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Abstract

Numerical simulations of galaxy formation and observational Galactic Astronomy are two
fields of research that study the same objects from different perspectives. Simulations try to
understand galaxies like our Milky Way from an evolutionary point of view while observers
try to disentangle the current structure and the building blocks of our Galaxy. Due to great
advances in computational power as well as in massive stellar surveys we are now able to
compare resolved stellar populations in simulations and in observations. In this thesis we
use a number of approaches to relate the results of the two fields to each other. The major
observational data set we refer to for this work comes from the Radial Velocity Experiment
(RAVE), a massive spectroscopic stellar survey that observed almost half a million stars in
the Galaxy.
In a first study we use three different models of the Galaxy to generate synthetic stellar
surveys that can be directly compared to the RAVE data. To do this we evaluate the RAVE
selection function to great detail. Among the Galaxy models is the widely used Besançon
model that performs well when individual parameter distribution are considered, but fails
when we study chemodynamic correlations. The other two models are based on distributions
of mass particles instead of analytical distribution functions. This is the first time that such
models are converted to the space of observables and are compared to a stellar survey. We
show that these models can be competitive and in some aspects superior to analytic models,
because of their self-consistent dynamic history. In the case of a full cosmological simulation of
disk galaxy formation we can recover features in the synthetic survey that relate to the known
issues of the model and hence proof that our technique is sensitive to the global structure of
the model. We argue that the next generation of cosmological galaxy formation simulations
will deliver valuable models for our Galaxy. Testing these models with our approach will
provide a direct connection between stellar Galactic astronomy and physical cosmology.
In the second part of the thesis we use a sample of high-velocity halo stars from the RAVE
data to estimate the Galactic escape speed and the virial mass of the Milky Way. In the
course of this study cosmological simulations of galaxy formation also play a crucial role.
Here we use them to calibrate and extensively test our analysis technique. We find the
local Galactic escape speed to be 533+54

−41 km s−1 (90% confidence). With this result in
combination with a simple mass model of the Galaxy we then construct an estimate of the
virial mass of the Galaxy. For the mass profile of the dark matter halo we use two extreme
models, a pure Navarro, Frenk & White (NFW) profile and an adiabatically contracted NFW
profile. When we use statistics on the concentration parameter of these profile taken from
large dissipationless cosmological simulations we obtain an estimate of the virial mass that
is almost independent of the choice of the halo profile. For the mass M340 enclosed within
R340 = 180 kpc we find 1.3+0.4

−0.3 × 1012 M�. This value is in very good agreement with a
number of other mass estimates in the literature that are based on independent data sets
and analysis techniques.
In the last part of this thesis we investigate a new possible channel to generate a population
of Hypervelocity stars (HVSs) that is observed in the stellar halo. Commonly, it is assumed
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that the velocities of these stars originate from an interaction with the super-massive black
hole in the Galactic center. It was suggested recently that stars stripped-off a disrupted
satellite galaxy could reach similar velocities and leave the Galaxy. Here we study in detail
the kinematics of tidal debris stars to investigate the probability that the observed sample
of HVSs could partly originate from such a galaxy collision. We use a suite of N -body
simulations following the encounter of a satellite galaxy with its Milky Way-type host galaxy.
We quantify the typical pattern in angular and phase space formed by the debris stars and
develop a simple model that predicts the kinematics of stripped-off stars. We show that the
distribution of orbital energies in the tidal debris has a typical form that can be described
quite accurately by a simple function. The main parameters determining the maximum
energy kick a tidal debris star can get is the initial mass of the satellite and only to a lower
extent its orbit. Main contributors to an unbound stellar population created in this way are
massive satellites (Msat > 109 M�). The probability that the observed HVS population is
significantly contaminated by tidal debris stars appears small in the light of our results.
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Deutsche Zusammenfassung

Ein häufig verfolgter Ansatz Galaxien wie unsere Milchstraße besser zu verstehen, sind nume-
rische Simulationen, d.h. das Nachvollziehen ihrer Entstehung und Entwicklung mit Hilfe von
Computern. Dieses Vorgehen erlaubt das Betrachten solcher Objekte von einem evolutionären
Standpunkt aus. Eine andere Herangehensweise verfolgt die Galaktische Astronomie, welche
über Sternbeobachtungen den aktuellen Zustand der Milchstraße untersucht. Hier wird ver-
sucht, die konstitutiven Bestandteile unserer Galaxie zu erkennen, um dadurch ein besseres
Verständnis ihrer Struktur zu erlangen. Die enorme Rechenleistung moderner Supercompu-
ter und die Entwicklungssprünge im Bereich der digitalen Himmelsdurchmusterungen haben
dazu geführt, dass inzwischen mit beiden Ansätzen vergleichbare Populationen von einzeln
beobachtbaren Sternen studiert werden können.
In der vorliegenden Arbeit werden verschiedene Möglichkeiten untersucht, die Ergebnisse die-
ser beiden astrophysikalischen Disziplinen, welche bislang weitgehend getrennt von einander
betrieben wurden, sinnvoll zu kombinieren. Der überwiegende Teil der Beobachtungsdaten,
die dabei verwendet werden, wurde im Zuge des Radial Velocity Experiments (RAVE) gesam-
melt, einer spektroskopischen Durchmusterung der Sterne fast des gesamten Südhimmels. Um
die Daten des RAVE-Projekts statistisch auswerten zu können, musste zuerst die detaillier-
te Auswahlfunktion der Durchmusterung rekonstruiert werden, d.h. die Wahrscheinlichkeit,
dass ein Stern von RAVE beobachtet wurde, musste, in Abhängigkeit von den Eigenschaften
des Sterns, bestimmt werden. Der Hauptteil der Dissertation gliedert sich in drei weitgehend
unabhängige Studien.
Im ersten Teil wird die oben erwähnte Auswahlfunktion benutzt, um voraus zu sagen, was das
RAVE Projekt beobachtet hätte, falls bestimmte theoretische Modelle unserer Milchstraße
zu träfen. Auf diese Art und Weise umgehe ich das problematische Unterfangen, die Beob-
achtungsdaten zu einem physikalischen Modell zu verallgemeinern. Die Problematik hierbei
liegt darin, dass astronomische Beobachtungen nicht direkt physikalisch relevante Größen, wie
Massen oder Alter der Sterne, liefern, sondern scheinbare Helligkeiten oder Winkelpositionen.
In dieser Studie wird der umgekehrte Weg beschritten und synthetische Beobachtungen aus
den Modellen generiert. Untersucht wurden dabei sowohl klassische analytische Modelle als
auch Modelle, die aus numerischen Simulationen resultieren. Letztere wurden zu ersten Mal
überhaupt auf diese Art und Weise getestet und es zeigt sich, dass solche Modelle den klassi-
schen in bestimmten Aspekten, die mit der Entwicklungsgeschichte der Milchstraße verknüpft
sind, überlegen sind.
Im zweiten Teil der Arbeit werden die RAVE-Daten benutzt um die Masse der Milchstraße,
bzw. die Masse der in ihr enthaltenen dunklen Materie, ab zu schätzen. Zur Eichung der
Analysemethode wird dabei wieder auf Ergebnisse von Simulationen zurück gegriffen, die
die Entwicklung von ähnlichen Galaxien wie der Milchstraße verfolgt haben. Zuerst wird die
lokale Entweichgeschwindigkeit, d.h. die Mindestgeschwindigkeit, die ein Körper benötigt,
um unsere Galaxie zu verlassen, bestimmt. Die beste Abschätzung beträgt 533+54

