛿𝜔 |/𝑘 < |𝜔/𝑘 | = 𝑣prist.

Wave damping, on the other hand, can occur in two ways in the picture presented here. First,

if the particle rotation overtakes the perturbed wave rotation, and second, for wave modes at

negative values of 𝑘. We will focus on the latter effect in this paragraph, while the former is

discussed in Section 6.5.2. If there were a magnetic wave with 𝑘 < 0, the CRs attempt to bunch

up towards the perpendicular wave magnetic field at some initial time, 𝐵init,⊥. However, this

bunching CR current will induce a magnetic field, 𝑘 ∥𝑩ind,⊥ = 𝜇0𝑱cr,⊥, which is oriented opposite

to 𝐵init,⊥, thereby reducing the wave amplitude to approximately 𝐵init,⊥ − 𝐵ind,⊥. Because the

bunching efficiency depends on this field amplitude (which decreases over time), this describes

a negative feedback loop and implies wave damping. Thus, only waves with 𝑘 > 0 (according

to the convention used here) can initially grow in our simulation, which includes forward and

backward traveling waves (𝑣wave > 0 and 𝑣wave < 0).
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Figure 6.8. The solution of the dispersion relation (6.41) in the CR frame (see equation 6.29)
using the parameters of the I simulation. Solid colored lines show the real frequency, while
dashed colored lines show the growth rate of the wave modes. Solid black lines indicate the
dispersion relation of the pristine background modes and CR ion-cyclotron waves without taking
into account a mutual interaction. Black dotted vertical lines indicate the point of intersection
of the black lines, i.e., the resonance condition 𝜔wave/Ω𝑖 = −𝛾−1cr , at which we locally expect
maximum growth. However, the interaction with CRs modifies the induced wave frequency by
𝛿𝜔, as indicated by red circles, leading to a modification of the resonance condition (𝜔wave +
𝛿𝜔)/Ω𝑖 = −𝛾−1cr . Please refer to Figure 6.15 for a representation of this solution in the background
frame.

6.4.2. Revisiting the dispersion relation

As argued in the preceding subsection, our model predicts that the induced wave velocity is

slower than the pristine wave velocity without streaming CRs. In the following, we investigate

whether this finding is also manifested in the dispersion relation. The dispersion relation is

given in Appendix 6.D. We choose the parameters of the simulation I to visualize the solution

of the dispersion relation, which includes the backward and forward moving Alfvén wave (which

are not resolved in the simulation I) and the excited whistler wave from the intermediate-scale

instability. This allows us to showcase all relevant instabilities, and the physical interpretations

are transferable to the F&B simulations.

In Figure 6.8, we show the wave rotation rates as derived from the dispersion relation for

a gyrotropic distribution of CRs, and evaluate them in the comoving CR frame where 𝑣dr = 0

(i.e., not in the wave frame). Note that we show the same solution in the background frame in
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6. Growth and Saturation Mechanism of the Gyroresonant Instabilities

Appendix 6.D for convenience. In the comoving frame, the resonance condition is given by

R(𝜔, 𝑘) = 𝑘𝑣dr − 𝜔 −Ωcr = −𝜔 −Ωcr = 0. (6.29)

Indeed, this condition locates the waves with the maximum growth rate using the pristine

rotation rate of the wave, i.e., without taking into account mutual interaction (see the vertical

dotted lines in Figure 6.8).

However, there are more subtleties related to the interplay of the CRs with the background

modes that go beyond this simplistic view. The color of an individual solution to the dispersion

relation shown in Figure 6.8 describes a singly-connected branch that may or may not change

character as it crosses a resonance. As we move from the left (small 𝑘 values) to the right, we first

see a degenerate branch (shown at small 𝑘 values in red and green) which rotates at −Ωcr in the

frame comoving with CRs. These solutions can be interpreted as CR ion cyclotron wave modes

(Shalaby et al., 2023). This solution splits up at 𝑘𝑑𝑖 ≈ 0.1 as a result of the interaction of CRs

with the backward moving Alfvén wave. At 𝑘𝑑𝑖 ≈ 0.14 the upper CR ion cyclotron wave (green)

interacts with the backward Alfvén wave (orange) so that the rotation rates exactly overlap,

implying that their wave frequencies become degenerate. These degenerate waves complement

each other, as their growth rates correspond to ±Γ of which only the positive part is shown

in gold in the zoom-in panels. This describes a transfer of energy from one degenerate wave

mode to the other, which implies an instability. As this degenerate solution of CR-backward

Alfvén waves approaches the scales of forward Alfvén wave (initially denoted in blue), there is

again energy exchanged between CRs and the background that changes the character of this

particular wave and causes it to turn into a faster-rotating CR ion-cyclotron wave (CR branch

1). At the same time, the degenerate solution splits up into a new forward moving Alfvén wave

(green) and a slower rotating CR ion-cyclotron wave (orange, CR branch 2), which approaches

the upper CR wave at even smaller scales (larger 𝑘 values). We observe a similar behavior as

we approach the resonance at the intermediate scale, where the interaction of CR ion cyclotron

waves (blue and orange) with whistler waves (green) causes the rotation rates of the CR modes

to deviate from each other so that the slower rotating CR mode (orange) overlaps with the

modified whistler branch (green) and becomes degenerate, thus enabling the intermediate-scale

instability. At smaller scales, the upper CR branch (blue) turns into a pure whistler wave.

Interestingly, a true degeneracy of a solution that either represents a CR ion cyclotron and a

background branch or two CR branches only occurs provided the CR rotation rate is in between

two (modified) background modes. This degeneracy gives rise to instability and is realized in

between the forward and backward Alfvén modes for the CR streaming instability as well as

in between the whistler and electron cyclotron modes for the intermediate-scale instability, see

also Figure 6.1. Note that the growth rates are still maximized close to the resonances and

significantly reduced in between the background modes, where the unstable solution represents

two CR branches. This can also be seen in the lower left panel of Figure 6.8, where the pristine

backward and forward moving Alfvén waves are shown in black, moving at −𝑣A and +𝑣A. Inter-

actions with the CR branch modifies their rotation rates and causes unstable waves with speeds
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6.4. The physics of wave growth and decay

in between this range, −𝑣A ≲ 𝑣 ≲ +𝑣A. This enables wave growth at these smaller velocities, even

at low CR densities. At scales larger than the ion skin depth, we often refer to these low-velocity

CR-driven waves as Alfvén waves, which carries the connotation that they should propagate at

±𝑣A, even though it would be more precise to characterize them as combined Alfvén-CR branch

waves instead, as explained above.

We now focus on the fastest growing wave modes at resonance and its frequency shift 𝛿𝜔. The

resonances are marked by the vertical gray dotted lines, which intersect the dispersion relation

at 𝛿𝜔, as marked by a red circle. Indeed, we find that the frequency shift counteracts the wave

speed, that is 𝛿𝜔 > 0 for the backward moving wave (left-most resonance) while 𝛿𝜔 < 0 for

the two forward moving waves. This is in line with our model, which predicts that 𝛿𝜔 opposes

the wave speed, and explains why the CRs bunch up on average at 𝜑 < 0 for the backward

moving wave and at 𝜑 > 0 for the forward moving wave. Note that this has been found to be a

necessary condition for instability. In conclusion, the unperturbed resonance condition can be

used to estimate the wave number 𝑘 with maximum growth. The actual observed resonance is

perturbed by a small rotation rate, which is required for a positive feedback loop and, hence,

for instability.

That is, for all unstable resonantly driven wave modes, the resonance is predicted by equating

the isolated wave rotation and the Doppler-shifted CR ion-cyclotron wave mode 𝜔 = 𝑘𝑣dr − Ωcr

(Shalaby et al., 2023). However, the inclusion of CRs modifies the wave rotation rate 𝜔 by 𝛿𝜔 at

resonance. Therefore, the resonance condition is altered into 𝜔 + 𝛿𝜔 = 𝑘𝑣dr −Ωcr = 𝑘𝑣∥ (0) −Ωcr,

where the last equality only holds for the CR distribution we consider in this work and 𝛿𝜔 <

0 (> 0) for forward (backward) propagating wave modes at resonance. 𝛿𝜔 is counteracting

the propagation direction and therefore slowing the wave down, which changes the wave frame,

as 𝑣wave = (𝜔 + 𝛿𝜔)/𝑘. That is, the CR velocity in the wave frame, which has been used in

equation (6.17), can be transformed into the background frame via 𝑘𝑣′∥ (𝑡) = 𝑘𝑣∥ − 𝜔 − 𝛿𝜔, and

thus, equation (6.17) can be written as

¤𝜑(𝑡) = 𝑘Δ𝑣∥ − 𝛿𝜔, (6.30)

where we define Δ𝑣∥ (𝑡) ≡ 𝑣∥ (𝑡) −𝑣dr(0), and used the resonance condition to set 𝑘𝑣dr−𝜔−Ωcr = 0.

6.4.3. Simulated family of particle orbits

Figure 6.9 enables us to test our predictions for the linear growth regime. This figure compares

various CR orbit parameters for the CR streaming instability, which excites forward moving

Alfvén waves (top 4 panels), and the intermediate-scale instability at the whistler scale (bottom

4 panels). For each instability, we show (1) the gyrophases, 𝜑(𝑡), of a representative sample

of CRs in the wave frame, as well as the mean of a large random sample of CRs, 𝜑av (𝑡), (2)

the parallel CR velocity in the wave frame, 𝑣∥ (𝑡), as well as the mean of the large CR sample,

𝑣∥ ,av, (3) the time derivative of the CR gyrophase ¤𝜑(𝑡), and (4) the quantity ¤𝜑 − 𝑘Δ𝑣∥ , which

is a measure of the wave rotation rate relative to the CR frame. During linear growth (for

𝑡 < 𝑡3), this analysis confirms our analytic predictions and supports the physics underlying the
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Figure 6.9. Simulated CR orbit parameters, which support our theoretical considerations regard-
ing instability growth and the associated asymmetric bunching. We compare the cases of exciting
forward propagating Alfvén waves (F, top 4 panels) and whistler waves via the intermediate-scale
instability (I, bottom 4 panels). For each simulation, we show the evolution of 𝜑(𝑡), 𝑣∥ (𝑡) in
the wave frame, the time derivative ¤𝜑(𝑡) and ¤𝜑 − 𝑘Δ𝑣∥ , which is a measure of the wave rotation
rate relative to the particle frame. Each panel shows multiple CR particles from a simulation
with a single gyroresonant wave mode, mean values (thick black lines) and circular variance
(gray band) are computed from 500 particles at random positions in the simulation box. The
particle trajectories are colored from red to blue based on a gyrophase 𝜑0 = 𝜑(𝑡 = 6), i.e., one
𝑒-fold before entering the nonlinear phase. Mean values for the different populations 𝜑0 > 0 and
𝜑0 < 0 are shown in corresponding colors. This analysis clearly demonstrates asymmetric CR
bunching in 𝜑 > 0 and confirms our theoretical picture that the CRs experience the unstable
wave at relative rotation speed of 𝛿𝜔 ≈ 𝜔𝜑 − 𝑘𝑣∥ at resonance.
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6.4. The physics of wave growth and decay

feedback loop described above. First, there is an anisotropy developing in the CR gyrophases

with 𝜑av > 0. Second, particles are accelerated along 𝐵0 such that there is a net momentum

loss of CR (Δ𝑣∥ ,av < 0). Third, the particles’ angular velocity evolution is asymmetric for the

subpopulations with 𝜑0 > 0 and 𝜑0 < 0, respectively (where we select 𝜑0 = 𝜑(𝑡 = 6Γ−1) towards

the end of the linear growth phase for visualization purposes). Fourth, there is a universal,

almost constant frequency shift 𝛿𝜔 observed due to the violation of the resonance condition.

