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Zusammenfassung

Die Eigengeschwindigkeiten sind die Geschwindigkeiten von Galaxien relativ zur kos-
mischen Hintergrundstrahlung (CMB). Der Mittelwert dieser besonderen Geschwindigkeiten
bestimmt die Massenströmung auf kosmologischen Skalen. Die Untersuchung der
Massenströmung ist ein interessanter Ansatz zum Verständnis des kosmologischen
Modells. Wir sehen, wie Beobachtungseffekte die kosmologischen Bulk-Flow-Messungen
möglicherweise verfälschen könnten. Bei den meisten Durchmusterungen von Galax-
ien wird versucht, die Strömung in einer Kugel um den Beobachter herum zu berech-
nen. Mit Hilfe von MultiDark-Simulationen werden die Auswirkungen von nicht
sphärischen Galaxiendurchmusterungskatalogen auf die Messungen des Volumen-
stroms untersucht. Die Studie zeigt, dass die Unterabtastung verschiedener Durch-
musterungsvolumina - von sphärisch-symmetrischen bis hin zu halbkugelförmigen
und engkegeligen Durchmusterungen - zu starken Verzerrungen führt. Es besteht
eine starke Abhängigkeit der Volumenstrommessungen von den Vermessungsgeome-
trien. Bei den nicht sphärischen Geometrien wird die Größe des Volumenstroms
überschätzt. Daher können die herkömmlichen Methoden zur Schätzung des Volu-
menstroms die Größe des Volumenstroms überbewerten. Dies könnte auch erklären,
warum Volumenstrommessungen Volumenstromgeschwindigkeiten ergeben haben,
die höher zu sein scheinen als die von der Λ-CDM-Kosmologie vorhergesagten.
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Abstract

The peculiar velocities are the velocities of galaxies relative to the cosmic wave back-
ground (CMB) radiation. The average of these peculiar velocities determines the
bulk flow on cosmological scales. The study of bulk flow is an interesting probe to
understand the cosmological model. We see how observational effects could possi-
bly bias cosmological bulk flow measurements. In most galaxy surveys bulk flow
calculations try to approximate the flow that would occur in a sphere around the
observer. Using the MultiDark simulation simulations to study the sampling effects
of non-spherical galaxy survey catalogs on the measurements of bulk flow. The
study involves shows that strong bias is introduced by undersampling various sur-
vey volumes from spherically symmetric, to hemispherical and narrow cone surveys.
There is a strong dependence on the bulk flow measurements on the survey geome-
tries. The non-spherical geometries are observed to have an overestimation of the
magnitude of the bulk flow. Hence the traditional methods for bulk flow estimation
can overestimate the magnitude of the bulk flow. This might also explain why bulk
flow measurements have revealed bulk flow velocities that appear to be higher than
those predicted by Λ-CDM cosmology.
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Chapter 1

Introduction

1.1 Introduction and motivation

The Copernican revolution placed the Sun at the center of our solar system from

the initial earth-centric model. The groundwork for understanding the universe was

laid during this European Renaissance. Newton’s gravitational law showed us that,

objects fall on the Earth for the same reasons as the Earth goes around the Sun. He

further stated Kepler’s law as a consequence of his own laws of motion combined with

the universal law of gravitation. Newton’s theory of gravitation laid a framework for

the understanding of gravity and its role in the dynamics of the universe. With the

basis of Newton’s classical physics theories, Einstein developed the general theory

of relativity. Although Newton’s theory was suppressed by this new understanding

of gravity the Newtonian framework of gravity still remains useful.

Einstein’s theory suggests that the universe is not static and that matter and

energy determine the curvature of space-time (Einstein (1915)). This along with the

basis of the Copernican principle was useful for the development of the Friedmann-

Lemâıtre models of the expanding universe. The Friedmann-Lemâıtre models or

Friedmann-Lemâıtre Robertson-Walker (FLRW) models in the framework of the

FLRW metric describe the evolution of the expanding universe (Ellis and van Elst

(1999)). The models also assume homogeneity and isotropy of the universe on a

large scale.

Even though the universe is expanding in accordance with the FLRW models

on average, there are regions where the gravitational force is stronger than the

general cosmic expansion. As a result, there is coherent motion of the matter in

a particular direction in that region. This coherent motion of galaxies and galaxy

clusters contributes to the peculiar velocity component in addition to the overall

expansion or Hubble flow. On a large scale, this local deviation from the Hubble

flow manifests as the bulk flow (Peter Coles and Francesco Lucchin (2002)).

We can study the distribution of matter on the large scales of the universe with

the bulk flows. This indeed helps us to understand the models of structure formation

and study the distribution of dark matter. By comparing the properties of the bulk

flow with the prediction from the existing models, we can constrain parameters

like matter density, energy density, and Hubble constant. The bulk flow provides
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information about the local deviation from the uniform Hubble flow to understand

the motion of galaxies and galaxy clusters under the influence of gravity. Peculiar

velocity plays a central role in the detecting and quantifying the bulk flow. Other

methods include the study of the peculiar velocity with the redshift space distortions

and with gravitational lensing.

Peculiar velocity can be added or subtracted to the total velocity based on the

direction of the motion. The velocity field of the local supercluster was studied

by (Han and Mould (1990)) giving the value of 331 ± 41 km/s towards the Virgo

Cluster. The studies suggested that there is a bulk motion of the galaxies in the

local universe towards the Virgo cluster. The Virgocentric infall (Schechter (1981))

is due to the gravitational pull of the matter towards the cluster, which is actively

studied even today. In addition to the peculiar velocity field, the tidal velocity field

is also studied by (Lilje (1986)) to obtain better measurements of the cosmic bulk

flow. The findings implicated a quadrupolar tidal velocity of ∼ 200 km/s in addition

to the Virgocentric infall.

The advent of recent galaxy redshift surveys like the Sloan Digital Sky Survey

(SDSS) (Howlett (2022)) and 2dF Galaxy Redshift Survey (Colless (2001)) covers

vast regions of the sky. This makes the study of the bulk flows more precise in

measurements. These surveys reduce the effects of redshift space like ’Fingers of

God’ and isolate the bulk flow measurements. The peculiar velocity catalogs of

galaxies based on the Tully-Fisher relation like Cosmicflows are useful for these

measurements (Tully (2016)).

The peculiar velocity readings are subject to a few observational constraints,

which act as a source of inaccuracy. The galaxy redshift surveys require accurate

measurements of the redshift effect. The CMB dipole pattern created due to the

relative motion of the Earth relative to the CMB frame has to be subtracted ac-

curately. Observational data noise and systematic instrument errors can introduce

uncertainty in the measurements. If there is a selection bias in the sampling of the

data such as a survey of particular types of galaxies can impact the measurements.

Also, observations being limited by volume introduce statistical variations on a large

scale (Wojtak (2014)). The number and location of the detected galaxies in the sky

have an impact on how precisely the peculiar velocity measurements are made.

Large-scale surveys with complete sky-covered measurements are robust for the

prediction of the bulk flow. However, the survey geometries are non-spherical and

do not cover the entire sky. As the galaxy distribution in the universe is not uniform

on the local scales, the cosmic web includes the presence of voids, galaxy clusters,

and superclusters. This creates empty regions in space where no data can be mea-

sured. The presence of the zone of avoidance in the line of sight of observational

data can also constrain our measurements. Typically, calculations of bulk flow try

to approximate the flow that would occur in a sphere around the observer. This

introduces the undersampling effects in the bulk flow measurements. The biases due

to this sampling effect are reflected in the overall bulk flow measurements (?).

For this thesis, we are particularly interested in the observational effects on the

bulk flow measurements and the biases introduced due to these peculiar velocity
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measurements. We study the case for the non-spherical survey geometry which

introduces the undersampling of velocity distributions. The results could help to

explain why several bulk flow observations have revealed bulk flow velocities that

appear higher than those predicted by conventional ΛCDM cosmologies. For com-

paring bulk flows to cosmological models, we use a different method where the

theoretical prediction for observation of a bulk flow is subjected to the geometry

and sampling rate of that survey.

1.2 Big Bang Model

1.2.1 Cosmological Principle:

Copernican principle states that the Earth is not in a central, specially favored po-

sition in the universe. By this principle, it is implicit that the laws of physics apply

uniformly throughout the universe. This has been instrumental in the development

of different theories in different contexts like the Cosmological principle or the medi-

ocrity principle. One of the profound confirmations of the Copernican principle was

by Edwin Hubble. His observations based on the redshift of galaxies suggested that

the galaxies are receding away from us (Hubble (1929)). He demonstrated the lack

of centrality when the observations were being made, further supporting the idea

that all galaxies are moving apart from one another.

The Copernican principle is the cornerstone of our understanding of the universe.