−41 km s−1.
Anhand dieser Schätzung kann, in Kombination mit vereinfachten analytischen Modellen der
Materieverteilung in unserer Galaxie, die Masse der Milchstraße auf 1, 3+0,4

−0,3 × 1012 M� be-
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stimmt werden. Dieses Ergebnis bestätigt frühere unabhängige Massenschätzungen, die auf
anderen Beobachtungsdaten und anderen Analysestrategien basieren.
Im letzten Teil der Arbeit wird eine spezielle Population von Sternen im Außenbereich un-
serer Galaxie untersucht, sogenannte Hyperschnellläufersterne (HSS). Diese wurde in einer
weiteren Himmelsdurchmusterung, dem Sloan Digital Sky Survey (SDSS), gefunden. Die Be-
sonderheit dieser Sterne besteht in ihren extrem hohen Geschwindigkeiten oberhalb der Ent-
weichgeschwindigkeit. Allgemein wird angenommen, dass die Sterne ihre Geschwindigkeiten
im Zuge der Spaltung eines Doppelsternsystems durch Gezeitenkräfte nahe des supermasse-
reichen Schwarzen Lochs im Zentrum der Milchstraße erreichen. Vor Kurzem wurde jedoch
ein alternatives Szenario vorgeschlagen. Nach diesem können solche Sterne auch während des
Einfalls einer Satellitengalaxie auf die Milchstraße entstehen. Diese Hypothese wird anhand
von numerischen Simulationen, die diese Situation nachbilden, getestet. Es zeigt sich, dass
HSS auf diese Weise entstehen können, aber dass die beobachtete Population höchstwahr-
scheinlich einen anderen Ursprung hat.
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1 Introduction

With the new Millennium industrialization has finally reached Astronomy. Not in the sense
of a scientific proletariat doing shift work in astronomical facilities under precarious condi-
tions, but in the sense of mass production and automation. Endeavors like the 2dF Galaxy
Redshift Survey and the Hipparcos astrometric satellite set the scene in the late 1990s for
massive data taking projects with the Sloan Digital Sky Survey (SDSS) being their currently
most prominent and successful representative. Advanced CCD detectors allow efficient and
precise photometry and astrometry over large areas of the sky. Multi-object and integral
field spectroscopy enable the simultaneous measurement of hundreds or even thousands of
spectra in a single exposure. Globalization and greatly reduced travel costs allow the oper-
ation of telescopes at sites with optimal observing conditions. All this combined has made
the massive acquisition of data a relatively cheap and predictable affair. Efficient access to
this inconceivable amount of data that is growing ever more quickly appears not to pose
a serious problem because computational power and storage capabilities are growing even
faster (Schlegel 2012).
There are new challenges arising in this era of large projects that lie on different grounds.
Two major aspects of such grand endeavors have to be considered as many problems arise
because of their simultaneous occurrence: (1) the raw data output of these projects has to
be processed via fully automated analysis pipelines (AAP) because of the sheer number of
data and (2) the observations are always of interest for a large number of scientists and it is
thus logical to make the data available to the astronomical community. The latter is often a
requirement by the funding agencies. The development of an AAP is a difficult task and it
is clearly not practical that every user develops her or his own program. On the other hand,
even for a perfect AAP the analysis products will be in most cases non-trivial to use, because
there might be degeneracies, a decreased sensitivity of spectral features in some regions in
the parameter space or the inability to measure certain types of objects. This problem is not
new, nor is the situation that the analysis of a data set and the interpretation of the results is
not done by the same person. New, however, is the frequent lack of personal interaction be-
tween the performers of these tasks and the accompanying alienation of the scientific worker
from the data product. The result is a necessity to explicitly evaluate and comprehensively
document the capabilities and limits of the data products. To do this effectively for a large
data set is a yet ongoing struggle.
Uncertainty distributions or – in the Bayesian nomenclature – posterior probability distri-
butions p(Ω) of a parameter Ω are in many cases non-Gaussian, significantly skewed or even
multi-peaked. Sometimes there are degeneracies between different parameters Ωi. This is not
a fundamental problem for an individual measurement as there are straightforward ways to
incorporate p(Ω) in a subsequent analysis (e.g. as a prior in a maximum likelihood analysis),
but problems arise for big data sets. Here the efficient storage and communication of p(Ω)
to and use by the general community becomes an issue, because the detailed keeping of p(Ω)
might result in data expansion instead of data reduction (Hogg & Lang 2011).
Another aspect of importance is the question, which targets are (successfully) observed by
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and enter the data base of a survey. Despite the overwhelming observing capabilities of mod-
ern telescopes we are far from being able to observe all objects of interest, be they galaxies,
stars in the Milky Way or something else. At best all objects brighter than a given apparent
magnitude are measured, but in the case of spectroscopic surveys often only a sub-set of all
possible targets can be observed. To preserve the statistical value of such an experiment the
criteria, why a target was observed, have to be well defined and recorded. They form the
selection function S of a survey. The detailed knowledge of S will most likely be of increasing
priority when more sophisticated observing strategies are applied for future spectroscopic
surveys, like 4MOST (de Jong et al. 2012), WEAVE (Dalton et al. 2012) or DESI (formerly
BigBOSS) (Schlegel et al. 2011), that can build upon the wealth of already available infor-
mation about their potential targets (see also Rix & Bovy 2013).
Apart from the targeting algorithm there is a more subtle issue affecting S. After the ob-
servations the data have to be analyzed and the parameters of interest have to be extracted.
That might not be possible for all observations, either because of the low quality of the
measurement or, more problematic, because the analysis method is not suited for a specific
type of object. Reasons for the latter can be, inter alia, that a star is too cool or too hot to
allow a sensible analysis. Or its spectrum exhibits features that are not included in available
stellar models. This leads directly back to the AAPs that through this back door leave their
signature in S.