We now detail the evolution of the CR gyrophases. The fact that the CRs’ gyrophases are not

randomly distributed but instead show a coherent bunching over time is due to the resonance

between CRs and the wave. CRs with the same gyrophase 𝜑0 develop similarly, and 𝜑(𝑡) of all

particles shows a similar slope during the linear growth phase. To visualize the bunching of the

CR gyrophases over time, we show the circular variance of 𝜑(𝑡) (multiplied by 2𝜋) with a gray

band that is centered on 𝜑av (𝑡) (shown in black). The circular variance is also directly connected

to the perpendicular CR current, 𝐽cr,⊥, and the bunching in 𝜑 causes an increasing CR current.

While the initial value of 𝜑av is noisy and physically irrelevant, it becomes decidedly positive

for the forward moving waves as the particles bunch up towards 𝜑av > 0. After saturation, most

particles oscillate around 𝜑 = 0, which indicates that these are trapped in the potential well.

However, some CR trajectories observed in the plot swing over and take on more complicated

trajectories.

In each of the two cases, the top right panels show that particles starting off at 𝜑0 < 0 are

accelerated in the parallel direction. Because this is aligned with the direction of the propagating

wave, these CRs take momentum from the wave. The decelerating particles (𝜑0 > 0) are more

numerous and thus, there is a net momentum gain by the wave at the expense of the CRs.

The bottom left panels show the time derivatives of the CR gyrophases, i.e., the instantaneous

slopes of the CR trajectories shown in the top left panels. Once the wave mode starts to dominate

the noise, ¤𝜑 remains almost uniform in the linear phase, which corresponds to the similar slopes

of 𝜑(𝑡) in the upper left panel. The similarity of the CR trajectories in the bottom left and

top right panels shows that the particle acceleration term 𝑘Δ𝑣∥ dominates the evolution of ¤𝜑 in

equation (6.30).

We use equation (6.30) to estimate the resonance condition in the bottom right panel,

R(𝜔, 𝑘) = ¤𝜑 − 𝑘Δ𝑣∥ = −𝛿𝜔 at resonance. (6.31)

𝛿𝜔 is the frequency shift introduced by the CRs, and the theoretically expected value obtained

from the above dispersion relation is added as a dashed blue line in Figure 6.9. The theoretical

expectations for 𝛿𝜔 are clearly very similar to the rotation rate in the resonance frame in the

linear growth phase. In the nonlinear phase, the mean of 𝛿𝜔 also oscillates due to changes

in wave velocity, that is, 𝛿𝜔(𝑡) is not constant in this phase. This is discussed further in

Section 6.5.3. Deviations from the mean by individual particles are small, indicating that this is

indeed a modification of the wave affecting all CRs at the same time. However, some individual

deviations from the mean can be observed in F. These are due to the direct Lorentz-force term

along 𝒗′∥ × 𝑩⊥ acting on 𝜓cr which has been neglected initially, see equation (6.14). Due to the
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6. Growth and Saturation Mechanism of the Gyroresonant Instabilities

Saturation by scattering (Eq. 6.33) Saturation by trapping (Eq. 6.36)
Sim. 𝑣wave 𝑣lim max(Δ𝑣dr) error limit 𝜔pend 𝜔pend error limit

[𝑣A] [𝑣A] [𝑣A] [%] [Ω𝑖] [Γ] [%]
pred. sim. pred. sim.

B -0.33 -0.611 0.303 50 0.079 0.076 1.364 1.312 3.8 ✓
F 0.72 0.791 -0.798 0.9 ✓ 0.100 0.083 1.562 1.297 17
I (IW) 4.73 4.783 -0.185 96 0.723 0.736 1.482 1.508 1.8 ✓

Table 6.2. Mechanisms leading to saturation of resonant wave growth. To check whether wave
growth is limited by CR scattering, we show wave velocities 𝑣wave obtained by solving the
dispersion relation, estimates for the scattering-limited velocity 𝑣lim = 𝑣dr(0) − Ωcr/𝑘, and the
maximum amplitude of Δ𝑣dr. To check whether wave growth is limited by particle trapping, we
show predicted (pred.) and simulated (sim.) pendulum frequencies. We compare the relative
error of the theoretical saturation limits to the simulated quantities, which allows us to identify
the exact saturation mechanism.

larger wave velocity and slower 𝑣dr, 𝑣′∥ is significantly smaller in I compared to 𝑣′∥ in F, which

is why these deviations from the mean are more visible in the latter simulation. Still, they are

insignificant in comparison to the term 𝑘Δ𝑣′∥ and thus, the neglect of this effect is justified.

The nonlinear phase after 𝑡3 is discussed in the next section. Although the CR streaming

and intermediate-scale instabilities in F and I act on very different spatial and temporal scales,

the fundamental physical processes regulating wave growth are the same. While we omit a

similar plot of B for brevity, the results are fundamentally similar, but qualitatively mirrored

horizontally around 0.

6.5. Saturation of a single wave mode

During the linear growth phase, the CRs fall into the potential wells arising from the magnetic

wave, see Figure 6.6. The nonlinear phase starts when an appreciable amount of CRs pass the

minimum of the potential well and their acceleration direction reverses, that is roughly from 𝑡3

onward.

In this section, we discuss two wave saturation effects. First, we study wave damping as

a result of CR scattering. Second, we scrutinize the effect of particle trapping by the waves

on their growth. To this end, we determine the saturation time 𝑡4 of the instability when the

majority of CRs has passed the potential minimum, which is defined as the reversal point of the

growth of 𝐵⊥, after which it starts to decline. This is followed by an analysis of the modification

of the unstable waves as a result of CR feedback, and finally, we study the anisotropy introduced

into the CR distribution function.

6.5.1. Saturation of wave growth due to CR scattering

We have previously established that, for CRs to impart momentum and energy to the waves, they

must either accelerate (for backward-moving waves) or decelerate (for forward-moving waves)

in the parallel direction. Here, we identify a limit on how much 𝑣∥ can change before the CRs
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6.5. Saturation of a single wave mode

inadvertently begin to extract energy from the waves, thereby halting further wave growth. We

built on the non-relativistic results from equation (6.21) (Otani, 1988) and assume that these

results are transferable, as changes in the Lorentz factor 𝛾 are negligible within the scattering

limit, which we will identify in the following. The rate of kinetic energy gain for a single CR

along this constant of motion is given by

𝜕𝐸cr

𝜕𝑡
= 𝑚cr

(
𝑣⊥

𝜕𝑣⊥
𝜕𝑡
+ 𝑣∥

𝜕𝑣∥
𝜕𝑡

)
≈

(
−Ωcr

𝑘
+ 𝑣∥

)
𝜕𝑣∥
𝜕𝑡

=⇒ 𝜕𝐸cr

𝜕𝑣∥
≈ 𝑣lim + Δ𝑣∥ . (6.32)

In the final step, we have adopted 𝑣∥ (𝑡) = 𝑣∥ (0) + Δ𝑣∥ (𝑡) and defined the limiting velocity 𝑣lim =

𝑣∥ (0) − Ωcr/𝑘 ≈ 𝑣wave, which is approximately the wave velocity according to the resonance

condition. Initially, Δ𝑣∥ ≈ 0 and equation (6.32) corresponds to 𝜕𝐸cr/𝜕𝑡 ≈ 𝑣lim𝜕𝑣∥/𝜕𝑡. This

indicates that CRs can transfer energy to the waves if 𝑣wave ≈ 𝑣lim and 𝜕𝑣∥/𝜕𝑡 have opposite

signs, such as when a CR decelerates in the presence of a forward-moving wave. However, once��Δ𝑣∥ �� exceeds |𝑣lim |, the term 𝑣lim + Δ𝑣∥ reverses sign, meaning that further deceleration of the

CR would result in the extraction of energy from the forward-moving wave.

In essence, the maximum allowable change in 𝑣∥ for continued wave growth is constrained by

the wave velocity, such that

|Δ𝑣dr | < |𝑣lim | =
��𝑣∥ (0) −Ωcr/𝑘

�� ≈ |𝑣wave |. (6.33)

We examine this saturation mechanism in our simulations, and the results are presented in

Table 6.2. This constraint is particularly stringent for Alfvén waves, when 𝑣∥ ≫ 𝑣wave, and

appears to be the reason for wave saturation in the simulation F. By contrast, this limit is

essentially negligible for the intermediate-scale instability, where 𝑣wave ∼ 𝑣∥ . The change in the

total drift velocity should be bound by this scattering limit as well, Δ𝑣dr ≤ 𝑣lim, which can

be used to establish an upper bound for the maximum wave intensity through the momentum

equation (6.8), assuming the wave speed remains constant:

Δ𝐵2
⊥

𝐵2
0

≤ 𝑛cr
𝑛bg

𝛾𝑣wave𝑣lim
𝑣2
A

≈ 𝑛cr
𝑛bg

, (6.34)

where we adopted Alfvén waves in the last step, 𝑣lim ≈ 𝑣wave = 𝑣A, and GeV CRs with 𝛾 ≈ 1.

Clearly, this is an energetic limit for a single CR-wave interaction that may not impose a general

limit for wave growth, provided the CR interacts with different waves on different scales after

reaching this limit. In this case, the CR could be decelerated furthermore through a cascading

process, and by virtue of energy conservation, cause corresponding wave growth of the interacting

waves.

If CRs were scattered while exactly conserving their energy in the wave frame, this bound

would not exist. However, our simulations suggest that CR scattering is better described by

parabolic trajectories in the 𝑣⊥ − 𝑣∥ plane (Lemmerz in prep.), consistent with the constant of
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motion 𝐶 in equation (6.21) (Otani, 1988; Zachary et al., 1989), which leads to the emergence

of this limit.

6.5.2. Saturation of wave growth due to particle trapping

Here, we investigate Figure 6.9 with regard to the saturation time 𝑡4, which is marked as a

gray dashed line. At this time, the average 𝜑 reverses, switching from 𝜑 > 0 to 𝜑 < 0, while

¤𝜑 has reached a local minimum. As described beforehand, this reverses the overall acceleration

direction and leads to more particles taking momentum from the wave, thus damping it according

to the drawing of Figure 6.7. The perturbation of the wave frequency, which has been determined

from the dispersion relationship beforehand, has been identified as the rate, with which the

potential wells move in relation to the particles. Naturally, as the particles accelerate in parallel

direction, they overtake the potential wells.

In the linear phase, the potential wells move away from the particles at a relative velocity of

𝛿𝜔/𝑘, as can be seen from the bottom-right panel in Figure 6.9. As a necessary condition, the

particles need to move faster than the potential well to catch up. At 𝑡4 we observe that ¤𝜑 ∼ 𝛿𝜔,

and thus, using equation (6.30), the CRs move approximately twice as fast as the potential well

with Δ𝑣dr ∼ 2𝛿𝜔/𝑘, where we adopted the mean over the particle distribution. Inserting this

estimate for Δ𝑣dr into the momentum equation (6.8) yields a rough estimate for the saturation

level of the magnetic wave field,

Δ𝐵2
⊥

𝐵2
0

∼ − 𝑛cr
𝑛bg

𝛾𝑣wave
𝑣2
A

2𝛿𝜔

𝑘
. (6.35)

This estimate is of the same order as the measured saturation level, e.g., for the I simulation

we find that 𝐵⊥ = 0.0131𝐵0 at saturation, while we predict 𝐵⊥ = 0.0076𝐵0.