The principle is a philosophical and observation stance that addresses the absence

of a privileged observer in the universe. Although it does not provide information

about the universe and its large-scale structure, it only emphasizes that the universe

must have similar properties on a larger scale regardless of the location. Hence

the cosmological principle proves to be useful as an extension of the Copernican

principle.

The cosmological principle is also the basis of our standard cosmological model

today. The principle states that on sufficiently larger scales the universe is both

isotropic and homogeneous. By homogeneity, it is meant that, on sufficiently large

volumes the matter distribution in the universe is uniform. In other words, any point

in space can be chosen as an origin for a frame of reference. Hence homogeneity is

the translation invariance of fields of interest. According to the large scale surveys

such as SDSS the galaxy distribution in the universe is homogenous at length scales

greater than 70h−1Mpc (Sarkar et al. (2009)). Isotropy means that the properties of

the universe remain the same regardless of the direction in which they are measured.

This suggests that we can orient our frame of reference in any direction, and the

properties remain the same. Therefore isotropy is related to rotational invariance.

The Copernican principle is an additional assumption in favor of isotropy. For scalar

quantities homogeneity implies isotropy. The Cosmological Principle is empirically

supported by observational data. The mathematical framework for the cosmolog-

ical principle is also given by the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric.

3



1.2.2 The Robertson-Walker metric

Taking the assumptions of isotropy and homogeneity on larger scales the average

evolution of the universe is governed by the metric called Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric or Robertson-Walker (RW) metric. For simple

calculations, we assume the existence of a coordinate system for the universe by

taking the t as the time coordinate and, ω, θ, and ϕ as radial, polar, and azimuthal

space coordinates. The line element in this homogeneous and isotropic universe is

given by,

ds2 = c2dt2 − a2(t)[dω2 + F 2
K(ω)(dθ

2 + sin2 θdϕ2)] (1.1)

We assume that space-time is filled with fluid hence the ω, θ, and ϕ are the comoving

coordinates of the fluid element, and t is the proper time of the comoving clock in

such an element. fk(ω) can be trigonometric, hyperbolic or linear in ω. The solutions

are given as,

fk(ω) =


1√
k
sin(

√
kω), (k > 0)

ω, (k=0)

1√
−k

sinh(
√
−kω), (k < 0)

For complete proof see (D’Inverno (1992)). Here k is the curvature constant which

is related to the geometry of the three-dimensional spatial hypersurface in a way

that: k < 0 is the geometry of an open universe, k=0 is the flat universe and k >0

gives the geometry of a closed universe with k having units of length.

The ds2 in the equation (1.1) represents the spacetime interval, which is a mea-

sure of the separation between two events in spacetime, c is the speed of light,

dt represents the differential time, which measures the time interval between two

events, a(t) is the scale factor, which characterizes the expansion of the universe as

a function of time. As the universe expands, a(t) increases. In terms of spherical

polar coordinates, where r ≡ fk(ω), dr
2 represents the differential spatial distance,

which measures the spatial interval between two points in the universe. The metric

takes the form,

ds2 = c2dt2 − a(t)2
[

dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
(1.3)

The FLRW metric is tailored to describe the universe which is isotropic and homo-

geneous. By applying this metric to Einstein’s field equation we can solve for the

evolution of the scale factor a(t).

1.2.3 Friedmann Equations:

Space-time is a four-dimensional manifold, according to General Relativity with its

metric tensor gµν being a dynamical field. The dynamics of this field are given by
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Einstein’s field equation.

Gµν ≡ Rµν −
1

2
Rgµν − Λgµν =

8πG

c4
Tµν (1.4)

The terms Tµν which is the energy-momentum tensor and the Λ, cosmological

constant help to understand the dark energy or the expansion of the universe.

As mentioned above we have assumed the space-time to be filled with the perfect

fluid of pressure p and density ρ and it is considered to have the four-velocity uµ.

Taking into account the expansion of the universe and the metric, in the end, we

get 2 differential equations for a(t) from Einstein’s equation.

(
ȧ

a
)2 =

8πG

3
ρ− k

a2
(1.5)

(
ä

a
) = −4πG

3
(ρ+ 3p) (1.6)

These are known as the Friedmann equations (Friedman (1922)). The term ( ȧ
a
) is

called the Hubble parameter (H) which measures the expansion rate of the universe.

The current value of this parameter is called the Hubble constant whose value is

given as H0 = 100 h km s−1Mpc−1 and the uncertainty is expressed as the best

value of h = 0.72 ± 0.08 (Freedman et al. (2001)).

1.2.4 Redshift

A more relatable variable to understand the scale factor of the universe is redshift.

The cosmic redshift z uses geometrical and observational considerations to explain

the expansion of the universe predicted by the Friedmann equations previously.

Redshift of a luminous source such as a galaxy is given by,

z =
λ0 − λe

λe

(1.7)

Here λe is the wavelength of radiation emitted from the source observed at O (which

can be the origin of our coordinate system) at time te or initial time. The source is

moving with the expansion of the universe and is at a comoving coordinate r. The

wavelength of radiation observed by the observer is λ0 at the time t0.

The light ray travels at the null geodesic from the source to the observer. So

ds2=0 and we get, ∫ t0

te

cdt

a(t)
=

∫ r

0

dr

(1− kr2)1/2
= f(r) (1.8)

The observation and emission time of the light source is given as t
′
0=t0+ δt0

and t
′
e=te+ δte respectively. The source and the observer both are in the comoving

coordinates hence for unchanging f(r) we get,

∫ t
′

t
′
0

cdt

a(t)
= f(r) (1.9)
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If δt and δt0 are very small we can say from the above equation that,

δt0
a0

=
δt

a
(1.10)

But we know that δt= 1
νe

and δt0=
1
ν0

and the frequency indeed can be shown as

ν0=1/λ0, νe=1/λe hence we can say,

a

λe

=
a0
λ0

(1.11)

this is written as

1 + z =
a0
a

(1.12)

1.2.5 Cosmological Distances:

The spacetimes of non-euclidean geometries and arbitrary shapes have different dis-

tance and time measurements. The distance does not simply mean connecting two

points at the same instant in time. There are mainly two reasons for this one is the

finite speed of light takes time to connect the points and the second is simultaneity

is dependent upon relative motion in two points.

There are three different distance scales that are considered proper distance,

comoving distance, luminosity distance, and angular diameter distance. These dis-

tances are the unique way to connect the scale factor a(t) to the coordinate time.

For the purpose of this thesis, the proper distance and the comoving distance are

important

Proper Distance: The distance measured by the time required for light to reach

from the source to the observer is called the proper distance Dprop. Hence it is given

as

dDprop(z1, z2) = −cdt = −c
da

ȧ
(1.13)

the negative sign indicates that the Dprop should increase away from the observer

while t and a(t) should increase towards the observer.

Dprop = c

∫ a(z1)

a(z2)

da

ȧ
(1.14)
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Figure 1.1: The image shows proper and comoving distances as a function of time.
As the universe expands the proper distance between galaxies increases but the
comoving distance remains the same.

Comoving Distance: The comoving distance Dcom is the distance between

the world lines of the source and observer comoving on spatial hypersurface at a

constant time (t= const). Hence this is the coordinate distance between the source

and the observer which can be given by,

Dcom(z1, z2) = c

∫ a(z1)

a(z2)

da

aȧ
(1.15)

1.2.6 Epochs of the Universe:

The evolution of the universe had three epochs in which the evolution was domi-

nated by one of the three components matter, radiation or vacuum energy.

Radiation dominated era: In the early universe radiation dominated. The

universe was filled with non-degenerate ultra-relativistic gas in thermal equilibrium.

The density contribution varied as ρr ∝ a−4. There is an additional ’a’ along with

the dilution effect for the expansion for the redshift of the photon momentum.

Matter Dominated era: Before non-relativistic matter started dominating

there was a matter-radiation equality era where the energy density of ordinary and

relativistic matter was equal.

aeq =
ρr
ρm

(1.16)

After this, the non-relativistic matter starts dominating. Here we assume the

universe is filled with the pressureless fluid which is a good approximation for the

non-relativistic gas, p << ρc2. The density dilutes directly as the proper volume

expands which is given by ρm ∝ a−3. This is the conservation law of total energy

for a comoving frame.