Stellar surveys and their analysis In Galactic Astronomy the massive spectroscopic stellar
surveys RAVE and SEGUE observed hundreds of thousands of stars and thereby increased the
number of available stellar spectra by more than a magnitude within one decade. Together
with the Geneva-Copenhagen survey they also for the first time provided homogeneous data
sets. In the photometric domain we find a large variety of surveys, the currently most
widely used of which are 2MASS and the SDSS. With APOGEE and the Gaia-ESO survey
– that will both soon publish their first data releases – this development has reached the
high-resolution domain. The astrometric space mission Gaia and the Large Synoptic Survey
Telescope (LSST) will probably present the next climax of this process by surveying one
billion stars in the Galaxy (see Ivezić et al. (2012) for a recent review on present and future
stellar surveys).
With the rapidly growing amount of stellar data collected by these projects the full complexity
of our Galaxy becomes visible (e.g. Belokurov et al. 2006; Williams et al. 2011; Antoja
et al. 2012; Bovy et al. 2012b; Widrow et al. 2012). Already in the data available to date
significant non-equilibrium features are detectable, most notably the moving groups in the
Hipparcos data (Dehnen 1998) and the velocity gradients found in the RAVE data (Siebert
et al. 2012; Williams et al. 2013). In the Gaia era precise geometric parallaxes will most
likely prohibit neglecting the presence of spiral arms in the Galactic disk or the clumpy
structure of the stellar halo. This complexity will make it extremely difficult to extract the
underlying physical properties and distribution functions directly. Considering the additional
complications introduced by the survey selection functions it might be completely futile
except for very specific cases.
An alternative venue is presented by inverse modeling. Instead of correcting the data for
observational biases to facilitate a comparison to physical models, we can apply the selection
function to the physical models, in order to predict what would have been observed if the
model was true. The uncertainty distributions p(Ω) of the data can then be used to compute
the likelihood of the data given the model in a Bayesian analysis. One problematic aspect
of this technique is that there is not a standard way to evaluate the quality of a model
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except in relation to other models. Alternatively, the model prediction can be equipped with
observational errors according to p(Ω) and compared directly to the data. A positive side-
effect of this inverse modeling approach is that the selection function and the uncertainties
in the data can be handled independently to a large degree and correlated errors can be
implemented in a straightforward manner.
There is an important obstacle that has to be overcome for a direct comparison of models
and data. Physical models usually describe a system in terms of distributions of fundamental
physical quantities like mass density, age and 6D phase space coordinates. Astronomical
observations yield information about completely different quantities like apparent brightness,
spectral energy distributions, proper motions, line-of-sight velocities or stellar parameters.
A detour over the fields of stellar evolution and stellar atmospheres is hence unavoidable
to transform one set of quantities into the other. Attempts to solve this classical problem
of stellar population synthesis were made by, e.g., Bruzual & Charlot (2003) for unresolved
stellar populations in distant galaxies or Robin et al. (2003) and Girardi et al. (2005) for
models of our Galaxy based on analytic distribution functions. Sharma et al. (2011) and
Pasetto et al. (2012a) provided a code framework that also allows for the conversion of mass
distributions that are represented by a finite number of tracer particles, i.e. an N -body
distribution, to the space of observables.

Cosmological simulations An interesting type of Galaxy model that has become available
only recently is a numerical simulation of disk galaxy formation at a resolution that allows
for the analysis of the distribution functions of stellar populations. In principle, a comparison
to such a model allows one to test the implemented fundamental physics directly with local
observations and thereby tackle the major question whether the Galaxy is consistent with
the ΛCDM cosmology.
With the advent of computers a new branch emerged in the the astronomical community: nu-
merical simulations. After initial successes in the explanation of the morphology of interacting
galaxies (Toomre & Toomre 1972) large parts of the new field focused on the implications
of the newly formed dark matter paradigm and thereby left behind the observable domain.
Only in the last decade more efforts have been put into simulations that also follow the evo-
lution of the baryonic component as for example the works of Navarro & Steinmetz (1997,
2000) who showed that the inclusion of pure hydrodynamics does not lead to the formation
of realistic galaxy disks and that further physical process must play a role. It turned out that
galaxies like our own are the result of a non-linear interplay of star formation and energy
feedback in form of supernovae, stellar winds and super-massive black holes (e.g. Governato
et al. 2004; Piontek & Steinmetz 2011; Springel 2012). These processes act on small scales,
but nevertheless have a profound impact on the global structure of massive galaxies, in part
because of the hierarchical nature of their formation process. This is problematic, because
all of the above-mentioned processes can currently not be resolved even in state-of-the-art
simulations so they can only be considered in a phenomenological way. This can be done in
various (numerical) ways and the respective realization can influence the global result (see
Piontek & Steinmetz (2011) and Scannapieco et al. (2012) for systematic studies).
Despite these difficulties, recently, several groups have reported successful simulation runs
that formed a realistic disk galaxy (Governato et al. 2010; Guedes et al. 2011). Other studies
have illustrated the possibility to obtain the large variety of galaxy morphologies within the
ΛCDM paradigm (e.g. Scannapieco et al. 2009; Aumer et al. 2013; Marinacci et al. 2014). The
“success” of a galaxy simulation is currently evaluated considering the global structure of the
resulting systems. Typical measures are the Tully-Fisher relation or the disk-to-total mass
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or light ratio. More detailed knowledge is almost exclusively available for our own Galaxy.
Hence it is a next logical step is to facilitate a comparison to surveys of the stellar content
of the Milky Way. In this way we can probe the simulations on scale where the impact of
feedback processes is most direct. However, the Milky Way is just one galaxy and it might
not be an average galaxy in every aspect. An interesting approach to this problem is followed
by the CLUES project (Gottlöber et al. 2010) that attempts to re-simulate the local Universe
and the Milky Way with its specific environment. Despite all these advancements a direct
comparison to observations of resolved stellar populations remains a challenge, in particular,
because even in current state-of-the-art simulations one mass particle represents ∼ 103 stars.
As mentioned above the comparison of the physical quantities in the simulations with ob-
servations involves stellar population synthesis. For unresolved stellar populations this is
already commonly applied for simulation analysis, mostly to evaluate the global structure
of the galaxies (e.g. Guedes et al. 2011; Scannapieco et al. 2011; Martig et al. 2012). Con-
fronting such simulations to resolved stellar observations can have several positive outcomes.
First, we can test our current perception of galaxy formation on local observations. This is,
however, complicated through the large influence of numerical implementation of physical
processes that are not resolved in the simulations (star formation, feedback, etc.). Secondly,
we can explore the models to find features that should be detectable by observations. A
famous example for this approach is the missing satellite problem (Klypin et al. 1999) that
triggered the search and discovery of a whole new population of Galactic satellite galaxies.
Finally, these models can provide realistically complex mass distributions in configuration
space1. Because of this, such models play an important role for testing analysis approaches
under realistic conditions.
A disadvantage of full cosmological simulations is that they are computationally extremely
expensive. It is hence not possible to run a large number of simulations and do a systematic
study or fit a data set. In the context of the strong stochasticity of the galaxy formation
process this is an important caveat. Suites of simulations as provided as provided by Scan-
napieco et al. (2009) or Aumer et al. (2013) can alleviate the problem and so can hybrid
modeling techniques as presented by Minchev et al. (2013a).