Sudan and Ott (1971) proposed that the wave should saturate once the pendulum frequency,

obtained from equation (6.18) for small angles of 𝜑, is comparable to the growth rate:

Γ ∼ 𝜔pend =

√︂
𝛾𝑘res𝑑𝑖

𝑣⊥
𝑣A

𝐵⊥
𝐵0

Ωcr (6.36)

⇔ 𝐵⊥
𝐵0
∼ (𝛾𝑘res𝑑𝑖)−1 𝑣A

𝑣⊥

(
Γ
Ωcr

)2
. (6.37)

Hence, the unstable wavelength at resonance as seen from a gyrating relativistic CR appears

to be Lorentz contracted and – in tandem with the wave growth rate and 𝑣⊥ – determines the

saturated magnetic wave field.

The pendulum frequency can be readily obtained from the oscillations of the magnetic field

strength in Figure 6.3. We thus start by estimating the simulated pendulum frequency using

a least-squares fit of the magnetic wave amplitude, while calculating the theoretical pendulum

frequency using the mean 𝑣⊥ and 𝐵⊥ values from the simulation data after saturation (𝑡 > 𝑡4).

The pendulum frequencies are given in Table 6.2. The excellent agreement of the simulated

oscillations of the wave magnetic field and our theoretical estimates support our picture that
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Figure 6.10. Visualization of the time evolution of the wave velocities of the resonant modes
in the simulations B, F, and I. The 𝑥-axis of the plot is comoving with the wave at the speed
𝑣wave, which is calculated from the dispersion relation at resonance while taking into account
the CR perturbation: 𝑣wave/𝑣A = [−0.33, 0.72, 4.73] from left to right (where we adopted the
IW wave speed in the latter case). Dashed vertical lines indicate waves moving at this constant
velocity. The slopes of the boundaries, where 𝐵𝑦 changes sign, are a useful visual indication of
the wave velocity. The wave velocity nearly approaches the pristine (unmodified) wave velocity
in the nonlinear phase in the first two panels, i.e., ∓𝑣A. The corresponding whistler and electron
cyclotron velocities 𝑣EC are indicated in the third panel. The times 𝑡1–5 are marked with their
corresponding colors on the 𝑦-axis.

CRs collectively behave as a pendulum in the wave magnetic field. Upon closer inspection,

the oscillation frequencies in the F&B simulations are not perfectly sinusoidal (Figure 6.3), as

they have longer growth phases and shorter damping phases. In these simulations, a large

number of particles approach the scattering limit described in Section 6.5.1, introducing further

non-linearities. As a result, F saturates primarily through the scattering limit, although the

pendulum effect remains clearly visible and the deviation from the pendulum limit is small. The

relative influence of these saturation mechanisms depends on 𝑣dr, 𝑣⊥ and 𝑘 and may vary with

different parameters.

Next, we would like to scrutinize whether the growth rate Γ is comparable to 𝜔pend (equa-

tion 6.36). These ratios are given in the two rightmost columns of Table 6.2, and are similar

enough to indicate that the oscillation frequencies of all gyroresonant instabilities at saturation

are related to their growth rate, as predicted by equation (6.36). Parameter scans of different

𝑛cr/𝑛bg for the forward moving Alfvén wave conducted by Zachary et al. (1989) and Holcomb

and Spitkovsky (2019) also support our theory.

Although the growth rate of I is larger than that of F&B, this does not necessarily imply that

the intermediate-scale instability also dominates at saturation. This is because it excites waves

at a smaller scale (larger 𝑘res) and thus saturates earlier, according to equation (6.37), leading

to similar saturation levels between all of our simulations. Instabilities at even smaller scales,

like the electron cyclotron wave IE, can have larger physical growth rates in comparison to the

other instabilities, but the saturation level is still expected to be substantially lower. This is in

particular the case for a large scale separation between the unstable scales of IW and IE, which

is realized for small values of 𝑣dr/𝑣A (Shalaby et al., 2021). If our simulations exactly resolved
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the peak of IE, we would expect a saturation rate of 𝐵⊥/𝐵0 = 2.0 × 10−4, which is roughly 1/70

of the saturation level of IW. However, because of our discrete sampling, we expect a reduced

growth rate for IE (as explained in Section 6.2.2) so that this instability does not significantly

influence the I simulation.

6.5.3. Impact of CRs on the wave velocity

In this paragraph, we investigate the CR back-reaction on the unstable waves. In the linear

phase, the unstable waves behave as predicted by the dispersion relation while the wave speeds

in the nonlinear phase show a more complicated behavior. As the particles swing back and forth

in the nonlinear wave magnetic field (see the bottom right panel of Figure 6.9), this oscillating

CR current directly impacts wave propagation. These perturbations in 𝛿𝜔 over time indeed

affect the wave velocity, which is shown in Figure 6.10. In all three cases after 𝑡4, the absolute

wave velocities slow down on average in comparison to their propagation speeds during linear

growth.

The influence of CRs on the wave speed is substantially underestimated by adopting the formal

definition of the Alfvén speed, 𝑣A = 𝐵0/
√︁
𝜇0

∑
𝑠 𝑚𝑠 (𝑛𝑠 + 𝑛cr) ≈ 𝐵0/

√︁
𝜇0

∑
𝑠 𝑚𝑠𝑛𝑠 (for 𝑛cr/𝑛bg ≪ 1),

which weights CRs only by their comparably small mass density. This is because the equation

for the Alfvén velocity assumes a plasma at rest. However, the current of CRs, 𝑱cr,⊥, is generated

as a result of the magnetic bunching process, with an amplitude comparable to the background

current, 𝑱bg,⊥. In consequence, the unstable waves in the F&B simulations propagate at −0.33𝑣A
and 0.72𝑣A, significantly slower than the unmodified Alfvén speed.

However, the unstable waves reach their corresponding (unmodified) Alfvén speeds at the

rebound point 𝑡5 in the fully nonlinear phase. Hence, in order to estimate the saturation level

of the instability, one would have to use the corresponding wave velocity in the momentum

equation (6.8), i.e., the modified wave velocity. As the wave velocity is already varying before

saturation, we would have to take into account those changes over time in the momentum

equation, which is not trivial.

The case of the I simulation is even more complex. As the unstable IE wave saturates shortly

after 𝑡2, there are several modes excited with wave velocities in between the IW and the IE modes

(see Figure 6.10). After that time, there is a spectrum of waves close to the IW resonance excited.

The resulting combined wave field propagates at a velocity that is somewhat faster than expected

for the purely growing IW wave. In the saturated stage after 𝑡4, this wave is considerably slowed

down in response to the oscillating CR current.

6.5.4. Evolving CR distribution

In the following, we examine changes to the CR distribution as a result of their wave-particle

interactions. As the gyrophases of the CR ions generally follow the pendulum equation (6.18),

their evolution mostly depends on the initial conditions 𝜑0 and ¤𝜑0. In Figure 6.9, we defined

𝜑0 = 𝜑(𝑡 = 6) shortly before the nonlinear phase, which is when ¤𝜑0 is still comparably small

and thus negligible in the initial conditions. Because more particles have 𝜑0 > 0 (which is the
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Figure 6.11 A visualization of the velocity space
of simulation F. The CR ions have changed from
their initial distribution at 𝑡1 (shown in red),
to a bunched up, non-gyrotropic distribution at
the onset of the nonlinear phase (at 𝑡3, shown
in green; denser areas are depicted by darker
colors). All CR angles are measured in 𝜑 instead
of 𝜓, which captures the natural anisotropy in
the perpendicular plane introduced by the 𝑩⊥.

necessary condition for the instability to grow), these dominate the overall mean. A difference

in the mean values of the 𝜑0 > 0 and 𝜑0 < 0 populations is indeed observed. Most notably,

these swing out of phase with each other in the nonlinear regime, as expected from evolving

pendulum with out-of-phase initial conditions.

Figure 6.11 shows the CR velocity distribution of F at the onset of the nonlinear phase 𝑡3.

At this time, most particles share a similar 𝜑 (as a result of the bunching), while the rotational

velocity ¤𝜑 is notably different. Particles with 𝜑0 < 0 have been accelerated in parallel direction

(i.e., their velocities depicted in green lie above their initial values, shown in red), while those

with 𝜑0 > 0 have a smaller 𝑣∥ in comparison to the initial gyrotropic ring distribution. Because

particles are still accelerated by the magnetic field, this state is only quasi-stable – from 𝑡3

onwards, the particles oscillate around the wave magnetic field, 𝑩⊥. Therefore, they cyclically

bunch up and spread out again, even though most particles stay roughly aligned with 𝑩⊥.

6.6. Conclusions

In this work, we studied the physics of streaming CRs in a background magnetic field and the

associated excitation of plasma instabilities from first principles. We developed a theory of

the underlying processes that organize the particles’ orbits and in particular their gyrophases,

which provides an intuitive physical picture of the growth, saturation, and back-reaction onto

the plasma waves excited via CR-driven instabilities. However, for transparency, we restrict

ourselves to single unstable modes. Starting from a gyrotropic setup of CRs, which embraces

the symmetry of a magnetized plasma, we find that resonantly driven electromagnetic waves

introduce an additional asymmetry perpendicular to the background magnetic field. As a result,

a new stable equilibrium state emerges as the gyrophase of the CR ions follows this asymmetry

to locally match the phase of the driven waves.

Based on our simulation results and theoretical considerations, our new theory for the growth
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of individual unstable waves driven by CRs contains the following elements.

• Wave growth resulting from an instability necessitates 𝑘 > 0, but occurs independent of

the wave propagation direction. Fast moving CRs with 𝑣∥ > 𝑣A can excite forward and

backward-propagating transverse waves, e.g., Alfvén waves (as measured in the back-

ground frame).

• The unstable waves cause the CRs to bunch up in gyrophase through parallel Lorentz

forces. In result, the CR distribution develops a lopsided gyrophase with respect to the

local wave magnetic field. In other words, the helical wave magnetic field is joined by a

helical CR distribution (i.e., a CR ion cyclotron wave) that exhibits the exact same winding

angle as the unstable wave. This lopsidedness is key for enabling momentum transfer from

the CRs to the wave and thus, for instability.

• CRs are scattered asymmetrically parallel to the background magnetic field, preferentially

but not exclusively in the direction opposite to that of the propagating waves. This is a

secular scattering process dictated by the direction of the parallel Lorentz force and not a

diffusive scattering process.

• CRs modify the wave velocity, which is always slower (in absolute terms) than the wave

velocity without CRs. This effect is especially pronounced for induced Alfvén waves, which

propagate at speeds significantly less in magnitude than 𝑣A.

• The instability saturates once the majority of CRs become fast enough to overtake the

unstable wave, which propagates at the CR-modified wave speed. In consequence, the

wave is slowed down by the faster CRs, which implies wave damping and hence saturation

of the instability. Additionally, we identified another possible saturation mechanism for

the interaction of a CR with a single wave: if the CRs’ parallel velocity is decelerated

by approximately the velocity of the scattering (forward moving) wave, it reaches an

energetic minimum. Further deceleration through scattering requires energy from the wave,

and accordingly, the maximum wave intensity is limited by this energetic minimum. An

analogous argument applies for backward moving waves, in which case further acceleration

of CRs through scattering requires energy from the wave, and thus limits wave growth.

• The motion of the trapped CRs in the potential provided by the local wave magnetic

field can be described by a pendulum equation. In this picture, linear wave growth of

the instability results from the CR approaching the local wave magnetic field. As CRs

overshoot the equilibrium position of an exact alignment of CRs and the local wave field,

the instability saturates. The nonlinear behavior of the instability is then characterized

by an oscillating CR distribution in the potential associated with the parallel Lorentz

force, which is centered on the local wave field. This oscillating CR distribution generates

perpendicular CR currents, which also cause the wave amplitude to oscillate and to further

slow down.
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Additionally, we find that the three main instabilities, which describe resonant interactions

of streaming CRs with forward and backward traveling Alfvén waves, as well as with whistler

waves via the intermediate-scale instability saturate via the exact same mechanism and to similar

amplitudes in our setup.