Domination of Cosmological Constant: This can be described by the fluid

with negative pressure. From the matter domination epoch to the Λ-dominated
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epoch occured at,

aeq,Λ = 3

√
ρm
ρΛ

(1.17)

The density of the flat universe without taking into consideration the cosmolog-

ical constant is called as the critical density,

ρcr ≡
3H2

0

8πG
(1.18)

This quantity helps us to define the dimensionless density parameters as,

Ωf ≡
(
ρf
ρcr

)
today

(1.19)

Hence,

Ωm(a) =
8πG

3H2(a)

ρm(t0)

a3
(1.20)

and

ΩΛ(a) =
Λc2

3H2(a)
(1.21)

1.3 Gravitational Evolution

1.3.1 Linear Eulerian Perturbation Theory:

The matter in our universe is not distributed homogeneously at all scales. The small

density perturbations were seeded in the inflation period in an otherwise homoge-

neous universe. Due to gravity these perturbations grew in amplitude and led to the

formation of the structures that we see today in the Universe. Eulerian perturbation

theory is the most used theory to study the formation and evolution of the structure.

The spatial and time dependence of velocity and density field is studied through this

theory. The Eulerian perturbation theory is particularly useful in early times and at

large scales where the overdensity is not very large. But for high-density contrast,

we take into consideration theories like spherical collapse or we resort to N-body

simulations for highly non-linear scales.

At large scales, the dynamics of the universe are mostly governed by dark mat-

ter. Hence we can assume the universe to be a continuous fluid. We consider the

Newtonian limit of the equation of motion with small perturbations. As the mo-

tions of cold matter in the universe are non-relativistic (v << c). The description

of the full evolution of the density, velocity, and gravitational field is possible with

the equations of motion. To describe the evolution of this fluid three equations are

used, the continuity equation, the Euler equation, and the Poisson equation.

∂tρ+∇x · ρv = 0 continuity equation (1.22)

∂tv + (v · ∇x)v +
1

ρ
(∇x)p+∇xΦ = 0 Euler equation (1.23)

8



∇2
xΦ− 4πGρ = 0 Poisson equation (1.24)

The framework of the perturbation theory assumes that gravity is the only agent

responsible for the growth of the structure and inhomogeneity. The pressure forces

are considered to be negligible. Taking the FLRW metric for flat space-time (k = 0)

((1.3)) and including the small perturbations,

ρ ≡ ρ̄[1 + δ] (1.25)

v = u+H

(1.26)

ϕ = ϕ̄+ Φ (1.27)

The notations used are as follows,

symbol meaning comments
ρ̄ average density
δ overdensity field δ = ρ

ρ̄
− 1

ρ density field
u peculiar velocity field
ϕ gravitational potential
Ωm density parameter equation (1.20)
x⃗ comoving position in real space

Table 1.1: Notations used in this thesis

The total quantities with perturbation give (Bernardeau et al. (2002)):

∂tδ = ∇x · [(1 + δ)u] continuity equation (1.28)

∂tu+H(t)u+ (u · ∇x)u = −∇xΦ Euler equation (1.29)

∇2
xΦ =

3

2
Ωm(t)H

2(t)δ Poisson equation (1.30)

Here the dependence of δ, u, Φ on (x⃗,t) is suppressed in the notations. We can then

track the development of small fluctuations by linearizing the equations above and

ignoring all the higher-order terms. Combining with the Poisson equation,

∂tδ + θ = 0 (1.31)

∂tδ +H(t)θ = −3

2
Ωm(t)H

2(t)δ (1.32)

Where θ = ∇ · u(x, t). As the initial vorticity decays with time, we assume no

vorticity ∇× u = 0. Combining the equations (1.31) and (1.32) to get,

∂2
t δ +H(t)∂tδ −

3

2
ΩmH

2(t)δ = 0 (1.33)
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Which has the general solution of the form,

δ(x, t) = A(x)D
(+)
1 +B(x)D

(−)
1 (1.34)

As we want to study the growth of the structure we consider only growing modes

and not the decaying ones. Hence taking only the first term on the right-hand side.

The linear theory is valid for the density and the velocity perturbations that are

very small. For such cases, the second and higher-order terms are negligible and can

be discarded.

1.3.2 Dynamics of the structure formation:

We study the inhomogeneity to understand exactly when and how the universe

started to depart from the initial uniform density. This can be done by studying

the matter in the universe and its evolution due to interaction with the self-gravity.

Linear solution of the behavior of matter discussed in the last section can be obtained

by taking into account the density perturbations.

1 + δ(x) =
ρ(x⃗)

ρ̄
(1.35)

These density perturbations influence the structure formation in the universe. To

study these perturbations we consider the fundamental equations governing the

fluid motion otherwise called equations of motion from the last section equations

(1.31), (1.32), (1.33). There are mainly two ways to introduce perturbations in

these equations. The perturbations can be introduced by changes in uniform density

by compression or expansion of the volume adiabatically, these are called adiabatic

perturbations. The matter density and the radiation density are affected in different

ways. The other mode of perturbation is called isocurvature perturbation. Here the

entropy density is perturbed and not the energy density so the total density remains

homogeneous. The isocurvature perturbations to the radiation are constant. The

linear adiabatic perturbations are important for the purpose of understanding the

density fluctuations which scale with time as,

δ =

a(t)2 (radiation domination)

a(t) (matter domination)

The equations are given in the Eulerian coordinates for the particles in the motion

and the proper length units are used, the Hubble expansion is also taken into con-

sideration. Gravitation causes a non-uniform distribution of the particles to grow

more and more irregularly with time. Hence the matter undergoes displacement

with respect to the uniformly expanding background universe. The displacements

are the most direct ways of identifying the inhomogeneity. Hence we transform

the perturbed equation to comoving units. The transformations for position and
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peculiar velocity are,

x(t) = a(t)r(t) (1.37)

δv(t) = a(t)u(t) (1.38)

We can say that the comoving peculiar velocity is just the time derivative of the

comoving coordinate r which is given by,

ẋ = ȧr + aṙ = Hx+ aṙ (1.39)

Deviation from the Hubble flow hence is the probe for the inhomogeneity which can

be studied through the peculiar velocity.

1.4 Bulk Flows:

The FLRW models incorporate the effects of gravity, which are responsible for the

formation of cosmic structures such as galaxy clusters, superclusters, and filaments.

These structures are not distributed uniformly, and their gravitational interactions

can result in peculiar velocities for galaxies within them. Peculiar velocities are the

velocities of galaxies relative to the cosmic microwave background (CMB) radiation

and can contribute to bulk flows.

1.4.1 Velocity Perturbations:

The equations of motion are defined in the last section. We have the solutions for

the δ density perturbations and from there we can determine the velocity fields and

gravitational potential field as well in terms of comoving coordinates. As we have

seen before ∇× u =0 hence the velocity field is irrotational. We can determine the

velocity field as a gradient of some velocity potential (Φu),

u = −Φu

a
(1.40)

From the peculiar velocity, we can determine the peculiar gravitational acceler-

ation as,

g = −Φ

a
(1.41)

From the Poisson equation we can say that,

∇2Φv = Hfa2δ (1.42)

This gives us the relation between the gravitational potential and the velocity po-

tential as,

Φ =
3ΩH

2f
Φv (1.43)

And hence we can say that,
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u =
2f

3ΩH
g (1.44)

This tells us that regardless of the Ω the gravitational acceleration and the velocity

will remain in the same direction for linear theory.

We can determine the power spectrum of the field Φ by taking the relation

between u and the density perturbation δ. Hence the relation between the density

perturbation relation with g can be determined,

u(x) = aH
f(Ω)

4π

∫
δ(x

′
)(x− x

′
)

mod x− x′3
d3x

′
(1.45)

Assuming that the power spectrum of the density field is known we can say,

PΦ(k) = (
3

2
ΩH2a2)2P (k)k−4 (1.46)

Hence the velocity power spectrum is,

Pu(k) = (aHf)2P (k)k−2 (1.47)

The velocity field is a vector so the power spectrum includes all three components

of the u. The power spectrum is useful to determine all the statistical properties of

’u’ assuming that δ is a Gaussian random field.

1.4.2 Velocity Correlations:

Now taking things from Fourier space to real space and determining the properties

of u in a statistical manner we take the scalar velocity covariance function as,

ϵu(r) = ⟨u(x1) · u(x2)⟩ (1.48)

Here r= |x1 − x2|. Hence the function can be expressed as,

ϵu(r) =
(H0f)

2

2π2

∫
p(k)j0(kr)dk (1.49)

Hence we can find the statistical properties of the velocity field. However, there is

a problem with such a practice. For a continuous velocity field sampled at random

positions in the galaxy catalog all the density distribution is not covered as the

galaxies taken only the overdense regions in the space. Hence any practice based

on the correlation between the density and the velocity field will result in biased

estimates.
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1.4.3 Bulk Flows:

Figure 1.2: The image shows the reconstruction of the density-velocity field using
the PSCz redshift catalog. The x and the y axes are supergalactic planes along x
and y coordinates respectively. The vector arrows shown are the projection of the
velocity field and the contours show lines with similar δ (Peter Coles and Francesco
Lucchin (2002))

Bulk flows are one of the simplest ways to study and measure peculiar velocities.