This thesis Galactic astronomy and numerical simulations of disk galaxies have finally
reached similar scales for their spatial volumes under study. Simulations have advanced and
are now able to resolve structures of sizes below a kiloparsec while modern stellar surveys have
extended their observable regions to distances of one to several kiloparsecs. It thus appears
almost imperative to confront these results with each other. In this thesis we attempt to
construct links between the two fields and show that this can be fruitful for both sides.
We will, for the first time, convert fully discretized models of a disk galaxy into the space of
observables to see them through the eyes of an internal observer. We will generate synthetic
RAVE surveys based on these models that can be directly compared to the real data set. For
this purpose we have to evaluate in great detail the selection function of the RAVE survey,
the knowledge of which is crucial for many applications. We will, on the other hand, use
cosmological simulations to test and calibrate an analysis technique that extracts an estimate
of the total mass of the Milky Way from the kinematics of halo stars in the RAVE data. In a
third study, we use numerical simulations to explore a possible origin of a specific population
of stars observed in the Galactic halo, so-called Hypervelocity stars. This generation channel,
the accreted satellite scenario, is linked to the hierarchical formation history of the stellar

1Phase space combined with other properties like metal abundances, ages, etc. .
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halo.

Structure of the thesis After the general introduction in this chapter, in Chapter 2 we give
a more detailed description of the major data sets and the tools we use for our studies. Here we
also lay out how we evaluated the RAVE selection function and how we generally transform
N -body distributions into observable populations of stars using the code GALAXIA. In
the spirit of inverse modeling this is then applied in Chapter 3 to three different Galaxy
models of very different type and capability. Next, in Chapter 4, we follow the opposite
approach and attempt to estimate the virial mass of the Galaxy directly from the RAVE
data. Cosmological simulations are again an important ingredient for this study, because the
additional constraints extracted from them allow to break a degeneracy in the parameters of
interest. In Chapter 5 we present our study concerning the alternative generation scenario
for Hypervelocity stars (HVSs). By means of dedicated N -body simulations we attempt to
explain a number of peculiar features of the observed population of HVSs. We conclude and
summarize in Chapter 6.

Additional remarks on the authorship Of this dissertation Chapter 5 has been published
in the journal Astronomy & Astrophysics (Piffl, Williams, & Steinmetz 2011). The project
further presents a continuation of a study that I submitted as a Diploma thesis at Leipzig
University (Piffl 2009, advisers: Matthias Steinmetz and Tilman Butz). The complete study
was repeated in a more sophisticated manner, both in terms of the simulations performed and
in terms of the analysis. One major improvement is the modeling of the satellite galaxies. In
Piffl (2009) these were modeled as simple Plummer (1911) spheres while for the present study
we use the superposition of a dark matter halo with an NFW mass profile and a Hernquist
(1990) sphere for the baryonic component. The mass ratios and scale parameters of these
components are depended on the total mass of the satellite galaxy and are observationally
motivated. Subsequently, we could drop the clearly over-simplifying assumption that stars
and dark matter are distributed equally in phase space. The increased realism of the simula-
tion led to much more differentiated results that partly contradict the findings of Piffl (2009).
I set up and ran all simulations, developed the analysis and wrote the paper (with comments
from my co-authors). Thereby I used a code for the generation of N -body initial conditions
for a disk galaxy in equilibrium that was provided by Matthias Steinmetz.
Chapter 4 has been submitted on 23rd August 2013 to Astronomy & Astrophysics and is
currently under review by an anonymous referee who recommended the article for publica-
tion after revisions2. For the present content of the chapter the comments of the referee were
already taken into account. The article was also co-authored. I extended the analysis (in dis-
cussion with my co-authors) that was introduced in Leonard & Tremaine (1990) and Smith
et al. (2007), implemented and executed it. Cecilia Scannapieco provided the simulations
and the basic coordinate transformations to shift and rotate the galaxies into a suitable co-
ordinate system. She also wrote a short paragraph describing the simulations. James Binney
provided comments on an advanced draft version of the article and wrote the major part of
Section 4.5.2, namely the comments on the conceptual underpinning of the method. Both,
the contributions by C. Scannapieco and by J. Binney, are again marked at the respective
places in the main body of the text. The other co-authors in the non-alphabetical part of