In this work, we did not fully explore the relative importance of these three instabilities and

instead concentrated on studying their underlying physics while adopting the simplest possible

configuration for transparency. Thus, this paper is meant to provide a starting point for future

research. Of prime importance will be the study of the differences of the CR-wave scattering

for these various instabilities as this directly impacts the effective CR transport speed and

momentum transferred by the CRs to the background plasma. Second, we need to extend the

theory developed here for the growth of isolated wave modes to include wave-wave interactions

of the unstable modes of the forward and backwards Alfvén and whistler branches, which could

yield a modification of the criterion for instability saturation. Third, a necessary extension of

this work would also be to generalize the initial gyrotropic ring distribution of CRs to a more

natural power-law momentum distribution exhibiting all CR pitch angles.

While wave growth induced by a power-law momentum distribution of CRs is expected to be

different from that of single wave modes, we believe that some of our main results such as CRs

bunching up in gyrophase as a requirement for driving the instability by means of this anisotropy

will carry over. Regardless, the results shown here indicate that some of the general assumptions

commonly applied to CR transport based on quasi-linear theory could be violated. This includes

the random phase approximation, as the gyrophase of CRs is potentially strongly correlated

with the driven waves. Furthermore, our results indicate that the saturation level may not be

estimated from the momentum equation (6.8) by assuming that 𝑣dr asymptotically converges

to 𝑣A as it isotropizes in the frame of the forward moving Alfvén wave. Instead, the growth

of different, potentially important wave modes with temporally changing wave velocities makes

estimates using the momentum equation difficult and could identify the erroneous isotropization

frame. Running physically motivated simulations requires great care, as the results can radically

differ according to the box size or mass ratio, as shown by the simulations presented here,

which are opening the door for a rich avenue of future research towards more complicated

setups involving multiple wave modes, background inhomogeneities or power-law distributed

CRs. While the analysis we performed here is only valid for the simplified case of a single CR

pitch angle and energy, there is observational evidence of phase bunching in the solar wind ahead

of the Earth’s bowshock (Gurgiolo et al., 1981; Eastman et al., 1981; Thomsen et al., 1985).

This suggests, that the main results discussed in this work may carry over to the more general

case of CRs propagating in the galaxy.
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Appendix

6.A. Conventions

It is convenient to use a definition of vectors, which naturally reproduces the symmetry of the

problem. To this end, we align the 𝑥 coordinate of our coordinate system with the background

magnetic field 𝑩0 and denote parallel vector components as 𝒃 ∥ = 𝑏𝑥𝒆𝑥, where 𝒆̂𝑥 denotes the

unit vector. We express the perpendicular plane in complex notation: adopting 𝒆̂⊥ ≡ 𝒆̂𝑦 and

i 𝒆̂⊥ ≡ 𝒆̂𝑧 results in 𝒂⊥ = (𝑎𝑦 + i 𝑎𝑧) 𝒆̂⊥. The following identity follows:

𝒃 ∥ × 𝒂⊥ = −𝑏𝑥𝑎𝑧 𝒆̂𝑦 + 𝑏𝑥𝑎𝑦 𝒆̂𝑧 = 𝑏 ∥ i 𝒂⊥. (6.38)

Ions will experience a Lorentz force

𝑭 = 𝑞𝒗⊥ × 𝑩∥ = −i 𝑞𝐵0𝒗⊥ (6.39)

around the mean field, which causes a gyration with 𝒗⊥ = 𝑣⊥ 𝒆̂⊥ exp(−iΩ𝑖𝑡).
Transverse waves evolve in the perpendicular plane like exp{i [(𝜔 − iΓ)𝑡 − 𝑘 ∥𝑥]}𝒆⊥, where 𝜔

and Γ denote the wave rotation frequency and growth rate, respectively. According to this

definition, waves with a positive 𝑘 ∥ have a left-handed helicity for increasing 𝑥. Furthermore,

the sign of 𝜔 indicates the polarization of the wave: 𝜔 > 0 corresponds to a right-handed wave

while 𝜔 < 0 corresponds to a left-handed wave. The phase velocity of the wave, 𝑣wave = 𝜔/𝑘,

must be invariant regardless of the convention and its sign indicates the direction of movement.

For reference, we compare our definition to another popular definition (Stix, 1992; Bai et al.,

2019). In the following, we denote quantities defined in that convention with tilde symbols. In

this definition, 𝜔̃ is set to be always positive and our definition is recovered by setting 𝜔 = ±𝜔̃,

depending on the polarization of a wave. In their convection, the wave polarization cannot

be inferred solely from 𝜔̃ but needs to be explicitly specified, i.e., right-handed (left-handed)

polarized waves are corotating with the electrons (ions) and are denoted by exp
[
i (±𝜔̃𝑡 − 𝑘 ∥𝑥)

]
𝒆⊥.

Likewise, the definition of the wave velocity depends on the wave polarization: 𝑣̃wave = ±𝜔̃/𝑘,

where the plus (minus) sign corresponds to a right-handed (left-handed) wave. Despite the

difference in notation, both definitions for the wave velocity coincide, 𝑣wave = 𝑣̃wave, because it

denotes the observable physical propagation direction of the wave.

6.B. Comparison of fluid-PIC and PIC methods

The simulations in this paper have been performed using the new fluid-PIC method (Lemmerz et

al., 2024b). Here, we compare the I simulation obtained from this method with the traditional

and well-tested PIC method using the SHARP code (Shalaby et al., 2017b, 2021). We use

the same parameters as defined in Section 6.2.2, with the only exception that we use only

25 computational particles per cell for the CR species and 2.5 × 105 particles per cell for the

background species in the PIC simulations, in contrast to 75 particles per cell used in the

fluid-PIC simulations. Because the fluid-PIC method does not have to follow particles of the
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Figure 6.12 Same as Figure 6.3, but comparing
I simulations performed using the fluid-PIC and
pure PIC method. Both results are almost iden-
tical, except for the increased noise floor in the
PIC simulation at early times. Due to the dif-
ferences in the noise level, the time marker 𝑡2,
which initially denoted the linear growth phase,
has been moved to a later time, 𝑡2.5, to enable a
fair comparison between the PIC and fluid-PIC
methods in the linear growth regime.

background species, it is more computationally efficient.

The results for wave growth are shown in Figure 6.12, which compares the growth of the

unstable wave magnetic field as a result of the intermediate-scale instability (top panel), the

energy loss experienced by the CRs in exciting this modified whistler wave (middle panel), and

the mean drift speed of the CR population (bottom panel). Overall, both simulations produce

nearly identical results except for the perpendicular magnetic field at early times, which shows

an obvious difference in the noise floor of the simulations. This could be lowered in the PIC

simulation by increasing the computational particles per cell, at the expense of becoming more

computationally expensive.

In Figure 6.13, we compare the CR phases 𝜓cr and magnetic field angles 𝜓𝐵 for both sim-

ulations. We can identify all important characteristics in both simulations: wave growth and

the emergence of a helical magnetic field structure at 𝑡2.5, asymmetric bunching of particles

at 𝑡3, saturation through particles oscillating at around 𝑩⊥ at 𝑡4, and the back-swing as well

as the “ghost” strip at 𝑡5. Because waves in both boxes grow from different realizations, the
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Figure 6.13. Same as Figure 6.4, but comparing I simulations performed using the fluid-PIC
(left panels) and pure PIC (right panels) methods. 𝑡2.5 is used instead of 𝑡2 to ensure a fair
comparison between the two methods because of the increased electromagnetic noise floor in
the PIC simulation at earlier times, see Figure 6.12. The CRs at time 𝑡2.5 show more structure
compared to 𝑡2 used in Figure 6.4 as a result of the larger magnetic wave intensity.

specific 𝜓 values are not expected to match in between different simulations, i.e., an offset in

the phases of the waves is expected. As discussed before, the PIC results are noisier due to

the smaller number of CR particles per cell. This also influences the wave magnetic field in the

PIC simulation, which does not appear as straight white lines but instead shows wiggles as a

consequence of small-scale noise generated by the shot noise of the finite CR and background

particle number. Notwithstanding this minor difference, the physical effects described in this

paper agree to high precision between both simulations and are thus independent of the choice

of the numerical methods used.

6.C. Robustness of initial setup

To enforce the quasi-neutrality assumption and to suppress initial parallel currents, we initialize

a parallel electron beam with the same 𝑣dr as the CR ion beam. To check whether this particular

setup for the neutralizing electrons impacts our results, we also tested alternative initial con-

ditions. Instead of using a CR electron beam, the background electrons are adjusted to cancel

the current from the CR ions. We set the background electron density to 𝑛e = 𝑛i + 𝑛cr and their

bulk flow velocity to (𝑛𝑤)e = (𝑛𝑣dr)cr. In Fig. 6.14 we compare both setups for all of the simula-

tions carried out in this paper, where we use the same initial seed of CR ions. The method for

enforcing neutrality does not have any noticeable impact on our results; indeed, the growth and
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Figure 6.14 Comparison between two methods
of neutralizing the CR ion beam. The first
method uses a CR electron beam (simulation
identifiers without subscript) while the second
uses a slowly moving background electron dis-
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nbg). We show the evolution of the same quan-
tities as shown in Fig. 6.3, demonstrating excel-
lent agreement between both setups. Conclu-
sively, both neutralizing methods may be used
interchangeably for the CR streaming setup.

non-linear phase are practically indistinguishable in the simulations. Intuitively, the excellent

agreement between both setups can be understood by comparing the relevance of the electron

and ion beams. Even in simulations F&B with a reduced mass ratio of 𝑚𝑖/𝑚𝑒 = 100, the energy

density of the electron beam is less than 1% of the CR ion beam’s and is roughly equivalent to

the magnetic wave energy density at saturation. Given that only a small fraction of the electron

beam’s kinetic energy is likely converted to wave energy — similar to the CR ion beam — it has

negligible impact on the instability’s evolution. Instead, its primary function is to compensate

the current, a role fulfilled equally by the moving background electrons. Only during very early

times a minor difference between the setups is noticeable, here the neutralizing background elec-

trons introduce less noise in the CR ion population. There is another, more tangible advantage

of using the neutralizing background setup: The amount of computational particles is halved, as

no electron beam particles are included in the simulation. This decreases the computational cost

substantially when using the fluid-PIC method, since increasing the density of the background

electrons does not add any computational cost.
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Figure 6.15. The solution of the dispersion relation (6.42) in the background frame using the
parameters of the I simulation. Solid colored lines show the real frequency, while dashed colored
lines show the growth rate of the wave modes. Solid black lines indicate the dispersion relation
of the pristine background modes and CR ion-cyclotron waves without taking into account a
mutual interaction. Black dotted vertical lines indicate the point of intersection of the black lines,
i.e., the resonance condition 𝜔wave = 𝑘𝑣dr − Ωcr, at which we locally expect maximum growth.
However, the interaction with CRs modifies the induced wave frequency by 𝛿𝜔, as indicated by
red circles, leading to a modification of the resonance condition 𝜔wave + 𝛿𝜔 = 𝑘𝑣dr −Ωcr. Please
refer to Figure 6.8 for a representation of this solution in the comoving CR frame.