Cosmic Bulk Flow is the net motion of matter in a large region. Typically in the

galaxy catalogs, this is a large spherical region centered on the observer. The formula

for the bulk flow is,

VBF = (V 2
x + V 2

y + V 2
z )

1/2 (1.50)

The density field is Gaussian and so each component of the velocity field in the above

equation is Gaussian. Hence the averaged velocity V will follow the Maxwellian

distribution which is given by,

P (V )dV =

√
54

π
(
V

σV

)2exp[−3

2
(
V

σV

)2]
dV

σV

(1.51)

Here V is the filtered velocity which is given by,

V (x,R) =
1

(2π)3

∫
Ṽ (k)WV (k,R)exp(−ik · x)dk (1.52)

Where WV (k,R) is a chosen window function. It is chosen according to the

construction of the sample of study. We chose the top-hat window function for our

sample. From the velocity power spectrum, we can say that,

σ2
V (R) =

(H0f)
2

2π2

∫ ∞

0

P (k)W 2
V (k,R)dk (1.53)

In an ideal isotropic and homogeneous universe the mean bulk flow should be

zero. Hence there should not be any deviations from the standard values of the σ.
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But we observe the deviation in our measurements. From the equation above we

can see that the bulk flow depends on the linear terms of k hence it proves useful

in probing the linear regime of P(k). Hence on a large enough scale, we can use the

bulk flow as a probe via the predictions of the linear theory.
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Chapter 2

Methodology

The standard cosmological model explains the expansion of the universe by cos-

mological constant and matter density dominated by dark matter. At scales much

smaller than the Hubble radius, CDM particles are non-relativistic the equations

of motion are with consideration of Newtonian gravity studied with the equations

(1.31), (1.32), (1.33). The dynamics of the universe are dominated by gravity on the

larger scales, the baryons and the dark matter can be taken as a single pressureless

cold fluid. This scenario makes the choice of computer simulations ideal for studying

the evolution of such systems because by taking the initial condition and the known

laws of physics we can predict the evolution of the system by gravitational inter-

actions alone. These simulations, especially N-body simulations, start from initial

conditions that show small fluctuations in the universe’s density, these fluctuations

are evolved under gravity’s influence, resulting in the formation of structures from

the smallest scales to the largest observable phenomena. This growth of structures

goes from linear to highly nonlinear scales. The Λ−CDM model is compatible with

all the observations of the large-scale structure even at non-linear scales (see Vo-

gelsberger et al. (2016)). But to solve the problem on highly nonlinear scales we

can only rely on the computational simulations. Hence, in recent times, simulations

have played a critical role in the validation and testing of the Λ−CDM model as

well as the study of the large-scale structure.

In simulations, dark matter is typically modeled as a collection of particles that

interact gravitationally, allowing the study of structure formation in a universe.

Dark matter is considered collisionless on large scales, this is perfectly suited for

simulation using the N-body method. The N-body method models dark matter as

a swarm of particles, enabling the study of how gravity alone can structure the

universe.

As we collect more observational data through survey missions like (Laureijs

(2011), Lavaux and Hudson (2011)), simulations become increasingly vital for mak-

ing sense of the information we collect. Simulations give comparable results to the

real universe’s large-scale structure by taking the appropriate models, and accurate

initial conditions.

In this section, the method followed for the bulk flow measurements is discussed.

It begins with an explanation of the working of N-body simulations, particle mesh

15



methods, and different footprints used for the measurements of the bulk flow and

the motivation behind using the different footprints. The programming language

used for the simulations is Python.

2.1 N-body Simulations

Figure 2.1: N-body simulations of initial fields. The left panel shows the simulations
of the local Universe carried out by the CLUES collaboration, where the initial con-
ditions were constrained using the CosmicFlows observations (Tully et al. (2016)).
The right panel shows a slice of the density field with thickness of a 200h−1 Mpc
in the ELUCID simulation (Wang et al. (2016)). Here the simulated dark matter is
shown in black-blue color, and red/cyan shows the locations of galaxies

Since gravity is the only agent assumed to be responsible for the formation of density

fluctuation at large scales, the collisionless limit remains valid for large cosmologi-

cal scales (∼ 1022m ). We are considering a large number of particles, to describe

the motion of these particles we consider the phase-space distribution function of

particles in phase-space over time. For a very large number of particles N >> 1, dis-

creteness effects are considered to be negligible, and collisionless dark matter obeys

the Vlasov equation for the distribution function in phase space. The numerical sim-

ulations sample this distribution by partitioning phase space into N elementary vol-

umes. Particles are given with initial positions, velocities, and masses. To study the

evolution of the universe we consider perturbation around homogenous and isotropic

FLRW metric. The particles are taken in the weak-field, non-relativistic, and col-

lisionless limit. Hence Valsov-Poisson (VP) limit describes the equation of motion

for the particles. VP describes the evolution of the density in six-dimensional phase

space over time. Considering the cosmic time dt = adτ the equations of motion

solved by the N-body codes are (Angulo and Hahn (2022)),

dX i

dt
=

P i

m
=

Pi

ma2
and

dPi

dt
= −m

∂Φ

∂X i
(2.1)

The position and momenta of particles are given byX i and P i respectively. Together

in the Vlasov-Poisson system, we get,
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∂fm
∂t

+
pi
ma2

∂fm
∂xi

−m
∂Φ

∂xi

∂fm
∂pi

(2.2)

∇2ϕ = 4πGa2(ρ− ρ̄) (2.3)

ρ =
m

a3

∫
d3pfm(x,p, t) (2.4)

Equation (2.1) gives the evolution of individual particles. Equations (2.2) is the

Vlasov equation that describes the time evolution of the distribution function (fm),

(2.3) is the Poisson equation for the matter density (ρ) and gravitational potential

(ϕ). The last equation (2.4) connects the distribution function to the matter density,

closing the system. Together the particle’s position and momenta can be updated in

the equation (2.1) after solving. The discrete trajectories tell us about the evolution

of the system.

Various numerical methods have been devised to solve VP dynamics. The N-

body approach is the most prominent and important technique today. In the N-body

method, a finite number of discrete particles that fairly sample the density field are

taken. The simulations are restricted in the finite volume (L3) with the comoving

linear extent L and periodic boundary conditions. Taking the discrete macroscopic

particle momenta and locations the phase space distribution is then described along

with the infinite set of periodic copies.

2.1.1 Initial Conditions:

The initial conditions in the cosmological N-body simulations are supposed to re-

produce the statistical properties of the density field in the early universe. However,

this has to be achieved with a limited number of particles which are the tracers of

dark matter in the six-dimensional phase space. The widespread choice for mass

is the one where all the particles have equal mass. The initial momenta (Pi) and

the positions (Xi) of the particles at some initial time (t0) are the defining initial

conditions of the system.

The initial density is generated by introducing perturbation in the uniform grid

of particles according to the power spectrum derived from the CMB data. The

positions and velocities (or momenta if the mass is the same for all the particles)

of the particles are in such a way that they reflect the density field perturbations.

For accuracy in calculations, we use Lagrangian perturbation theory or Zel’dovich

approximations. After the initial sampling of the particles is determined, the sub-

sequent calculations are done using the equations of motions as described above in

section 2.1 to evolve the system.
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2.2 Particle Mesh Methods:

The direct method for the N-body simulations with the numerical integrations would

require calculations on the order of 1
2
N2 to evaluate the potential energy of N parti-

cles. For a system with many particles these O(N2) computations are time consum-

ing. Hence to reduce the time complexity many approximate methods have been

developed for the purpose of computations.

One of the methods is the particle mesh method. The way particle mesh meth-

ods work is as follows:

1. Assign charge/mass to a suitable mesh

2. Solve the potential equation (e.g Poisson’s equation (2.3)) on the mesh

3. Calculate the force field on the mesh from the potential

4. Calculate the force on the particle by interpolating the forces on the grid

5. Integrate these forces to get the updated positions and the velocities of the par-

ticles

6. Update the time counter

The mass assignment is done using multiple techniques. For the purpose of this

thesis, we focused on a particular method called the Cloud-in-Cell method.

2.2.1 Cloud-in-Cell method:

To map the particle masses onto a grid we have used the Clould-in-Cell (CIC)

method. To describe the mass distribution the window function is defined as follows.

WCIC(x) =
1

h

1− |x|
∆x

, for | x |< ∆x

0, otherwise

Here h is the width, or size of the cell, and 1
h
is the step size used for calculations.