2At the time this final version of the manuscript was prepared, the article was already published (Piffl et al.
2014).
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the author list gave advice at various stages of the project while the co-authors in the alpha-
betical author list gave minor comments on the final manuscript and owe the authorship to
their status as ’builders’ in the RAVE collaboration, i.e. to their general contributions to the
realization of the RAVE survey.
In Section 3.5 I describe parts of my contribution to the (successful) proposal of the 4MOST
instrument to ESO. The results of this chapter developed in constant discussion with mem-
bers of the 4MOST consortium, mainly Cristina Chiappini and Ivan Minchev. I further
implemented and tested the selection functions and created the mock input catalogs, and
contributed a number of paragraphs for the scientific report (Chiappini et al. 2013) in the
proposal.
In Section 3.2.3 I describe a project I took part in and that was published as Boeche
et al. (2013b). My contribution was to provide a mock RAVE data set based on the
GALAXIA/Besançon model, discussing the results and their implications as well as a small
paragraph describing the mock data. The article is mainly focused on the gradients derived
from the actual data while in this thesis I focus more the differences found in the mock data.
For the sake of completeness I should mention that some of my investigations presented in
Section 2.1, in particular Figure 2.2 and an adapted version of Figure 2.3, were used in the
description of the fourth data release of the RAVE survey (Kordopatis et al. 2013, their
Figures 18 and 3, respectively).
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2 Scientific background

In this chapter we will introduce the data sets and tools that form the basis of our research.
One aim of this work is to connect two largely independent lines of astronomical research.
In this chapter we will provide brief introductions to these quite disparate fields and do
some preparatory investigations. The attentive reader will realize that we first describe our
observational data of the Galaxy, then numerical models of the Galaxy and finally the code
frame-work, GALAXIA, that forms an interface between the two.

2.1 The RAVE survey and its selection function

The Radial Velocity Experiment (RAVE) is a massive spectroscopic stellar survey of the
southern hemisphere conducted using the 6dF multi-object spectrograph on the 1.2-m UK
Schmidt Telescope at the Siding Springs Observatory (Australia). A general description of
the project can be found in the previously published data release papers: Steinmetz et al.
(2006); Zwitter et al. (2008); Siebert et al. (2011); Kordopatis et al. (2013). The project
started in April 2003 and finished the observational phase in April 2013. In total 574 630
spectra were secured on 483 330 individual stars. The latest public data release (DR4; Ko-
rdopatis et al. 2013) contains information from 483 849 measurements of 426 945 individual
stars. The median signal-to-noise ratio (S/N) is 52.
The spectra were taken in the Ca ii-triplet region (8410 – 8795 Å) with an effective spectral
resolution of R = 7000. The strong Calcium absorption lines allow a robust determination
of the line-of-sight velocities via the Doppler effect even with low S/N (&10 per pixel). The
region further coincides with the wavelength window which will be observed by the spectro-
graph of the upcoming Gaia satellite (e.g. Prusti 2012).
In order to provide an unbiased velocity sample the survey selection function was kept as sim-
ple as possible: it is magnitude limited (9 < I < 12) and has a weak color-cut of J−Ks > 0.5
for stars near the Galactic disk and the Bulge. We will discuss the detailed selection function
below.
In addition to the very precise line-of-sight velocities, 3los, with typical uncertainties of a
few km s−1, several other stellar properties could be derived from the spectra. The astro-
physical parameters, effective temperature (Teff), surface gravity (log g), an overall metallic-
ity ([M/H]) and a limited range of individual elemental abundances were multiply estimated
from the spectra using different analysis techniques (Zwitter et al. 2008; Siebert et al. 2011;
Kordopatis et al. 2013; Boeche et al. 2011). Note that throughout this work we will use the
bracket notation we dealing with elemental abundances:

[X/Y ] = log10
N(X)
N(Y ) − log10

N�(X)
N�(Y ) , (2.1)

where N(X) is the number of atoms/molecules of element X in the star and N�(X) is the
corresponding number of the Sun.
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Figure 2.1: Distribution of input I-magnitudes in the full RAVE catalog. Dotted lines mark
the border of the magnitude bins used for the observation runs. The left panel shows the
input magnitudes on which the initial target selection was based. It is a compilation of a
number of different source catalogs. The middle panel shows the I2MASS magnitude which are
computed via the 2MASS J and Ks magnitude, but present a homogeneous data base. The
right panel compares the DENIS I magnitudes with the approximated I2MASS (gray dots).
The red dashed line marks equality and the dotted black lines show the median and the
region containing 90% of the data.

Breddels et al. (2010), Zwitter et al. (2010) and Burnett et al. (2011) independently used these
estimates to derive spectro-photometric distance estimates for a large fraction of the stars in
the survey. Binney et al. (2014) improved on the method by Burnett et al. (2011) and there
is a consensus in the RAVE collaboration that these distances are currently the most reliable
values. Matijevič et al. (2012) used a genetic algorithm to do a morphological classification
of the spectra and in this way we identified binaries and other peculiar stars in the sample.
Finally Boeche et al. (2011) developed an independent analysis pipeline to derive individual
chemical abundances from the spectra. All targets in the DR4 were also cross-matched with
other data bases to be augmented with additional information like apparent magnitudes in
other filter pass-bands and proper motions. If not stated differently, throughout this work we
adopt the parallax1 estimates, $, provided by Binney et al. (2014) and the proper motions
from the UCAC4 catalog (Zacharias et al. 2013).
In any statistical analysis it is fundamental to understand the relation between the data

sample to be analyzed and the underlying population from which the sample was drawn. This
relation is called the selection function of the sample. Without this knowledge inferences on
the general properties of the population are impossible.
The RAVE survey was designed to have a very simple selection function. In order to avoid any
biases in kinematics or chemistry the initial target selection was based only on the apparent
I-band magnitude and angular position of the stars. Later in the course of the survey the
angular footprint of the survey was increased to include also regions close to the Galactic
disk and bulge. In these new regions a color criterion J −Ks ≥ 0.5 was imposed to select for
cool giant stars (Kordopatis et al. 2013).
Another fact to consider is that the input catalog was divided into bins in I-magnitude. This
was done because the individual stellar spectra measured by RAVE are projected close to each
other on the CCD chip in the fiber-fed spectrograph. Thereby some light of a spectrum is
scattered onto the adjacent spectrum and vice versa (“cross-talk”). This becomes a problem
when the spectra of stars of very different brightnesses are projected next to each other on the
CCD chip. Hence only stars within a certain magnitude range were observed simultaneously.