6.D. Dispersion Relation

Equations

We use the plasma dispersion function for transverse waves with a gyrotropic ring distribution

(e.g. Wu and Davidson, 1972; Shalaby et al., 2023)

𝜁𝑠 (𝑣dr,𝑠, 𝑣⊥,𝑠, 𝑛𝑠) =
𝜔2
𝑠

𝛾𝑠

[
𝜔 − 𝑘𝑣dr,𝑠

𝑘𝑣dr,𝑠 − 𝜔 −Ω𝑠
− 𝑣⊥,𝑠𝑐−2

(
𝑘2𝑐2 − 𝜔2

)
2
(
𝑘𝑣dr,𝑠 − 𝜔 −Ω𝑠

)
2

]
. (6.40)

Here, 𝜔𝑠 = 𝜔𝑠 (𝑛𝑠) =
√︁
𝑛𝑠𝑞

2
𝑠/(𝑚𝑠𝜖0) is the plasma frequency of a species 𝑠 and Ω𝑠 is the relativistic

cyclotron frequency for a particle of that species in the corresponding frame. To obtain 𝜔(𝑘) in

the frame comoving with the CRs, the following equation is solved numerically, and we account
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for the background species, CR ions and the neutralizing CR electron beam:

𝜔2
comoving − 𝑘2𝑐2 + 𝜁e(−𝑣dr, 0, 𝑛bg) + 𝜁i(−𝑣dr, 0, 𝑛bg)
+ 𝜁e,cr(0, 0, 𝑛cr) + 𝜁i,cr(0, 𝑣⊥,cr, 𝑛cr) = 0. (6.41)

Wave speed estimates in the background frame are retrieved from the following equation:

𝜔2
bg − 𝑘2𝑐2 + 𝜁e(0, 0, 𝑛bg) + 𝜁i(0, 0, 𝑛bg)
+ 𝜁e,cr(𝑣dr, 0, 𝑛cr) + 𝜁i,cr(𝑣dr, 𝑣⊥,cr, 𝑛cr) = 0. (6.42)

The pristine modes are recovered by solving these equations in the limit of 𝑛cr/𝑛bg → 0.

Dispersion relation in the background frame

In Figure 6.15, we show the solution of the dispersion relation (6.42) in the background frame

using the parameters of the I simulation. This solution in the background frame shows the

familiar behavior of the dispersion relation of the background modes, i.e., the backward and

forward moving Alfvén wave (𝜔 ≈ ±𝑘𝑣A) and the parallel whistler wave (𝜔 ≈ 𝑘2𝑑2𝑒Ω𝑒, where

the electron skin depth is 𝑑𝑒 = 𝑐/𝜔𝑒 and the electron cyclotron frequency is Ω𝑒 = 𝑞𝐵0/𝑚𝑒). In

this frame, the changes of the character of a wave from pure background modes to degener-

ate CR-background modes due to CR-wave interactions are less obvious in comparison to the

presentation in the comoving CR frame (Figure 6.8).
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Streaming Instabilities

Chapter 6 examined the fundamental commonalities between the gyroresonant streaming insta-

bilities. This Chapter focuses on their differences, with a particular emphasis on refining the

criteria for resonance and comparing their growth rates to evaluate their relative significance in

CR interactions.

Our analysis employs the gyrotropic ring distribution to isolate CR populations with specific

pitch angles, allowing us to identify fundamental mechanisms that may extend to more complex

distributions. The transverse dispersion relation for CRs distributed as a gyrotropic ring, with

background ions and current-compensating background electrons is (Wu and Davidson, 1972;

Shalaby et al., 2023, and Section 6.D)

1 − 𝑘2𝑐2

𝜔2
+ 𝑃±𝑒,bg (𝑣dr𝑛cr/𝑛bg, 0, 𝑛bg) + 𝑃±𝑖,bg (0, 0, 𝑛bg)

+ 𝑃±𝑖,cr(𝑣dr, 𝑣⊥,cr, 𝑛cr) = 0, (7.1)

where

𝑃±𝑠 (𝑣dr,𝑠, 𝑣⊥,𝑠, 𝑛𝑠) =
𝜔2
𝑠

𝜔2𝛾𝑠

[
𝜔 − 𝑘𝑣dr,𝑠

𝑘𝑣dr,𝑠 − 𝜔 ±Ω𝑠
− 𝑣⊥,𝑠𝑐−2

(
𝑘2𝑐2 − 𝜔2

)
2
(
𝑘𝑣dr,𝑠 − 𝜔 ±Ω𝑠

)
2

]
. (7.2)

We employ the equation with “-”, where 𝜔 > 0 corresponds to right-hand polarized waves and

𝜔 < 0 corresponds to left-hand polarized waves. This maintains generality, as we allow for

positive and negative values of 𝜔 and 𝑘 (Weidl et al., 2019a). Analytical solutions to equa-

tion (7.1) are challenging to obtain in their complete form. However, we can derive accurate

approximations by exploiting the scale separation of the relevant instabilities and focusing on

the dominant species interactions at each scale.

We denote Ωcr = Ω𝑖/𝛾 = 𝑞𝐵0/(𝛾𝑚𝑖), where 𝛾 is the Lorentz factor of CR ions. For our

analytical derivations, we assume that 𝑣dr𝑛cr/𝑛bg ≈ 0 in equation (7.1).

7.1. Constraints on Resonance with Forward Moving Waves

7.1.1. Electron-scale Effects

In the ideal MHD limit, forward-propagating Alfvén waves possess a phase velocity equal to the

Alfvén speed 𝑣A. This sets a minimal threshold for CR resonance, requiring parallel velocities

𝑣∥ > 𝑣A. However, this criterion becomes insufficient when considering plasma dynamics beyond
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MHD. As illustrated in Fig. 6.1, resonances arise from the intersection the Doppler-shifted CR

gyration frequency with the wave dispersion curves, which are not linear in 𝑘 in the multi-fluid

description. The forward wave mode exhibits a continuous transition from the Alfvénic into

the whistler regime, accompanied by an increase in phase velocity. Therefore, the resonance

condition necessitates a modified lower bound for 𝑣∥ that accounts for this dispersive behavior.

In the transition region between forward-moving Alfvén and whistler waves, we reduce the

dispersion relation of the background distribution in the limit of |𝜔 | ≪ |Ω𝑒 | and thereby also

drop the constant of unity that describes the displacement current (which is only important at

high frequencies)

0 = 1 − 𝑐2𝑘2

𝜔2
+ 𝜔2

𝑒

𝜔 (−𝜔 −Ω𝑒) +
𝜔2
𝑖

𝜔 (−𝜔 −Ω𝑖)

≈ −𝑐
2𝑘2

𝜔2
− 𝜔2

𝑒

𝜔Ω𝑒
− 𝜔2

𝑖

𝜔 (𝜔 +Ω𝑖) (7.3)

⇔ 0 = 𝑑2𝑖 𝑘
2 + 𝜔 𝜔2

𝑒

𝜔2
𝑖Ω𝑒︸︷︷︸

=−1/Ω𝑖

+ 𝜔

(𝜔 +Ω𝑖) (7.4)

⇔ 0 = (𝜔 +Ω𝑖)Ω𝑖𝑑
2
𝑖 𝑘

2 − 𝜔2, (7.5)

where we multiplied by Ω𝑖 (𝜔 − Ω𝑖) to arrive at the last equation. Using the identity Ω𝑖𝑑𝑖 = 𝑣A
yields the dispersion relation

𝜔 = 𝑘𝑣A
𝑘𝑑𝑖 ±

√︁
(𝑘𝑑𝑖)2 + 4

2
, (7.6)

where the “+” sign corresponds to the forward and the “−” sign to the backward moving waves.

The expression for forward moving waves captures both Alfvén waves (𝑘𝑑𝑖 ≪ 1), and the char-

acteristic 𝑘2-dependence of whistler waves (𝑘𝑑𝑖 ≫ 1).

Therefore, the resonance condition (equation 2.21) with the forward moving waves is

𝑘𝑣∥ −Ωcr = 𝜔 = 𝑘𝑣A
𝑘𝑑𝑖 ±

√︁
(𝑘𝑑𝑖)2 + 4

2

𝑣∥
𝑣A
− 1

𝛾𝑘𝑑𝑖
=

𝑘𝑑𝑖 +
√︁
(𝑘𝑑𝑖)2 + 4

2
. (7.7)

In the following, we aim to identify the smallest value of 𝑣∥ that allows gyroresonance with the

waves. We denote 𝑘 = (𝑘𝑑𝑖)min as the spatial scale resonant with this value of 𝑣∥ . In order to

find 𝑘, we differentiate 𝑣∥ as given by equation (7.7) with respect to 𝑘𝑑𝑖 and set it to 0 to arrive

at the following expression:

1

𝛾𝑘2
=

1

2

(
1 + 𝑘√︁

𝑘2 + 4

)
. (7.8)
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This condition can be rearranged to a polynomial of second order,

4𝛾−2 + (−4𝛾−1 + 𝛾−2)𝑘2 + (1 − 𝛾−1)𝑘4 = 0,

⇔ 4𝛾−2𝑥2 + (−4𝛾−1 + 𝛾−2)𝑥 + (1 − 𝛾−1) = 0, where 𝑥 = 𝑘−2. (7.9)

The physically relevant solution describing the transition between Alfvénic and whistler scales

is

𝑘 (𝛾) = +
√︄

8

−1 + 4𝛾 + √1 + 8𝛾
. (7.10)

Substituting back into equation (7.7) provides the lower bound for resonant parallel velocity

𝑣∥
𝑣A
≥

𝑘 (𝛾) +
√︃
𝑘2(𝛾) + 4

2
+ 𝛾−1

𝑘 (𝛾)
. (7.11)

Non-relativistic CRs (𝛾 = 1) require 𝑣∥ ≥ 2.60𝑣A to achieve resonance at 𝑘𝑑𝑖 = 1.15, mildly

relativistic particles (𝛾 = 2) can resonate at lower velocities (𝑣∥ ≥ 2.10𝑣A) and larger scales

(𝑘𝑑𝑖 = 0.85).

7.1.2. Grid-Scale Limitations on Resonant CRs in MHD Simulations

In ideal MHD, Alfvén waves exhibit a strictly linear dispersion relation with 𝜔 = ±𝑘𝑣A, and

the whistler branch is absent from this relation. The resonance condition 𝑘 (𝑣∥ ∓ 𝑣A) = Ωcr

admits solutions for backward-propagating waves at all velocities, while resonance with forward-

propagating waves requires 𝑣∥ > 𝑣A. A fundamental limitation emerges when considering parallel

velocities approaching the Alfvén speed. The resonant wavelength 𝑙res = 2𝜋/𝑘res diminishes

rapidly as 𝑣∥ approaches 𝑣A for forward-propagating waves, violating the assumption 𝑙 ≫ 𝑑𝑖

fundamental to MHD.

This scale separation constraint manifests differently in analytical theory and numerical imple-

mentations of MHD. Numerical simulations truncate scale through spatial discretization. For

a numerical grid with spacing Δ𝑥, the shortest resolvable wavelength corresponds to 𝑘grid =

2𝜋/(2Δ𝑥). At this scale, the resonance condition for CRs yields

𝑣∥
𝑣A

=
Ωcr

𝑘grid𝑣A
+ 1 =

1

𝛾

Δ𝑥
𝑑𝑖𝜋
+ 1. (7.12)

Grid scale waves are not well resolved and damped by numerical dissipation. This may require

adopting an effective Δ𝑥 that is larger than the actual step size. While the ion inertial length

𝑑𝑖 lacks explicit representation in the ideal MHD equations, we retain it through the relation

𝑣A/Ω𝑖 = 𝑑𝑖. To give an example, non-relativistic CRs (𝛾 = 1) in simulations with grid spacing

Δ𝑥 = 10𝑑𝑖 require 𝑣∥ ≥ 3.18𝑣A to achieve resonance with forward-propagating waves, substantially

exceeding the analytical MHD threshold. As CRs with larger Lorentz factors resonate with waves

at longer scales, they may still resonate at a lower threshold of 𝑣∥ .
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Figure 7.1. Left panel: Minimum 𝑣∥ of a CR that allows gyroresonance with the forward Alfvén
and whistler waves as a function of the CR Lorentz factor 𝛾 (equation 7.11). Right panel: The
associated scale of a wave that resonates with a CR propagating at the minimum 𝑣∥ , where 𝑘 =
[𝑘𝑑𝑖]min. We show the physical resonance taking electron effects into account (equation 7.11), as
well as the resonances in ideal MHD simulations that resolve the spatial size of Δ𝑥 (equation 7.12).