The window function is calculated by integrating the shape function over the volume

considered. ∆x takes the position of the particle relative to the grid point. The

equation gives a non-zero value only if the cloud of the particle overlaps with the

grid cell (refer to fig 2.2). Further calculations are carried out only for this volume

of overlap. These mass assignment calculations make sure that the total mass in

the end is conserved and correctly distributed to the grid points accounting for the

position of the particle.
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Figure 2.2: The image shows 2D representation of 3D cube considered for the CIC
method. The red dot in between represents the particle and the red square around
the particle represents the ”cloud” around this particle.(credits: Pfrommer (2022))

2.3 Multidark Simulations:

Figure 2.3: A slice of 2.5 Gpc/h box of the BigMDPL simulation (credits: MultiDark
project1)

The simulations in this thesis are performed under the framework of the MultiDark

project1. These are dark matter-only simulations. The simulations have a box size

of 4000 Mpc h−1. The box contains 40963 dark matter particles with the mass

resolution of 7.9 ×1010M⊙. To minimize the effect of the cosmic variance for some

simulations identical Gaussian fluctuations are chosen. Cosmic variance is very

small for simulated volume, but it still needs to be considered when comparing with

the observations. These Gaussian fluctuations are taken as the basis to generate the

initial conditions generated with Zeldovich approximation at the redshift zinit = 100.

Simulations are done with the Adaptive Refinement Code.

The values for other cosmological parameters are (Klypin et al. (2016)),

1 https://www.multidark.org/
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Symbol Parameter Values
h Hubble parameter 0.6777
ΩΛ density parameter for dark energy 0.692885
Ωm density parameter for matter (dark matter+baryons) 0.307115
Ωb density parameter for baryonic matter 0.048206
σ8 amplitude of mass density fluctuation in 8 Mpc/h sphere 0.8228

Table 2.1: Values of the cosmological parameters used in the MultiDark simulations

2.4 Bulk Flow Calculations:

For the measurement of the bulk flow, a box with dark matter particles only and

the size 4 Gpc h−1 is taken. The box has comoving coordinates to take into account

the expansion of the universe. Mesh with 3 different resolutions are chosen. The

grid size or the number of nodes along each dimension are 128, 256, and 512. The

higher value indicates a grid with more cells, finer size, and higher spatial resolution.

This allows for more precise calculations and minimizes the discreetness effects due

to particles in the bulk flow calculations.

We have considered the periodic boundary conditions to create the wrap-around

for all the particles especially the ones at the edges of the box. This maintains

consistency with the cosmological principle and ensures that the density field used

for computing the gravitational potential is smooth and continuous.

Figure 2.4: The figure shows a slice of the simulation box. The x and y axes give
supergalactic coordinate x (SGX) and supergalactic coordinate y (SGY) in Mpc
respectively. The slice is 4000 Mpc thick. The red dots show the randomly chosen
coordinates for the centers. These are the reference points for further bulk flow
calculations. The black spherical area is the sphere chosen for bulk flow calculations.

After defining the initial conditions, the bulk flow is calculated in the following

steps:

1. We take the mesh with the desired cell distance or cell per dimension (1283, 2563,

or 5123).
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2. 1000 points on this mesh are chosen as the observational origins. Random seed

is used while generating these origins to ensure reproducibility.

3. Taking these random points as the origins we define the concentric spheres around

these origins.

4. The radius of these spherical shells ranges from 40 Mpc h−1 ≤ R ≤ 440 Mpc h−1.

The sample is chosen in such a way that the calculations cover only 10% of the box

each time. This is due to the fact that the calculations beyond this distance do not

remain reliable as explained in the section (3.1).

5. We begin with the smallest distance from the center (40 Mpc h−1) and for each

iteration, we increase the radii of the sphere in the interval of 10 Mpc h−1.

6. For each concentric sphere we take all the points inside the sphere to calculate

the velocity components along each dimension (vx, vy, vz) and then take a mean of

velocities along each component and for each sphere.

7. Bulk flow is computed by using the equation (1.50).

8. Eventually the mean and the variance of the bulk flow are calculated.

Different Footprints:

The survey geometries of the velocity field catalogs are not ideal spheres. Hence the

ideal spherical calculation models may not always be useful. To get an idea about

how the bulk flow calculations are affected by the sampling effects, we consider

hemispheres and cones for the calculations of the bulk flow.

Figure 2.5: The figure shows the 2D representation of hemispheres taken at the
Northern and Southern parts of the velocity vector. The x and y axes give super-
galactic coordinate x (SGX) and supergalactic coordinate y (SGY) respectively. The
light blue line represents the velocity vector. The blue dotted half circle represents
the Northern hemisphere taken with respect to the velocity vector and the red dot-
ted circle represents the Southern part of the circle (hemisphere).

For the calculations of the bulk flow in the hemisphere, we take the bulk flow

for the whole sphere from previous calculations. The direction of the bulk flow

determines the orientation of the hemispheres. The half of the sphere in the direction

of the bulk flow is considered the ’northern hemisphere’ and the other half which is

away is considered the ’southern hemisphere’ of the sphere.

We then calculate the bulk flow in hemispheres. The same method of bulk flow

calculation is followed for both parts of the sphere to get the velocity components

and to get the mean and variance.
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Figure 2.6: The figure shows the 2D representation of cones taken at the Northern
and Southern parts of the velocity vector. The x and y axes give supergalactic coor-
dinate x (SGX) and supergalactic coordinate y (SGY) respectively. The light blue
line represents the velocity vector. The blue-dotted cone represents the Northern
part taken with respect to the velocity vector and the red-dotted part represents the
Southern part of the cone

A similar orientation is taken to define the cones of 15◦ and 30◦. The cones are

also taken in the direction of the bulk flow and away from the direction of the bulk

flow. The bulk flow for each cone is also calculated and the mean is then taken.

To check if the directionality of the bulk flow matters for the calculations we

take the cones in a random direction as well. We define a random vector and take

the hemisphere and cones around this vector to calculate the bulk flow.
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Chapter 3

Results

In this section, I present the characteristics and implications of the bulk flow mea-

surement obtained from simulation results. The chapter consists of discrete sections,

each of which focuses on a different geometrical footprint. Section 3.1 incorporates

results obtained from ideal spherical geometry. Section 3.2 includes the results for

hemispheres. In Section 3.3 the results for small cones are analyzed and lastly, we

take into account the results from random sampling in Section 3.4.

The results in this chapter use the 1283 point grid. This is the most coarse grid

size available. Discussions regarding the finer grid with 2563 point grid are included

in Appendix A.1 and results using the halo catalog are in A.2.

3.1 Bulk flow of Whole Sphere:

As discussed earlier the box of size 4000 Mpc/h is considered. There are 40963 dark

matter particles in the box. To mimic the evolution of density and the velocity field

in the actual universe the gravitational evolution of these particles is simulated. The

bulk flow calculations are done within the simulated volume. Hence the statistical

properties of overdensity (δ) and velocity should also exhibit isotropy and homo-

geneity on the larger scales. To observe the variance in our measurements, we select

1000 random points in this domain. Taking the variance over such a large volume

would approach similar results to that of ensemble variance. These random points

act as the origin for the concentric spheres. These randomly selected points can be

referred to as observational origins.

The simulations have implemented the periodic boundary conditions. The sim-

ulation box is of finite size hence the edges of the box can have an artificial effect as

the particles at the edges have fewer neighboring particles. To avoid these effects on

the measurements the simulation box wraps around each randomly chosen center.

At first, we calculated the bulk flow for the entire volume in concentric spheres

(see figure 3.1 ). Each curve on this plot represents a random origin and each point

on the curve represents a sphere of specific radius. From the figure, we observed that

the bulk flow value reaches a maximum of 800 km/s for a very small radius of the

sphere. But as the radius of the sphere in our measurements increases, the bulk flow

consistently shows a decrease. After the radius of 500 Mpc/h most concentric spheres
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show that the bulk flow value reaches to 0. This observation is consistent with the

cosmological principle that at sufficiently large scales, the universe is homogeneous

and isotropic. This would result in no preference to a specific direction and hence

the total bulk flow should be zero.

Figure 3.1: The figure gives the Bulk flow calculations in concentric spheres for the
entire box of 4000 Mpc/h. The x-axis gives the Radius of the spheres in [Mpc/h]
and the y-axis gives the magnitude of the bulk flow in km/s. Each curve represents
a randomly chosen center and each dot on the curve represents a concentric sphere.
The red dotted line in the middle gives the mean value of the Bulk flow with the
variance for all the spheres for all the random centers.