1According to Binney et al. (2014) the parallax estimates are more robust than the direct distance estimates.
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Table 2.1: Quality criteria for the 2MASS mother sample.
Criterion Requirement Description
σ(J)/J ≤ 0.01 high photometric precision in J-band
σ(Ks)/Ks ≤ 0.01 high photometric precision in Ks-band
ph_flagJ A, B, C or D good photometric quality in J-band
ph_flagKs A, B, C or D good photometric quality in Ks-band
cc_flagJ 0 not contaminated by an artifact/confusion in J-band
cc_flagKs 0 not contaminated by an artifact/confusion in Ks-band
gal_contam 0 not contaminated by extended source
pm_flag 0 not positionally associated with asteroid/comet

The stars from the brighter bins where preferentially observed. This results in jumps and
breaks in the overall I-magnitude distribution of the observed stars as illustrated in the left
panel of Figure 2.1. We can thus assume that the probability, S, for a star for being observed
by the RAVE survey is

S = S(l, b, I, J −Ks), (2.2)

with l and b denoting the Galactic coordinates of the star.
When the observations of the RAVE survey started in 2003 there was no comprehensive
photometric infrared survey available to serve as an input catalog. Instead approximate
I-magnitudes were calculated from the Tycho-2 catalog (Høg et al. 2000) and at the faint
end of the magnitude range stars from the SuperCOSMOS Sky Survey (Hambly et al. 2001)
could be used. Later the DENIS catalog (Epchtein et al. 1997) was used as a source for I-
magnitudes and for brighter targets an estimate for I computed from J and Ks magnitudes
from 2MASS (Skrutskie et al. 2006) (see Siebert et al. (2011) and Kordopatis et al. (2013)
for more details). From this it is clear that the input data carries some inhomogeneity and
it is nearly impossible to construct a valid mother sample from this variety of data sets.
Therefore, we decided to use only 2MASS to assess the completeness of the RAVE sur-
vey. 2MASS provides accurate J , H and Ks photometry for all RAVE targets and, equally
important, also for all other stars which could have potentially entered the input catalog.
Unfortunately, it does not provide I-band photometry, but we can compute an approximate
I2MASS magnitude via the following formula (T. Zwitter, private communication):

I2MASS − J = (J −Ks) + 0.2 exp (J −Ks)− 1.2
0.2 + 0.12 (2.3)

The right-most panel in Figure 2.1 compares the DENIS magnitudes with our approximated
values. For the majority of cases the deviation is smaller than 0.3 mag. At bright magnitudes
the 2MASS magnitudes become systematically brighter than the DENIS values. This comes
mainly from the fact that the DENIS magnitudes suffer from saturation effects above I ' 10
mag (Kordopatis et al. 2013).
We compute an I2MASS value for each entry of the 2MASS point-source catalog and clean the
data from spurious measurements (our adapted requirements for a “good” measurement are
given in Table 2.1). Finally we apply the aforementioned color cut to the 2MASS data:

J −Ks > 0.5 for |b| < 25◦. (2.4)
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Figure 2.2: Left panel: Integral completeness of the RAVE survey w.r.t. the 2MASS catalog
as a function of apparent magnitude. The different lines represent sub-samples for additional
data products are available. Right panel: Mollweide projection of the simple survey footprint
within which we estimate the completeness of the RAVE catalog w.r.t. 2MASS (black line).
For comparison all RAVE targets are plotted as well (blue points). Axes are in Galactic
coordinates.

2.1.1 Overall completeness compared to 2MASS

As a first step we can compare the number of RAVE targets with those in 2MASS as function
of magnitude. We need to determine which 2MASS objects have ever been in the field of view
of a RAVE observation. To do this we take each pointing of the RAVE survey and find those
stars that fall in to the field of view, i.e., which have an angular distance smaller than the
angular radius of the RAVE fields, αfield = 2.85◦. It is important to do it in this way instead
of simply taking all stars falling into the region of the survey footprint on the sky, because
the tiling of RAVE leaves non-negligible gaps between the fields. These arise because (1)
the circular fields are arranged such that they overlap2, but leave small gaps between them
and (2) there is a large gap around the equatorial South pole that was left out because of
technical issues in the star tracking system of the telescope.
The left panel in Figure 2.2 plots the resulting completeness distributions for several data
sub-sets for which additional data products are available. For the estimate a few RAVE
pointings were omitted which are located outside the main survey area and were taken for
calibration purposes or other specific science cases. Figure 2.2 (right panel) illustrates what
we define as the core survey area of RAVE for which the completeness was evaluated. In
particular the (neglected) fields in the Galactic plane (near l ' 0◦) are located in the most
densely populated region of the sky and thus would dramatically reduce the completeness
estimate. This would not reflect the properties of the RAVE survey correctly as these fields
were observed for calibration purposes and will not be used for a statistical analysis. Note
that empty areas within the footprint will not reduce the completeness, because 2MASS stars
in these regions are automatically removed by the field-by-field selection described above.

2This overlap poses a further complication if one would attempt to evaluate the completeness on a field-by-
field basis.
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Figure 2.3: Mollweide projections of completeness distribution of the RAVE survey w.r.t.
2MASS as a function of angular position in Galactic coordinates. The pixel size is 0.84 deg2.
The four panels correspond to the four magnitude bins into which the input target were
grouped for observations. The brightest bin (upper left panel) was observed preferentially
and contains less potential targets. As a result the completeness is much higher in this bin
than, e.g., in the faintest bin (lower right).

2.1.2 Spatially resolved completeness

The RAVE target distribution on the sky is not homogeneous as illustrated, e.g. in the right
panel of Figure 2.2. Some RAVE fields were visited more often than others, primarily because
they are located at high altitude for the Siding Spring Observatory and had thus a higher
probability to be observable. Another reason is that target densities vary strongly as one
moves closer or away from the Galactic disk and the Galactic center. Therefore it is important
to compute the selection function as a function of position on the sky.
We do this by dividing the celestial sphere into equally sized pixels using the HEALPix3

routines (Górski et al. 2005). The latter also provide an efficient algorithm to sort the stars
into the pixels. We chose a pixel area of 0.84 deg2 which is much smaller than a RAVE field
(' 25.5 deg2). In this way we accurately map out the gaps between the fields and also the
empty strips in the RAVE coverage which were inherited from the DENIS survey.
To compute the completeness Si in the ith pixel we divide the number of RAVE stars NRAVE,i
by the number of 2MASS objects N2MASS,i falling into the pixel area, respectively, i.e.,

Si(Imin, Imax) = NRAVE,i(Imin, Imax)
N2MASS,i(Imin, Imax) . (2.5)

3http://healpix.jpl.nasa.gov
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Here Imin and Imax are the lower and upper limiting magnitudes for which the completeness
is evaluated. Figure 2.3 shows the resulting completeness maps for all RAVE measurements
which have a radial velocity estimate (multiple observations were removed) for the four I
magnitude bins [9,10] (upper left panel), [10,10.8] (upper right), [10.8,11.3] (lower left) and
[11.3,12] (lower right) into which the input catalog was divided for observations. The brighter
bins naturally contain less potential targets and, in addition, were preferentially observed so
yield a higher completeness than the fainter bins.
For the general application of the completeness function S(I) we will choose a finer binning in
the I-magnitude and a more coarse grid in the (l, b) plane. Mapping out the empty strips and
patches in the RAVE coverage is feasible, but not necessary, because the width of these areas
is much smaller than the angular scales on which the properties of the observable population
are reasonably expected to change.