7.1.3. Comparison and Implications of Resonance Bounds

We summarize our findings in Fig. 7.1, contrasting the minimum parallel wave velocities needed

to achieve resonance at different 𝛾. The results demonstrate a resonance gap predominantly

affecting CRs with low Lorentz factors. This gap is of importance for CRs as their parallel

velocity approaches the Alfvén velocity through scattering, 𝑣∥ → 𝑣A, where resonant CR in-

teractions with forward-propagating Alfvén and whistler waves get diminished. This suggests

a transport barrier, where CRs will not further scatter in pitch angle once their parallel ve-

locity reaches 𝑣∥ ≤ 2.60𝑣A (at Lorentz factors of 𝛾 = 1), keeping them confined to positive

pitch angle cosines 𝜇. This phenomenon shows parallels to the established 90° problem in QLT

in the MHD approximation, which predicts a narrow resonance gap at 𝑣∥ = 𝑣A. While both

gaps impede particle transport, their underlying physics differs fundamentally. The QLT gap

emerges from the mathematical idealization of infinitesimally narrow resonance widths whereas

our multi-fluid treatment reveals a broader gap arising from the physical dispersion properties

of plasma waves. Despite their different origin, these phenomena generate analogous constraints

on particle transport processes.

The practical significance of this resonance gap requires careful consideration given several

mitigating mechanisms. Our analysis in Section 6.5.3 demonstrates that CR-driven Alfvén waves

can propagate at velocities substantially below 𝑣A. This nonlinear modification of wave prop-

144



7.2. Instability Growth Rates

erties combined with resonance broadening and non-resonant scattering mechanisms provides

additional ways for CRs to cross the gap.

Particles with 𝑣∥ < 𝑣A maintain resonant coupling with backward-propagating Alfvén waves.

Though these waves scatter, on average, CRs toward increasing parallel velocities, they diffuse

the CR momentum. This diffusive process enables CRs to cross the resonance gap. Thus, the

backward-propagating waves may play an important role in achieving full isotropization.

7.2. Instability Growth Rates

7.2.1. Derivation of the Intermediate-scale Instability Growth Rate

Shalaby et al. (2021) obtained a numerical fit for the growth rate of the intermediate scale

instability driven by a gyrotropic ring distribution

ΓIS,n
Ω𝑖
≈ 𝛼3/4 +

(𝛼
3

)1/3 (
𝑣dr𝑣⊥
𝑣2
A

)2/3
. (7.13)

Our analytical derivation extends this result by incorporating relativistic effects through an ad-

ditional factor of 𝛾−1/3 (see equation 7.27). Unlike in the previous section, we are now concerned

with distributions of CRs instead of single particles. We make this change more clear by using

the parallel drift velocity 𝑣dr instead of 𝑣∥ , even though these are initially of identical values.

We analyze the dispersion relation by incorporating electromagnetic waves, background elec-

tron dynamics, and perpendicular CR ion rotation. While parallel drift terms exhibit a first-order

pole at the gyroresonance condition (𝑘𝑣dr − 𝜔 −Ωcr), the perpendicular velocity components gen-

erate a second-order pole, making them the dominant contribution. Furthermore, taking the

limit 𝑚𝑖,bg →∞ eliminates background ion contributions and Alfvén waves, focusing our analysis

on whistler and electron cyclotron modes. The resulting dispersion relation takes the form

0 = 1 − 𝑐2𝑘2

𝜔2
− 𝜔2

𝑒

𝜔 (𝜔 +Ω𝑒) −
𝛼𝜔2

𝑖 𝑣
2
⊥/𝑐2

(
𝑘2𝑐2 − 𝜔2

)
2𝜔2𝛾 (𝑘𝑣dr − 𝜔 −Ωcr)2

, (7.14)

⇔ 0 ≈ − 𝑐2𝑘2 − 𝜔 𝜔2
𝑒

𝜔 +Ω𝑒
− 𝛼 (𝜔𝑖𝑘𝑐𝑣⊥/𝑐)2

2𝛾 (𝑘𝑣dr − 𝜔 −Ωcr)2
, (7.15)

where we drop the constant of order unity that describes the displacement current. Multiplying

by −(𝜔 −Ω𝑒) yields

0 = − 𝑐2𝑘2Ω𝑒 − 𝜔(𝜔2
𝑒 + 𝑐2𝑘2) − (𝜔 +Ω𝑒) 𝛼 (𝜔𝑖𝑘𝑐𝑣⊥/𝑐)2

2𝛾 (𝑘𝑣dr −Ωcr − 𝜔)2
, (7.16)

⇔ 0 =
−𝑐2𝑘2Ω𝑒

𝜔2
𝑒 + 𝑐2𝑘2︸       ︷︷       ︸
=𝜔bg

−𝜔 +
(
1 + 𝜔

Ω𝑒

) −𝑐2𝑘2Ω𝑒

𝜔2
𝑒 + 𝑐2𝑘2︸       ︷︷       ︸
=𝜔bg

𝛼 (𝜔𝑖𝑣⊥/𝑐)2
2𝛾︸          ︷︷          ︸

=𝜔2
crp

1

(𝑘𝑣dr −Ωcr︸      ︷︷      ︸
=𝜔𝑔

−𝜔)2 , (7.17)

⇔ 0 =(𝜔bg − 𝜔) (𝜔𝑔 − 𝜔)2 + 𝜔bg𝜔
2
crp

(
1 + 𝜔

Ω𝑒

)
. (7.18)
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Here, 𝜔bg represents the background wave frequency (cf. equation 2.56 in the limit 𝑑𝑖 → ∞,

whereas we find the 𝑃− solution of equation 2.52 here). 𝜔bg approaches the frequency of parallel

propagating whistlers in the regime of 𝑘 ≪ 𝜔𝑒/𝑐 = 𝑑−1𝑒 , that is 𝜔whistler = −Ω𝑒𝑘
2𝑑2𝑒. Equivalently,

the background wave frequency asymptotically approaches the electron cyclotron frequency,

𝜔bg → −Ω𝑒, for 𝑘 → ∞. We define the Doppler-shifted CR gyrofrequency 𝜔𝑔 = 𝑘𝑣dr − Ωcr and

a modulated CR plasma frequency 𝜔crp as well.

At the resonant scale, where the frequency of the background mode is equivalent to the

Doppler-shifted CR gyration, 𝜔(𝑘res) ∼ 𝜔bg (𝑘res) = 𝜔𝑔 (𝑘res), this yields the simplified dispersion

relation

0 = (𝜔bg − 𝜔)3 + 𝜔bg𝜔
2
crp

(
1 − 𝜔bg

Ω𝑒

)
. (7.19)

The last term, (1 + 𝜔bg

/
Ω𝑒 ), takes on values between 0 and 1. This dispersion relation has

three solutions: a purely real one, 𝜔 = 𝜔bg + 2𝛿𝜔I, and the complex conjugate pair 𝜔 = 𝜔bg −
𝛿𝜔I(1 ± i

√
3), where at resonance we obtain

𝛿𝜔I =
1

2

[
𝜔2
crp𝜔bg (1 + 𝜔bg/Ω𝑒)

]1/3
=

1

2

[
𝜔2
crp(−Ω𝑒)

𝑘2res𝑑
2
𝑒(

1 + 𝑘2res𝑑2𝑒
)2

]1/3
, (7.20)

ΓI =
√

3 × 𝛿𝜔I. (7.21)

The term 𝜔bg (1 +𝜔bg/Ω𝑒) manifests as a parabola bounded by roots at 𝜔bg = 0 and 𝜔bg = −Ω𝑒

with symmetry about its maximum at 𝜔bg = −Ω𝑒/2. This maximum coincides with the peak

wave velocity, 𝑣wave, that occurs in the transition region at 𝑘𝑑𝑒 = 1 between the whistler regime

characterized by 𝑣wave ∼ −Ω𝑒𝑘 and the electron cyclotron regime, where 𝑣wave ∼ −Ω𝑒/𝑘.

The wave velocity maximum, 𝑣wave ≤ −Ω𝑒/(2𝑘) at 𝑘 = 𝑑−1𝑒 , establishes an upper bound for the

drift velocity 𝑣dr that is compatible with the intermediate-scale instability through the resonance

condition

𝑘𝑣dr ≤ −Ω𝑒/2 +Ωcr (7.22)

⇒ 𝑣dr ≤ 𝑣A,𝑒/2 +Ωcr𝑑𝑒 (7.23)

where 𝑣A,𝑒 = |Ω𝑒 |𝑑𝑒 = 𝐵0/√𝜇0𝑚𝑒𝑛𝑒 denotes the electron Alfvén speed. For the assumptions

of quasi-neutrality and |Ωcr | ≪ |Ω𝑒 |, equation (7.23) reduces to 𝑣dr/𝑣A ≤ √𝑚𝑟/2, which is

consistent with Shalaby et al. (2021).

We caution, that the summand 1 of equation (7.14), which corresponds to the displacement

current and which we initially neglected, becomes relevant for relativistic phase velocities 𝑣wave =

𝜔/𝑘. This happens at Alfvén speeds of 𝑣A ≈ 10−2𝑐, which translates into whistler and electron-

cyclotron phase velocities of up to 𝑣A×√𝑚𝑟/2 ≈ 0.2𝑐 for the driven whistler and electron cyclotron

waves. Equation (7.23) slightly overestimates the maximal drift velocity in this regime.

In the following, we express equation (7.20) by substituting 𝑘res in terms of the CR velocity
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components. Given that Ωcr ≪ Ω𝑒, 𝑘res follows from the resonance condition

𝑘𝑣dr − 𝜔bg (𝑘) ≈ 0 (7.24)

⇒ 𝑘res𝑑𝑒 =
𝑣A,𝑒

2𝑣dr


1 ±

√︄
1 −

(
2𝑣dr
𝑣A,𝑒

)2
(7.25)

The negative branch corresponds to the whistler resonance at 𝑘res < 𝑑−1𝑒 while the positive branch

indicates electron cyclotron resonance at 𝑘res > 𝑑−1𝑒 . Substituting 𝑘res𝑑𝑒 into equation (7.20)

with 𝑘2res𝑑
2
𝑒/

(
1 + 𝑘2res𝑑2𝑒

)2 = (𝑣dr/𝑣A,𝑒)2 produces the growth rate

𝛿𝜔I =
1

2

[
𝛼

𝑣2⊥
2𝑑2𝑖

𝑣2
dr

𝑣2
A,𝑒

(−Ω𝑒)
]1/3

=
Ω𝑖

24/3

(
𝛼

𝛾

)1/3 (
𝑣⊥𝑣dr
𝑣2
A

)2/3
, (7.26)

ΓI
Ω𝑖

=

√
3

24/3

(
𝛼

𝛾

)1/3 (
𝑣⊥𝑣dr
𝑣2
A

)2/3
≈ 0.687

(
𝛼

𝛾

)1/3 (
𝑣⊥𝑣dr
𝑣2
A

)2/3
. (7.27)

Our analytical derivation differs from the numerical result in equation (7.13) by a factor of

approximately 0.991𝛾−1/3 ≈ 𝛾−1/3 , but agrees with the scaling of the other parameters. The

𝛾−1/3 factor emerges from relativistic length contraction modifying the effective CR density

ratio 𝛼/𝛾 = (𝑛cr/𝛾)/𝑛bg. The numerically derived 𝛼3/4 term remains absent in our analysis,

which considers only perpendicular velocity contributions to the dispersion relation. This term

is negligible unless 𝑣⊥ → 0.