But the scale of interest for this thesis is approximately only till 1/10th of the

size of the entire box. This choice is based on the suppression effects on the bulk

flow measurements, which become more prominent at larger scales. Fig 3.2, shows

observed suppression of the bulk flow in the 1 Gpc/h simulation box size compared

to the 4 Gpc/h simulation. The velocity values show suppression faster for the

smaller box (1 Gpc/h) than the 4 Gpc/h volume. It is seen for both simulations

approximately after 10% of the volume the suppression effects are seen. Hence for

1 Gpc/h, it is approximately for a radius of 100 Mpc/h and for 4 Gpc/h we take

∼ 400 Mpc/h. As the simulation box mimics the structure and dynamics in the

actual universe, within any given simulation box, there is no net movement of the

box itself, everything is measured relative to the box. Hence by definition, the box

is taken to be a stationary volume. As we approach towards entire volume the bulk

flow measurements show suppression due to the unmoving box. Trusting only 1/10th

of the measurements of the box sizes ensures that the results are least influenced
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Figure 3.2: The image shows the impact of the simulation scale on the study of bulk
flow. The x-axis represents the subsampling into a smaller radius and the y-axis
represents the value of the bulk flow. The Green and the black dotted lines show
the bulk flow measurement with the box size of 1 Gpc/h and 4 Gpc/h respectively.
The grey area represents the 3σ spread over the bulk flow values. The reference
bulk flow of CMB is marked with a dashed line above. The red and magenta points
with error bars are bulk flow values from other measurements. (Credits: Libeskind
private communications)

by the limitations of the box size of the simulations. The local inhomogeneities and

anisotropies are still significant and can be analyzed before they vanish into the

larger-scale homogeneity. Hence we measure the bulk flow in the till 400 Mpc to

cover the 10 % of the box’s size. Similar to the previous procedure, 1000 random

centers are taken to define the concentric spheres from 40 to 400 Mpc/h in the

interval of 20 Mpc/h between each sphere. The results are shown in figure 3.3, each

curve represents a chosen center and each dot represents the sphere defined around

it. Even though the maximum value of velocity remains similar to the entire box

measurements the spread across the various values of velocity is larger here. The red

curve in the middle shows the median across all the centers, the error bars around

them correspond to 16th and 84th percentile. The velocity field in our measurements

is non-gaussian hence median is a more robust measurement and it reflects the

maximum sample points from our data. The multitude of lines suggests that even

though there is an overall average, an individual case can diverge based on their

initial conditions.

25



Figure 3.3: The figure gives the Bulk flow calculations for all the concentric spheres
at all the random points for the radius of 400 [Mpc/h]. The x and the y axis are the
same as the figure 3.1. Each curve represents a randomly chosen center and each
dot on the curve represents a sphere. The red dotted line in the middle gives the
mean value of the bulk flow for all the spheres for all the random centers.

Figure 3.4: The figure shows the density contrast as a function of radius. Here the
x-axis is the same as figure 3.1 and the y-axis gives the ratio of the density over
the mean density. Each curve and each point on the curve gives a randomly chosen
center and a concentric sphere respectively.
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As seen from the plot (3.3) the bulk velocities are higher for the smaller radius.

This is indicative of the fact that there can be a significant deviation from the

homogeneity in the local universe. But as we move towards a larger radius, the

plot converges to the red line which represents the median velocity, flatting out to

zero. The significance of the bulk flow decreases as more volume is considered. The

velocities approach closer to the median value, implying that over larger distances,

the collective motion of dark matter particles becomes less coherent. Hence focusing

on the sub-400 Mpc/h scale we can investigate the dynamics in a regime. Within

this scale, we get measurable values of bulk flows that can provide insights into the

matter distribution.

To see the deviation of the local density from the mean density, in fig 3.4, the

density contrast is plotted. The plot shows the dimensionless density perturbation

field or overdensity (see 1.1)value for the given spherical radius and chosen random

center. The overdensity is widespread for smaller radii this means for the smaller

spheres the measurement is highly sensitive to the environment around it. As the

universe is highly nonhomogeneous on smaller scales the smaller distances show

the variation according to the central point of observation. But as we approach

the larger distances we approach homogeneity, the density fluctuations average out

and the spheres would include all kinds of cosmic environments (voids, filaments,

sheets). The value of overdensity converges to 1 here as we cover more and more

volume in the box. This convergence is faster for density than that of the velocity,

the following argument provides a possible explanation for this. The gravitational

evolution of the dark matter particles is set forth by the initial conditions provided

in the simulations. The density field and hence the gravitational field evolves faster

away from the linear regime. The velocity field, influenced by the density field, is

a smoother field. Because of this, velocities do not change as quickly and hence

retain the initial conditions imprint longer. In other words, the velocity has a better

memory of the initial conditions given than the density field and hence can trace

the comic web better (Hoffman et al. (2012)).

The results obtained from both bulk flow calculations and the density contrast

of the ideal spherical geometry are in accordance with our observations. The simu-

lated volume is the replica of the universe, which supports the cosmological model

suggesting homogeneity and isotropy on large scales. Hence the results serve as a

sanity check for the simulated data for our arguments reinforcing our confidence

in its accuracy. This ensures that the conclusions drawn from simulations can be

trusted to be approximately reflective of the real universe. Therefore, studying bulk

flow within this simulated environment offers valuable insights into the movements

and behaviors of the actual universe.

3.2 Bulk flow in Hemispheres:

As explained previously in the section 2.4 the galaxy surveys do not have ideal spher-

ical geometries. The survey geometry varies from survey to survey. To get an idea

about the effect of the non-spherical survey geometries on the bulk flow calculation
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we include simple cases in our study. Here we are considering hemispheres as one

of the footprints.

Figure 3.5: The figure gives the Bulk flow calculations for the northern hemisphere
at all the random points. The axes are the same as figure 3.1. Each curve represents
a randomly chosen center and each dot on the curve represents a concentric sphere
which is the part of the northern half of the sphere.

The hemispherical calculations are done for the southern and the northern hemi-

spheres. Here we defined ”north” for each sphere based on the direction of the bulk

flow of the whole sphere obtained from previous calculations. The procedure is ex-

plained in the section 2.4. The bulk flow is computed in the northern hemisphere,

and as expected, the plot shows that the bulk flow magnitude decreases as the radius

of the concentric sphere increases. Here we see a higher dispersion in the velocities

compared to the calculations of the whole sphere.

For the perfectly homogeneous universe the ratio of the bulk flow in the northern

hemisphere to the total bulk flow would remain 1. There will be no effect of sub-

sampling on our measurements. To check the consistency with our assumptions we

take the ratio of bulk flow in north to the total bulk flow. The blue curve shows the

median of ratios for the given radii. The shaded blue area indicates the variance over

the bulk flow ratios measured. Contradictory to our assumptions, from figure 3.6 we

see that the ratio deviates or increases slightly as we go further in the box. There is

a slight overestimation of the bulk flow for a hemispherical geometry. This overesti-

mation might be a result of a number of factors including the biases introduced by

the hemispherical geometry, and the effect of subsampling. This means that as the

bulk flow is a vector quantity if the mean bulk flow is not uniformly distributed or

there is a presence of inhomogeneity in the northern hemisphere this can introduce

a bias. Additionally, it can be an artifact introduced due to the simulations. To

check if there is a preferential directionality that could introduce a bias we extend

our study to the other half of the sphere.
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Figure 3.6: The image shows the ratio of the bulk flow in the northern hemisphere
to the total bulk flow. The x-axis gives the radius and the y-axis is the value of the
ratio as a function of radius. The dark blue line in the middle gives the mean value
of the bulk flow for all the radii. The light blue region shows the deviation from the
mean value or the error corridor for the radius.

We take half of the sphere which is pointing away from the total bulk flow vector.

This is referred to as the southern hemisphere here. The bulk flow shows a consistent

decrease again.

Figure 3.7: The figure gives the Bulk flow calculations for the southern hemisphere
at all the random points. Each curve represents a randomly chosen center and each
dot on the curve represents the hemisphere which is in the southern part. The axes
are the same as the figure 3.1. The red dotted line in the middle gives the mean
value.

Similar to the previous plot of the northern hemisphere, we take the ratio of bulk

flow in the southern hemisphere to the total bulk flow. The bulk flow calculations

in figure 3.8 show slight overestimation even with this hemisphere. The median

value is the curve represented in red color. The shaded coral red area represents the
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variability in the bulk flow ratio measurement. The higher variance in the upper

region of the curve than the lower again emphasizes the non-gaussian nature of the

velocity field. It indicates the range of values obtained from different random centers.

Hence we can say that the overestimation in the magnitude of the bulk flow is present

even in the direction that is opposite to the direction of the flow. In both the

plots, the variance shows values more than the twice expected values. Even though,

the spread in the northern hemisphere is relatively narrow, especially compared to

distances < 200Mpc/h in the plot for the southern hemisphere, suggesting that the

bulk flow measurements in the northern hemisphere are more consistent. Both the

northern and southern hemispheres showed a ratio greater than one. This might

imply that the overestimation in our measurement may not be dependent on the

directionality chosen with respect to the bulk flow.