The maps in Figure 2.3 were produced considering all RAVE targets for which at least one
radial velocity measurement with uncertainty lower than 10 km s−1 is available. We can
choose a different sub-sample of RAVE targets as an input. However, such sub-samples have
to be selected with care in order to yield valid results for the completeness. The parameters
used in the selection criteria must be correlated with the properties of the stars only through
measurements available in the 2MASS catalog, i.e. angular coordinates l, b and apparent
magnitudes J,Ks (I2MASS) or not at all correlated, like, e.g., spectrum quality criteria. The
signal-to-noise ratio, S/N, belongs to the first category, because it likely is related to the
apparent magnitude of the star. Hence, a S/N cut will change the input distribution of
I2MASS magnitudes and so the completeness distribution of the sample will be affected.

2.2 Theoretical models of galaxy evolution

An often repeated sentence about the currently most widely accepted model of the content
and evolution of the Universe, the ΛCDM cosmology, is that its fundamental parameters and
laws can be written down on a single sheet of paper. The fact that such a simple model
should be able to account for the complexity of astronomical objects observed in the real
universe (not to speak of variety of phenomena observable here on Earth) already points to
the highly non-linear nature of the evolution predicted by this model. This high degree of
non-linearity makes it very difficult to assess the implications of the model for our present
epoch.
The conceptually most straightforward way to test our picture of the formation and evo-
lution of the Universe are cosmological simulations of structure formation. On large scales
(> 1 Mpc) it is sufficient to only follow the evolution of the dark matter to successfully repro-
duce and explain the filamentary structure of the Universe as found in galaxy redshift surveys
(e.g. Springel et al. 2006). On smaller scales physical processes other than gravity become
important as well and so the baryonic component has to be considered as well. There are
two fundamental approaches to implement the baryonic physics: either the luminous matter
is included as a post-process to a dark matter-only simulation run using scaling laws and
semi-analytic models (Kauffmann et al. 1999), or a direct simulation that models all relevant
physical processes from the beginning. We will focus on the latter approach for this work.
Ideally, such simulations take as an input only fundamental physical laws and a set of ini-
tial conditions and provide as an output snapshots of a statistically significant part of the
Universe at different times of its history up to the present epoch. In this strict sense, such
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a simulation is currently infeasible to perform due to the limited computing power available
and will also most likely never be possible. Therefore, a number of approximations are made
that largely reduce the numerical effort. Many of these approximations are conceptually and
physically well motivated, like, e.g., the tree-algorithm (Barnes & Hut 1986) for the evalua-
tion of the gravitational field, smoothed particle hydrodynamics (SPH) (Lucy 1977; Gingold
& Monaghan 1977; Steinmetz & Müller 1993) to model gas dynamics, or radiative cooling of
gas clouds (e.g. Scannapieco et al. 2005).
However, the computational effort is not the only problem. Much of the physics acting on
smaller scales are currently not only not resolved, they are not yet well understood. These
processes can be implemented only in a phenomenological way as “sub-grid” physics. The
most important among these are the UV-background and reionization, star formation, en-
ergy feedback from supernovae (e.g. Scannapieco et al. 2005, 2006) and massive stars (Aumer
et al. 2013; Stinson et al. 2013). Owing to the hierarchical scenario of galaxy formation in the
cold dark matter (CDM) paradigm (which we use as our basic frame-work through-out this
work) such events can have a profound impact on larger scales, e.g. through the suppression
of star formation in low mass galaxies (e.g. Ferrara & Tolstoy 2000). This situation leads to
the problem that slight differences in the numerical implementation can translate into huge
differences in the simulation result. Code comparisons like the Aquila (Scannapieco et al.
2012) or the AGORA projects (Kim et al. 2014) are therefore important to identify robust
results.
Currently, the next major task is to simulate the formation of realistic galaxies and galaxy
populations with statistical properties as found in observations. It turned out that the for-
mation of massive disk-dominated galaxies as our own Galaxy are particularly difficult to
obtain with current simulation techniques unless the above-mentioned sub-grid physics are
treated properly. Recently, several groups reported successful attempts to form realistic disk-
dominated galaxies (Governato et al. 2010; Guedes et al. 2011). However, as these are studies
of single objects their significance remains unclear.
This problem was tackled by Scannapieco et al. (2009) who performed a suite of eight simu-
lations with initial conditions picked randomly using the last snapshot of a dark matter-only
simulation of a much larger volume4. The only selection criteria were that at z = 0 the dark
matter halo has a virial mass similar to the mass of the Milky Way and the final halo has
no similarly massive neighbor closer than 1.4 Mpc. Among these candidates are also the six
halos that were studied in much higher resolution, but as dark matter only simulations, in
the Aquarius project (Springel et al. 2008). This suite of simulations allowed the authors to
study the processes that lead to the formation and destruction of a galactic disk.
To refer to the individual simulations we adopt the naming convention (A – H) of Scanna-
pieco et al. (2009). The galaxies have virial masses between 0.7 – 1.6 ×1012 M� and span
a large range of morphologies (Figure 2.4), from galaxies with a significant disk component
and/or a central bar (e.g. simulations C and G) to pure elliptical galaxies (simulation F). The
mass of the gas and stellar particles is 0.22 – 0.56 ×106 M� and the softening parameters
for the gravity were set to 0.7 – 1.4 kpc. A detailed description of the simulations can be
found in Scannapieco et al. (2009, 2010), Scannapieco & Athanassoula (2012) and Tissera
et al. (2012) while the simulation code is presented in Scannapieco et al. (2005, 2006) and
Springel (2005).
In this work we will use these simulations for two separate studies. In Chapter 3 we will use
their final mass, age and metallicity distributions to create mock stellar surveys that can be

4see also Aumer et al. (2013) and Marinacci et al. (2014) who partly re-simulated the same initial conditions
with different codes.
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Figure 2.4: Face-on and edge-on view of the eight galaxies simulated by Scannapieco et al.
(2009). Color-coding is reflecting the projected stellar luminosity (i band). The images are
50 kpc across, and the edge-on views have a vertical height of 20 kpc. The figure was taken
from Scannapieco et al. (2011).

directly compared to the real observations in the RAVE survey. Doing this we will concen-
trate more on their disk components. In Chapter 4 we will explicitly pick mass particles not
belonging to the disk population to gain an understanding of the velocity distribution in the
stellar halo.