The omission of Ωcr in the resonance condition (7.24) leads to the prediction of equal growth

rates for whistler and electron cyclotron waves. Including Ωcr decreases the resulting resonant

wave frequency in comparison to our previous estimate. This modifies the growth rate estimate

equation (7.20) that depends on the term 𝜔bg (1 − 𝜔bg/Ω𝑒), which is enhanced for the electron

cyclotron waves and decreased for the whistler waves. Nevertheless, these corrections on the

growth rates are in the percentile range, and we may assume equal growth rates for both wave

modes.

7.2.2. Alfvén Wave Growth Rates

We analyze the growth rates of forward and backward propagating Alfvén waves within the MHD

approximation for the background plasma. The dispersion relation in equation (7.1) without

parallel CR drift terms simplifies to (cf. equation 2.70)

(
𝜔𝑐

𝑣A

)2
− 𝑘2𝑐2 −

(
𝑘𝑐𝜔crp

𝜔𝑔 − 𝜔

)2
= 0, (7.28)

⇐⇒ (𝜔 + 𝑣A𝑘) (𝜔 − 𝑣A𝑘)
(
𝜔 − 𝜔𝑔

)2 − (
𝑘𝑣A𝜔crp

)2 = 0. (7.29)

The wave frequency can be decomposed into the resonant contribution and a perturbation

𝜔(𝑘) = 𝜔𝑔 (𝑘) + 𝛿𝜔 = ±𝑘res,A𝑣A + 𝛿𝜔, where the resonant wave number for forward and backward
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propagating Alfvén waves is given by

𝑘res,A =
Ωcr

𝑣dr ∓ 𝑣A
. (7.30)

This decomposition transforms equation (7.29) into

𝛿𝜔
(±2𝑣A𝑘res,A + 𝛿𝜔

) (𝛿𝜔)2 − (
𝑘res,A𝑣A𝜔crp

)2 = 0. (7.31)

The analysis proceeds through two limiting cases which approximate the term
(±2𝑣A𝑘res,A + 𝛿𝜔

)
differently. The commonly employed weak growth limit assumes 𝛿𝜔 ≪ 𝑣A𝑘 (e.g. Lerche 1967, a

derivation for the gyrotropic ring is given by Shevchenko et al. 2002), while the strong growth

limit posits 𝛿𝜔 ≫ 𝑣A𝑘.

Weak Growth Limit. In the weak growth regime, equation (7.31) yields a third-order polyno-

mial given by

(𝛿𝜔)3 = ± 𝑘res,A𝑣A
2

(
𝜔crp

)2
. (7.32)

Analogous to the intermediate-scale instability growth rate of equation (7.20), the solutions

comprise one purely real mode 𝜔 = ±𝑘res,A𝑣A±2𝛿𝜔 and a complex conjugate pair 𝜔 = ±𝑘res,A𝑣A∓
𝛿𝜔A(1 ± i

√
3) with

𝛿𝜔A =
1

2

[
𝜔2
crp

𝑘res,A𝑣A
2

]1/3
= Ω𝑖

1

24/3

[
𝛼

(
𝑣⊥
𝛾𝑣A

)2
1

2(𝑣dr/𝑣A ∓ 1)

]1/3
, (7.33)

ΓA =
√

3 × 𝛿𝜔A. (7.34)

The ratio of intermediate-to-gyroscale instability of growth rates in this limit becomes

ΓI
ΓA

=

[
2𝜔bg (1 − 𝜔bg/Ω𝑒)

𝑘res,A𝑣A

]1/3
≈

[
2𝛾

(
𝑣dr
𝑣A

)2 (
𝑣dr
𝑣A
∓ 1

)]1/3
> 1, (7.35)

establishing the dominance of intermediate-scale instability growth given that its criterion of

instability is fulfilled,
√
𝑚𝑟/2 > 𝑣dr/𝑣A > 1. The additional factor of 𝛾1/3 appears, because the

resonant scale of the Alfvén instability is mainly determined by the CR gyration (𝑘res,A𝑣dr ≈
Ωcr = Ω𝑖/𝛾), while the intermediate-scale instability is determined by matching the correspond-

ing wave frequencies (𝑘res,I𝑣dr ≈ 𝜔(𝑘res,I)). High-energy CRs therefore interact with Alfvén

waves at larger spatial scales compared to low-energy CRs, resulting in slower growth rates. By

contrast, the scale of intermediate-scale waves is (approximately) independent of 𝛾.

For the weak growth limit to be applicable, it has to be at least self-consistent. We compare
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the predicted growth rate (equation 7.34) with the unperturbed wave frequency 𝜔 ≈ 𝑘res,A𝑣A:

𝑘res,A𝑣A ≫ ΓA (7.36)

⇔ 𝑘res,A𝑣A ≫
( √

3

24/3

)3/2
𝜔crp (7.37)

⇒ 𝑘res,A𝑣A ≈ Ωcr

𝑣dr
𝑣A ≫ 33/4

4

√︂
𝛼

2𝛾

𝑣⊥
𝑑𝑖

(7.38)

⇒ 2.5 ≫ √𝛾𝛼 𝑣dr
𝑣A

𝑣⊥
𝑣A

. (7.39)

Even though we have neglected perturbations of the wave frequency by 𝛿𝜔 – which results in an

even stronger constraint as the perturbed wave velocity is always smaller than the unperturbed

wave velocity – this condition is not fulfilled for, e.g., values of 𝛼 ≈ 10−9 and non-relativistic CR

velocities 𝑣⊥ = 𝑣dr = 103𝑣A. This motivates the search for an alternative growth limit.

Strong Growth Limit. The strong growth analysis assumes the growth rate decouples from the

real frequency with 𝛿𝜔 ≈ iΓ and Γ ≫ 𝑘𝑣A. For these assumptions, equation (7.31) yields

Γ4
A =

(
𝑘res,A𝑣A𝜔

2
crp

)2
⇒ ΓA

Ω𝑖
=

(
𝛼

2𝛾3

)1/4 √︂
𝑣⊥

|𝑣dr ∓ 𝑣A |
. (7.40)

The relative growth rate between intermediate-scale and Alfvén waves in this regime becomes

ΓI
ΓA

=

√
3

2

(𝛼
2
𝛾5

)1/12 (
𝑣4
dr
(𝑣dr ∓ 𝑣A)3𝑣⊥

𝑣8
A

)1/6
. (7.41)

In both limits (i.e., the regimes of weak and strong growth), the Alfvén growth rate is attenu-

ated in comparison to the growth on intermediate scales at large values of 𝛾, which may have

implications for the transport of high-energy CRs.

The strong growth approximation introduces a distinctive scaling behavior that differs from

the weak growth regime. Peculiarly, the strong growth rate prediction does not necessarily

exceed the weak growth rate predictions, as both limits may produce results that are not self-

consistent. While deriving the intermediate-scale instability growth rates we assumed the weak

growth limit, see equation (7.18), which is also an assumption that should be tested. For this

reason, we will compare the analytically obtained scaling laws with numerically derived solutions

of the growth rate in the following.

7.2.3. Comparison of Pitch Angle-dependent Growth Rates

Figure 7.2 illustrates the pitch angle dependence of the instability growth rates for CRs with an

energy of 1 GeV. We derived the scaling formulas for 𝑣∥ and 𝑣⊥, but these are easily reformulated

using the definitions 𝜇 = 𝑣∥/𝑣 and 𝑣⊥ = (1 − 𝜇2)1/2𝑣. For example, the intermediate-scale

instability scales with (𝑣2⊥𝑣2∥ )1/3 =
[(1 − 𝜇2)𝜇2𝑣4]1/3.
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Figure 7.2. Instability growth rates for a population of CRs with 1 GeV (𝛾 = 2) at different pitch
angle cosines 𝜇 = 𝑣∥/𝑣, presuming a gyrotropic ring distribution of CRs. The colored growth
rates are obtained numerically using the parameters 𝑣A/𝑐 = 10−4, 𝑛cr/𝑛bg = 10−9. We contrast
these growth rates with our analytical formulas for the intermediate-scale instability growth
(equation 7.27), and the weak (equation 7.29) and strong (equation 7.40) growth limit for the
Alfvén waves. These are indicated in the legend by their scaling laws, where the formulas for
the Alfvén waves approximate 𝑣dr ± 𝑣A ≈ 𝑣dr.

For parameters representative of interstellar medium conditions, our analysis reveals signifi-

cant limitations in the weak growth approximation conventionally presented in standard refer-

ences (e.g., Kulsrud, 2004) and employed in QLT derivations (cf. equation 5.27). The observed

pitch angle dependence deviates substantially from weak growth predictions, demonstrating

the importance of validating the weak growth approximation when analyzing growth rates for

different CR distributions.

By contrast, the strong growth limit shows excellent agreement with the numerical growth

rates across a broad range of 𝜇 values, and the intermediate-scale instability also aligns well with

our theoretical estimates. Forward-propagating Alfvén and whistler modes emerge exclusively

when parallel velocities exceed the threshold 𝑣∥ ⪆ 2.1𝑣A (at 𝛾 = 2) established in Section 7.1.1,

where the dispersion branches converge.

The gyrotropic ring distribution represents the time-averaged configuration of individual gy-

rating CRs. It describes how a CR (back)reacts to the different waves, giving us insights into

the fundamental mechanics of the streaming instability. While these insights may not directly

translate to more complex scenarios like power-law distributions, they serve as a foundation for

developing physical intuition. In the following, we interpret a gyrotropic ring as a subsample of

a full distribution, which is only in resonance with specific modes of the full wave spectrum.

The significantly slower growth of large-scale modes driven by CRs moving nearly parallel to

the magnetic field enables the escape of CRs with large pitch angle cosines, resulting in a loss-

cone with decreased scattering probability. This loss cone may be broadened by wave damping
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mechanisms. For instance, assuming uniform damping from ion-neutral collisions across all

wavelengths with a rate of Γ𝑑 = −10−2Ω−1𝑖 would prevent excitation of resonant waves that

are necessary for scattering CRs with 𝜇 ⪆ 0.1, allowing CRs with these pitch angle cosines to

escape. Thus, the loss-cone may depend on the damping rate. Nevertheless, ion-neutral damping

does not generally provide flat damping and is less effective at very large scales. Moreover, ion-

neutral damping of Alfvén waves generally does not occur faster than the wave frequency ΓIN < 𝜔

(though exceptions to this exist, such as in the evanescent band, as pointed out by Plotnikov et

al. 2021). Thus, in the strong growth limit where ΓIN < 𝜔 ≪ Γ, Alfvén waves are not efficiently

damped by ion-neutral damping, even in regions dominated by neutrals. This is in contrast

with the weak growth limit, applicable for CR distributions sufficiently close to isotropization,

for which strong ion-neutral damping can limit wave growth.

Furthermore, ion-neutral damping does not impede electron cyclotron waves, and is less effec-

tive for whistler waves as these are mainly mediated by electrons (Pandey and Wardle, 2008).

Electron cyclotron waves are subject to thermal electron cyclotron damping, likely leading to

their saturation at low levels (Amano and Hoshino, 2010). In contrast, whistler waves not only

exhibit rapid growth but can achieve saturation amplitudes comparable to those of Alfvén waves,

as we demonstrate in Chapter 6.