Figure 3.8: Here we see the ratio of the Bulk flow in the Southern Hemisphere to
the total Bulk flow in the whole sphere. This half of the sphere is directed away
from the Bulk flow. The x-axis and y-axis are similar to the above. The dark red
line in the middle gives the mean which is always close to 1 and the coral region
around it gives the value of the error corridor.

3.3 Bulk flow in Cones:

Another non-spherical geometry that is taken into consideration is cones with differ-

ent values of angles. For this study, we consider cones of opening angles of 30◦ and

15◦. The conical geometry allows for the measurement of bulk flow more precisely

in a specific direction. The pencil beam galaxy surveys with similar geomtries are

useful for the study of galaxies at various redshifts (Visbal and McQuinn (2023)).

Choosing the smaller area in the sky also helps to overcome the small-scale clustering

effects in galaxy distribution.
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Figure 3.9: The plot shows the calculation of the bulk flow in a cone with a 30◦

angle. The northern hemisphere represents a similar direction as the bulk flow. The
x and y axes are similar to the figure 3.6. The error corridor is shown in the light
blue region around it.

Here the cones are again considered in the direction of the bulk flow and away

from the direction of the bulk flow. Figure 3.9 shows the 30◦ cone in the direction of

the bulk flow. The cone is defined in such a way that half of the cone is taken on each

side of the bulk flow vector for the respective spheres making the opening angle of

30◦. The ratio of the bulk flow in the cone to the total bulk flow again should be 1 for

a perfectly homogenous case. The median in the blue cover has values here that are

notably higher than those from the previous hemisphere plots. This suggests a more

significant flow within this conical region. The median takes the value that is higher

than twice the expected value. There is also more broadening of the shaded area

with increasing radius suggesting that the variability in the bulk flow measurements

also increases more drastically with distance from the center. But it is important to

check if this overestimation is due to the effect of subsampling

We consider the cone in the orientation in the direction which is 180◦ opposite to

the northern cone. Here we take the cone which is pointing away from the bulk flow

vector. Similar to the northern cone, the bulk flow in the southern cone increases

with the radius. The deviation in the highest and the lowest value of the bulk flow

also increases hence we see a larger error corridor. The initial value of the bulk flow

is zero for both the northern and southern cones. This can be attributed to the fact

that in the smallest cones, the contributions to the bulk flow from different directions

are zero as no grid points are present in these cones. As the cone encompasses larger

volumes, and thus more mass, the net bulk flow becomes nonzero and increases with

radius.
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Figure 3.10: The plot shows the bulk flow of the cone pointing away from the velocity
vector similar to the northern cone. The dark red line gives the mean of the ratio
of the bulk flow in the cone to the total bulk flow in the cone pointing away. The
axes are the same as fig 3.6. The coral region gives the value of variance around the
bulk flow measurements

Figure 3.11: The plot shows the bulk flow estimation for a 15◦ cone in the direction
of the bulk flow. The x and the y axes are similar to the figure 3.6. The light blue
region gives the variance in the mean bulk flow which is shown with the blue line.

In conclusion, the plots for the northern and the southern 30◦ cone are much

alike. The symmetry is observed in the trend for both the conical sections, even

though there is a significant overestimation in the bulk flow for both sides.

We consider a narrower cone of 15◦ to focus on a smaller and potentially more

coherent region of the velocity field. This may provide insights into the structure

and dynamics within specific lines of sight. The plot 3.11 and the plot 3.12 show the

bulk flow in the northern 15◦ cone to the total and in the southern 15◦ cone to the

total bulk flow respectively. The increasing trend of bulk flow ratio with radius is
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observed here as well. The values of the median shown for both directions of the cone

have significant overestimation. But for the smaller cone, there is more spread or

variance within the measurements The spread also appears to widen with increasing

radius. The bulk flow value reaches here 8 times the expected value. This implies

that the cones can perhaps drastically overestimate the bulk flow values. The initial

distances for cones do not represent any value as they were null due to the conical

area being empty and not having any particles to measure the bulk flow similar to

the previous cones.

Figure 3.12: The plot shows the bulk flow for the southern cone, which is pointing
away from the vector is shown. The red line shows the mean bulk flow for all the
spheres and the error region is represented by the coral region. The axes are similar
to the figure 3.8

3.4 Random Sampling:

To ensure that there is no biasing due to the specific chosen direction to measure

the bulk flow, we make the measurements with random sampling. By choosing the

random directions for the measurement of the bulk flow, we gather a robust set of

measurements. The results generated with the random directions are later compared

with the results obtained from specific direction measurements. This gives us an

idea about the dependence of the measurements on the flow directions.

We generate 3 vector components to get the random direction for the bulk flow

measurements. The sample is drawn from a Gaussian distribution peaked at zero.

This ensures that the vectors in any direction are distributed around zero without

any bias being chosen. This is also consistent with the assumption that on a larger

scale, the universe does not have any preferred direction.
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Figure 3.13: The plot shows bulk flow measurements by choosing a random velocity
vector for the calculations. The x-axis represents the value of the radius of the
concentric sphere that are considered. The y-axis gives the value for the ratio of the
bulk flow in the random hemisphere to the total bulk flow in the entire sphere.

We see the ratio of the random hemisphere’s bulk flow to the total bulk flow in

the figure 3.13. The ratio hovers around 1 for most of the radius range. It appears

to increase slightly as the radius approaches 400 Mpc/h. Compared to the earlier

plots for the directed northern (fig 3.6) and southern (fig 3.8) hemispheres, which

showed ratios consistently above 1, the random hemisphere plot starts closer to 1.

The trend does not show a constant increase, unlike the previous measurements.

The bulk flow measurements also show less deviation from unity here. However,

the variance observed in the random hemispheres is approximately similar to the

trend observed in the figure 3.6. This might suggest that when considering a specific

direction (such as north or south), the bulk flow measurements revealed a stronger

preferred motion. But when taken in random directions velocities do not consistently

reveal such strong preferences.

To see if the strong preference in direction is only limited to the hemispherical

subsampling or if the results are consistent for cones in random directions, we com-

pare our results with the previous measurements of cones in section 3.3 from both

north and south directions.
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Figure 3.14: Comparision between the bulk flow measurement for a cone with open-
ing angle 30◦. The axis is the same as the figure 3.13. Blue and red lines show the
mean value of bulk flow in the northern and southern parts of the cone according
to the bulk flow respectively. The black line shows the cones in random directions.
The shaded region shows the variance in measurements.

The left plot in 3.14 shows the comparison between the cone with an opening

angle of 30◦ in the northern direction to the cone of the same size taken in random

directions. The plot on the left shows the cone in the southern direction to the cone

in the random directions. Both the plots show that a similar trend is observed for

the cones in random directions as that of in or away from the flow direction. The

median value of bulk flow in random cones is shown in the black colored curve in

both plots. This value of bulk flow follows a similar trend as the previous conical

measurement.

Similarly, the cones with the opening angle of 15◦ in a direction are compared

to the random cones of 15◦. As shown in the plot 3.15 the cones show similar

results for both cases. The cone in the northern direction to the flow is shown in

the left plot. This shows exact overlap with the values of the cone for the random

direction measurements. But cones with both opening angles of 30◦ and 15◦ show

consistent overestimation of the bulk flow as shown in figure 3.14 and figure 3.15.

The measurements for the cones in the random direction show similar traces as

those of the cones taken with respect to the bulk flow. The variance increases for

all the cones with the increase in the distance from the origin. This implies that

the bulk flow overestimation might be arising due to subsampling rather than the

directionality of the measurement.
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Figure 3.15: Comparision between the bulk flow measurement for a cone with open-
ing angle 15◦. The axis is the same as the figure 3.13. Blue and red lines show the
mean value of bulk flow in the northern and southern parts of the cone according
to the bulk flow respectively. The black line shows the cones in random directions.
The shaded region shows the variance in measurements.

3.5 Comparison between the footprints

Figure 3.16: The ratio of bulk flow measured in the north hemisphere to the bulk
flow in the southern hemisphere.

It is still important To ensure that minimal biasing is introduced due to the direction

of the measurement of the bulk flow as the geometries taken into consideration are

not ideal spheres. Hence we plot the ratio of the bulk flow in the northern to

southern hemisphere as shown in the figure 3.16. The ratio is consistently 1 or very

close to 1 for all the radii. The slight deviation is observed at a smaller radius which

might be the result of inhomogeneity at smaller scales. The results again emphasize

the fact that there is minimal to no bias introduced due to the directionality of

the measurement. Even for the smaller scales or radii where we might expect higher
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dispersion in the bulk flow values a similar result is observed. Hence we can say that

the bulk flow between the 2 opposite hemispheres averages out, especially for larger

radii. Therefore there is no preferred direction for measurements that introduce the

bias.

Figure 3.17: Comparision between different footprints’ bulk flow measurements.
The blue, red, and black line shows the mean of bulk flows in cones of 15◦, 30◦, and
hemisphere respectively.

After confirming the idea that the bias is not introduced due to the direction we

compare the different subsamples of the bulk flow measurements. The plot (3.17)

shows the comparison of different subsamples. The left panel has the bulk flow

measurements for all three subsamples namely hemisphere, cone of 30◦, cone of 15◦

in the direction of the flow. The right panel shows the comparison between the

subsamples away from the direction of the flow or the southern part. The black line

in both plots shows the velocity measurements for the hemispherical subsampling.

The blue and the red line shows a cone of 15◦ and a cone of 30◦ respectively. After

comparing the bulk flow measurements of the different footprints we see that the

undersampling effects introduce overestimation. From the figure 3.17 we see that

the deviation from unity increases as we consider the narrow area for bulk flow

calculations. From our results, we can conclude that the bulk flow ratio shows

the least deviation for the hemispheres, a higher deviation for the 30◦ cone, and

the highest deviation for the 15◦ cone. The results are affected by the sampling

effects more than the directionality of the measurements. As we take the bulk flow

measurements for narrow cones more overestimation is observed. This can be the

result of undersampling due to the narrow geometries.
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Chapter 4

Disussion and Summary

In this thesis, we have discussed the observational effects on bulk flow measurements.

Dark matter-only simulations are used for understanding the dynamics of the real

universe matter density. The box has comoving coordinates hence the velocity com-

ponents here add to the peculiar velocities. The average of these peculiar velocities

on particles for a large spherical region centered on the observer is taken to calculate

the bulk flow. Different sampling geometries have been used on the simulated data

for the measurements of the bulk flow. The following results are obtained,

North South Random
Direction in the direction away from the direction randomly oriented

of bulk flow of the bulk flow
Sphere slight overestimation slight overestimation inconsistent/no overestimation
30◦ cone high overestimation high overestimation high overestimation
15◦ cone very high very high very high

overestimation overestimation overestimation

Table 4.1: Bulk flow estimations for different subsamples

To mimic the different geometries of the galaxy surveys, we calculate the bulk

flow for complete spheres, hemispheres, and cones. To avoid biases due to a par-

ticular direction we also measure the bulk flow in the random directions. To study

the variance in measurements we take multiple observer origins in the box. The

geometries are defined around these origins for the measurement of the bulk flow.

The results show biasing toward measuring the larger bulk flow magnitudes than

the underlying bulk flows. As the survey geometry becomes narrower higher biasing

is observed with most narrow cones showing the highest overestimation in the value.

This implies that the estimated values of the bulk flow measurements which use a

small number of peculiar velocities are biased due to undersampling effects in a way

that the bulk flow values are overestimated. From the plot 3.17 we see that not only

is the bulk flow overestimated for the narrower geometry but the variance over the

value of the estimated bulk flow also increases. This variance and overestimation

increases as a function of radius.

The possible explanation for this explained in the Andersen et al. (2016) is as

follows. Considering a large volume in the universe where the galaxies obey the
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cosmological principle. Hence the total velocities of all N galaxies in this volume

yield a bulk flow magnitude of exactly zero. This must be true even if only line-of-

sight velocities are observed. Then from this volume only n < N galaxy velocities are

considered the bulk flow measurement will give a non-zero value this time. As the

magnitude is always positive we always estimate some non-zero positive number.

Even after taking into consideration a sample of some other n < N galaxies the

argument still remains valid. Only if we consider a number of galaxies such that n

≡ N then only we can get a value of bulk flow that is closer to zero.

4.1 Conclusion

The thesis provides significant insights into the peculiar velocity fields, offering a

deeper understanding of the bulk flows. The results bring to the forefront the effect

of different geometries of survey catalogs on bulk flow measurements. We studied

the bulk flow measurements for different sampling geometries and we found:

• As expected the bulk flow reduces and converges to zero when we move towards

the larger scales. This is consistent for all the geometries.

• The northern and the southern hemispherical geomtries show a slight overes-

timation in the bulk flow.

• Cones of 30◦ and 15◦ also show overestimation in the bulk flow measurements.

• As we take into consideration the narrower geometry we observe higher over-

estimation in the bulk flow values.

• Similar results are obtained for the cones and hemispheres taken in random

directions implying the overestimation is not the effect of direction of mea-

surement.

• The bulk flow overestimation is maximum for the smallest opening angle of

15◦ and the least for the hemispheres.

• This might explain the measurement of the higher bulk flow values than ex-

pected in the Λ-CDM cosmologies.

From these results, we can conclude that undersampling effects introduce strong

bias in the bulk flow measurements. For non-spherical survey geometries of the

peculiar velocity catalogs of galaxies, this might give the overestimated value of

the bulk flow. While considering the bulk flow measurements from such survey

geometries it is important to take into account these overestimations.
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Chapter 5

Future direction

Even while there is remarkable agreement between simulations and observations the

ongoing tensions suggest that flat Λ-CDM based on Planck (Planck Collaboration

and Aghanim (2020)) values may not ultimately be the correct model (Riess et al.

(2019)). In recent years, great progress has been made to address the discrepancy

(Di Valentino et al. (2021)) a ∼ 10% discrepancy in the value of the Hubble constant

as determined from local measurements still persists.

The Cosmic Microwave Background(CMB) dipole is the motion of the local group

of galaxies relative to the CMB rest frame. The dipole is linked to the anomalies

in CMB (Naselsky et al. (2011)) which challenge the inflationary Λ-CDM model.

Additionally, the attempts to recover CMB dipole from late universe sources such

as radio galaxies have shown that there is agreement with the direction recovered

but not with the magnitude (Blake (2002)). Similar findings have also been observed

from studies of apparent magnitudes of type Ia supernovae (SN) (Krishnan et al.

(2022)) and QSOs (Secrest et al. (2021)). It is important to note that all these

results are from the partial sky surveys.

From our study, we see that the observational effects introduce bias in our mea-

surements of the peculiar velocities. The peculiar velocities of the galaxies contribute

to the bulk flow. We specifically compare the bulk flow measurements with the theo-

retical predictions. In galaxy surveys, the peculiar velocities are approximated to get

the bulk flow that would occur around the sphere of the observer. But when the sur-

vey geometries are non-spherical the methods for bulk flow estimation overestimate

the values.

The bulk flow represents the peculiar motion of galaxies in addition to their

expansion with the Hubble flow. Discrepancies in the bulk flow measurements might

affect the overall H0 measurement. This might provide an explanation for the larger

values of H0 measurements in the direction of CMB dipole observed, among many

others by the work in Krishnan et al. (2022). We would like to work towards

understanding the large-scale velocity fields in the local universe taking into account

the overestimations observed in our measurements.
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Appendix A

Analysis of Bulk Flow

A.1 2563 point grid

The bulk flow evaluation on a 2563 grid

Figure A.1: Bulk flow calculations for hemispheres using 2563 grid, axes are similar
to the plot 3.5. The top leftmost plot shows bulk flow in the ratio of the north-
ern hemisphere to the total bulk flow, the top middle plot shows bulk flow in the
southern hemisphere to the total bulk flow, and the top right-most shows the bulk
flow in the random hemisphere to the total bulk flow. The two plots at the bottom
are a comparison of the north hemisphere to the random hemisphere (left) and a
comparison of the random hemisphere to the southern hemisphere
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Figure A.2: Bulk flow calculations for cones with an opening angle of 30◦ using 2563

grid, axes are similar to the plot 3.5. The top leftmost plot shows bulk flow in the
ratio of the northern cone to the total bulk flow, the top middle plot shows bulk
flow in the cone to the total bulk flow, and the top right-most shows the bulk flow
of cones in a random direction to the total bulk flow. The two plots at the bottom
are a comparison of the north cone to the random cone (left) and a comparison of
the cones in the south to the random cone (right).

Figure A.3: Bulk flow calculations for cones with an opening angle of 15◦ using 2563

grid, axes are similar to the plot 3.5. The order of plots is similar to A.2.
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A.2 Halo catalog

Bulk flow analysis using the Halo catalog for the 1283 grid and 2563 grid.

Figure A.4: Bulk flow calculations for hemispheres using 1283 grid, using the halo
catalog, axes are similar to the plot 3.5. The order of plots is similar to A.1.

Figure A.5: Bulk flow calculations for hemispheres using 2563 grid, using the halo
catalog, axes are similar to the plot 3.5. The order of plots is similar to A.1.
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