Wave-wave interactions introduce additional complexity to the picture laid out so far, partic-

ularly through the ability of whistler waves to drive an inverse cascade that transfers energy to

modes at longer wavelengths. However, numerical investigations of these interactions face sig-

nificant challenges, requiring multi-dimensional simulations that simultaneously resolve electron

dynamics (Cho, 2011) and CR evolution timescales. Building upon these insights into wave-

particle interactions, wave coupling mechanisms, and their numerical challenges, we will explore

future research directions in Chapter 8.
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In this work I made three principal contributions, namely the development of a novel numerical

method specifically designed to study low-density beams interacting with a denser background

plasma, applicable to the CR streaming problem. I applied this numerical method to develop a

physical picture of the CR streaming instability growth through lopsided gyrophase bunching,

and provided insights into possible saturation mechanisms. I demonstrated the existence of a

resonance gap of CRs propagating quasi-perpendicular to the magnetic field lines and compare

the relative importance of the different streaming instabilities at different pitch-angles.

The discovery that whistler waves are driven unstable by CRs propagating almost perpen-

dicular to the magnetic fields dates back at least to Ginzburg et al. (1973), but were deemed

unimportant in achieving full CR isotropization due to their rather narrow instability criteria.

The commonly applied MHD approximation eradicates this effect completely from theoretical

considerations. The rapid growth of these whistlers to appreciable wave amplitudes was re-

cently discovered by Shalaby et al. (2021) in the context of CR streaming, and thereafter this

intermediate scale instability was found to play an important role in overcoming the injection

problem for shock-acceleration of electrons (Shalaby et al., 2022). Given these initial discoveries,

a necessity for numerical codes that support investigations into its non-linear behavior emerged.

The development of the fluid-PIC numerical method in this thesis represents a significant

methodological contribution, providing an alternative to the MHD-PIC method (Zachary and

Cohen, 1986; Bai et al., 2015) by not only including electron scales and therefore the intermediate

scale instability, but also by modeling Landau damping and enabling arbitrary CR distributions

without limitations set by the 𝛿 𝑓 -method. The fluid-PIC method bridges the substantial compu-

tational challenges inherent in simulating the multi-scale nature of CR streaming instabilities by

treating the dense thermal background plasma as a multi-species fluid while maintaining a fully

kinetic description of the sparse CR population. The method successfully captures essential ki-

netic effects associated with CRs and emulates Landau damping in the thermal plasma through

appropriate fluid closures. The only assumption underlying the fluid-PIC method is, that ther-

mal populations are modeled as a fluid. It solves Maxwell’s equations without simplifications,

and conserves key constraints like divergence-free magnetic fields and Poisson’s equation. The

fluid-PIC method enables investigating the CR streaming problem accurately at a fraction of

the computational cost that would incur for a similar PIC simulation.

My numerical and theoretical analysis reveals that the growth mechanism of gyroresonant

CR-driven instabilities fundamentally relies on the bunching of CR gyrophases with respect to

the wave magnetic field. The CR’s parallel velocity is influenced by the Lorentz-force, which

changes its Doppler-shifted rotational frequency and leads to an alignment of its rotational
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phase with the rotational phase of the wave’s magnetic field. This gyrophase bunching creates

a coherent perpendicular CR current that drives wave growth through a positive feedback loop.

The feedback mechanism involves modification of the wave velocity by the CR current which

maintains a lopsided distribution of CR gyrophases necessary for sustained momentum transfer

from CRs to waves. This physical picture provides a unified explanation for the growth of

all gyroresonant streaming instabilities including forward and backward-moving Alfvén waves,

whistler waves and electron cyclotron waves.

The saturation of these instabilities occurs through two distinct mechanisms in our simula-

tions. First, CRs can become trapped in the magnetic potential wells of the waves executing

pendulum-like oscillations that manifest as periodic variations in the wave amplitude. The

frequency of these oscillations scales with the growth rate of the instability indicating the funda-

mental connection between wave growth and particle trapping. Second, wave growth saturates

when the mean change in CR parallel velocity approaches the wave velocity at which point

further scattering would extract energy from rather than amplify the wave. Damping processes

are excluded from the analysis so far, which are believed to result in additional saturation

mechanisms.

I have shown, that CRs can significantly modify the wave velocity, specifically for Alfvén

waves. The induced wave velocity in the linear regime is always slower in magnitude than the

unmodified wave speed, and changes periodically in the saturated, non-linear regime, which has

important implications for CR transport models that assume scattering occurs in a fixed wave

frame. My findings contrast with assumptions conventionally made in QLT, calling into question

the pitch-angle diffusion coefficients derived by assuming a single wave frame and especially the

random phase approximation.

I advanced understanding of the recently discovered intermediate-scale instability by revealing

its similarities and differences to the larger-scale Alfvén waves. Unstable whistler waves exhibit

faster growth rates while saturating at comparable wave amplitudes as Alfvén waves in our

setup. I pointed out that instability growth rates strongly depend on the pitch angle of CRs

(at a fixed CR energy), where wave growth is most efficient at small scales, corresponding to

CRs with a parallel velocity few times larger than the Alfvén velocity. Moreover, I showed the

physical existence of a resonance gap at pitch angles close to 90°(quasi-perpendicular propaga-

tion) that arises from the wave dispersion properties in the transition region between Alfvén

and whistler waves. This behavior only occurs in the more accurate two-fluid background de-

scription and is absent in MHD. This resonance gap shares the same implications – but not the

same origin – as the 90° problem resulting from the mathematical idealization in QLT under

the MHD approximation. While often only forward-moving Alfvén waves are regarded in CR

streaming, I emphasize the role backward-moving Alfvén waves have in bridging the resonance

gaps. I further show, that the weak-growth limit typically applied in deriving growth rates is

invalid under ISM conditions for a gyrotropic ring distribution of CRs.
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The analysis in this work focused on the gyrotropic ring distribution, which excites distinct wave

modes and allows for careful examination of some fundamental effects present in CR streaming

absent of further complications. The clarity gained by investigating CR streaming using the

gyrotropic ring distribution may have not been possible with more complex distributions, but

the concepts found in this thesis must be extended to more complex scenarios, which include,

among others, power-law distributions of CRs, broader wave spectra, and inhomogeneities in

the background magnetic fields. These effects allow for a rich variety of non-linear effects, such

as wave-wave coupling and energy cascades. We might interpret wave-wave interactions more

loosely, because it was pointed out in this thesis and by Shalaby et al. (2023) that the CRs appear

as a wave-like structure as they resonate with the background, as such wave-wave interactions

also influence CRs directly. It is of particular interest how such non-linear interactions can

change CR observables.

Recently, Kempski and Quataert (2022) have demonstrated that neither CR confinement by

external turbulence nor self-confinement theories of CR transport provide accurate predictions

of observational data by themselves. One potential avenue of research attempts unifying both

models (Aloisio and Blasi, 2013; Aloisio et al., 2015), where specific interest lies in finding effi-

cient interactions between both paradigms. While Chandran (2000) established that anisotropic

MHD turbulence suppresses many resonant wave-particle interactions for high-energy cosmic

rays (CRs), the resonant interactions at intermediate scales remain unexplored. A fundamen-

tal constraint of the intermediate-scale instability lies in its stringent resonance requirement,

specifically that CRs must propagate nearly perpendicular to the local magnetic field. This

constraint may be lifted within turbulent environments, the reasoning given for this is as fol-

lows: Notwithstanding resonant interactions, CRs gyrate around magnetic field lines without

changing their pitch angles if the background magnetic field changes on scales that are large

compared with the gyroradius, which is important for the growth of Alfvén waves. However,

when CRs traverse magnetic structures smaller than their gyroradii, they follow approximately

linear trajectories, resulting in effective randomization of their pitch angles relative to small-

scale fluctuations. This randomization process potentially facilitates resonant interactions with

whistler waves. The investigation of these effects requires two-dimensional numerical imple-

mentations. While the primary components of the fluid-PIC method naturally extend to two

dimensions, the treatment of global Landau closures in this geometry presents significant com-

putational challenges, potentially necessitating the implementation of less precise local Landau

closure schemes.

Further research directions include refinement of the self-confinement theory, which has been

fundamentally linked to QLT since its inception. This work identifies several questionable as-

sumptions underlying QLT, that provide starting points for further theoretical investigation.

Additionally, the interactions between forward and backward-propagating Alfvén waves and in-

termediate scale waves warrant examination, particularly regarding energy cascades and wave-

wave coupling mechanisms. These phenomena might enable efficient energy injection at whistler
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scales, facilitating energy transport to larger-scale wave modes or vice versa, thereby generating

multiple scattering frames that modify macroscopic transport behavior.

A related objective involves incorporating CR physics into galactic simulation frameworks.

Recent progress has been achieved by, e.g., Jiang and Oh (2018) and Thomas and Pfrommer

(2019). However, systematic comparisons between these coarse-grained models and simula-

tions capturing kinetic plasma physics remain outstanding. Such comparisons should focus on

calibrating scattering coefficients to better represent underlying microphysical processes, but

may also reveal previously unrecognized physical effects significant for macroscopic transport.

Methodologically, the framework of information field theory (Enßlin, 2019; Steininger et al.,

2019; Edenhofer et al., 2024) provides a promising approach. This framework employs forward

models with uncertain parameters, such as CR hydrodynamic models with undetermined scat-

tering coefficients, and derives these parameters through variational inference from data, which

may be produced by fluid-PIC simulations. This yields both optimal parameter estimates and

associated uncertainties. This approach is particularly promising as it not only calibrates ex-

isting theories and indicates missing effects, but also reveals unnecessary terms that exhibit

large parameter uncertainties. Elimination of these terms reduces model complexity, facilitating

implementation in galactic simulation codes.

This work demonstrates the necessity of re-examining CR transport processes through de-

tailed plasma physical analysis and exploring the parameter space where traditional MHD and

QLT approaches prove insufficient. The theoretical frameworks and numerical tools developed

here establish a foundation for future investigations that potentially bridge the gap between

microscopic plasma and galactic scales.
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Dellacherie, Stéphane (2010). “Analysis of Godunov Type Schemes Applied to the Compressible

Euler System at Low Mach Number”. In: Journal of Computational Physics 229.4, pp. 978–

1016. issn: 00219991. doi: 10.1016/j.jcp.2009.09.044.

Dimits, A. M., I. Joseph, and M. V. Umansky (2014). “A Fast Non-Fourier Method for Landau-

fluid Operators”. In: Physics of Plasmas 21.5, p. 055907. issn: 1070-664X, 1089-7674. doi:

10.1063/1.4876617.

Dimits, A. M. and W. W. Lee (1993). “Partially Linearized Algorithms in Gyrokinetic Particle

Simulation”. In: Journal of Computational Physics 107.2, pp. 309–323. issn: 0021-9991. doi:

10.1006/jcph.1993.1146.

Ding, Hengfei, Changpin Li, and YangQuan Chen (2015). “High-Order Algorithms for Riesz

Derivative and Their Applications (II)”. In: Journal of Computational Physics 293, pp. 218–

237. issn: 00219991. doi: 10.1016/j.jcp.2014.06.007.

Draine, Bruce T. (2011). Physics of the Interstellar and Intergalactic Medium. Princeton Series

in Astrophysics. Princeton, N.J: Princeton University Press. 540 pp. isbn: 978-0-691-12213-7

978-0-691-12214-4.

Eastman, T. E., R. R. Anderson, L. A. Frank, and G. K. Parks (1981). “Upstream Particles

Observed in the Earth’s Foreshock Region”. In: Journal of Geophysical Research 86, pp. 4379–

4396. issn: 0148-0227. doi: 10.1029/JA086iA06p04379.

Edenhofer, Gordian et al. (2024). “Re-Envisioning Numerical Information Field Theory(NIFTy.Re):

A Library for Gaussian Processes and VariationalInference”. In: Journal of Open Source Soft-

ware 9.98, p. 6593. issn: 2475-9066. doi: 10.21105/joss.06593.

Einfeldt, B, C. D Munz, P. L Roe, and B Sjögreen (1991). “On Godunov-type Methods near
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