Re-scaling the simulations In both studies we will explore the galaxies from the perspective
of an observer that is situated inside the system at a position equivalent to the position of
the Sun in the Milky Way. To find this position we first define a Cartesian coordinate system
in which the rotation axis of the galaxies is parallel to the z-axis and the center of mass is
at the origin. In velocity space we fix the rest-frame by requiring a zero net-velocity for all
particles within 20 kpc from the center.
The galaxies in the simulations have different structural parameters than the Milky Way.
It is therefore not immediately clear where we should place the Sun in these galaxies. If
applicable, we first fix the azimuthal position by requiring that the line between the Sun and
the galactic center lags the bar major axis by 20◦ in the direction of rotation. The orientation
of the bar we take from Scannapieco & Athanassoula (2012). Otherwise we pick a random
angle.
For the solar distance R0 to the galactic center there are several options: (1) we simply set a
value for R0, e.g. 8 kpc, assuming that the simulated galaxy is a detailed twin of the Milky
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Table 2.2: Virial radii, R340, masses,M340, and velocities, V340, after re-scaling the simulations
to have a circular speed of 220 km s−1 at the solar radius R0 = 8.28 kpc. We define R340
to be the galactocentric radius encompassing a mean mass density of 340 times the critical
density for closure in the Universe.

Simulation R340 M340 V340 scaling factor
(kpc) (1010 M�) (km s−1)

A 154 77 147 1.20
B 179 120 170 0.82
C 157 81 149 1.22
D 176 116 168 1.05
E 155 79 148 1.07
F 166 96 158 0.94
G 165 94 157 0.88
H 143 62 137 1.02

Way in terms of scale length, bar length, etc. . (2) Another option would be to fix the value
of R0 in units of the radial disk scale length Rd. This would ensure that we are located
in a similar environment as the Sun in the Milky Way. Estimates for Rd in the literature
range between 2 – 4 kpc, so this would still leave considerable freedom. Finally, (3) we could
consider the kinematics of the galaxy to fix the position. Since we want to compare to the
RAVE survey – the major data product of which are velocities – this seems a plausible choice.
We re-scale the simulation in such a way that the circular speed at R0 is 220 km s−1. For this
we use the following coordinate transformations for radial distance, r, velocity, v and mass,
m, of the stellar particles:

r′ = r/f ,
v′ = v/f ,
m′ = m/f 3 .

(2.6)

These transformations leave the numerical values of the gravitational constant G and the
mass density invariant. This is important because these quantities are used in the simulation
code with their absolute values for the gravity solving and in the star formation recipe.
Note, however, that these transformations also change the energy scale in the simulation and
thereby we effectively change the amount of energy feedback from supernovae by a factor
f−2. The scale factors and resulting virial masses, radii and velocities for all 8 simulations
are given in Table 2.2. The factors are close to unity so the changes in the feedback energy
are well inside the uncertainties of this parameter and the numerical realization of energy
injection into the surrounding ISM.

2.3 The stellar synthesis code GALAXIA

In the last decades several attempts have been made to produce a detailed model of the
Milky Way comprising as much of the current knowledge as possible. There are simple mass
models (e.g. Dehnen & Binney 1998; McMillan 2011; Irrgang et al. 2013) mainly used for orbit
calculations for single stars or satellite galaxies and there are very complex models describing
also the expected stellar kinematics and the spatial distribution of stellar ages and chemical
abundances. The latter allow to derive detailed predictions of stellar observations that can be
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statistically compared to real observations. The most widely used of these models are the so-
called Besançon model (Robin et al. 2003) and the TRILEGAL model (Girardi et al. 2005).
Recently, Sharma et al. (2011) developed a new numerical frame-work to create such models
and – as a test case – implemented the density profiles of the Besançon model. Such a model
generally consists of analytic expressions for the mass density profile, the age, metallicity
and velocities distribution as well as an assumption about the initial mass function (IMF)
and a set of stellar isochrones that are used to map from physical into observational space.
While the density profiles can be fitted against deep photometric observations, the other
ingredients are often less well constrained or are still under debate (for example the IMF, see
e.g. (Kroupa 2007)). The velocity distribution is mostly set to reproduce local measurements
and can be made consistent with the gravitational potential implied by the mass density
profile (Bienaymé et al. 1987). Often these models are constructed as a super-position of
several sub-components, as e.g. a Galactic bulge, a dark and a stellar halo and often several
Galactic disks.
Such models are often useful and sometimes even necessary tools to analyze and interpret
large sets of data. Here we list some examples of typical applications without claiming it to
be exhaustive: Reylé et al. (2009) used the Besançon model to constrain the Galactic warp in
the 2MASS catalog by studying the differences of an un-warped Galaxy model and the data.
Gao et al. (2013) tested the TRILEGAL model, the Besançon model and in addition the less
comprehensive model by Just & Jahreiß (2010) against the SDSS photometric star counts to
find the most informative data projections. Williams et al. (2011) used the GALAXIA code
to evaluate the statistical significance of a stellar stream in the RAVE data. Miglio et al.
(2013) used again TRILEGAL predictions to disentangle intrinsic features in their data from
selection effects. Similarly, Boeche et al. (2013b) use the GALAXIA model to investigate the
influence of selection effects on the chemical radial gradients in the Galactic disk. Finally,
Cioni et al. (2014) used GALAXIA to model the proper motions of the foreground stars in
their observations of the Large Magellanic cloud.
Also for the planning of new observing facilities a forecast of the observable objects presents
important information. The analysis software for the space-born mission Gaia (e.g. Prusti
2012) is developed and tested using an extended version of the Besançon model (Robin
et al. 2012). Another example is the 4MOST telescope (de Jong et al. 2012), the full 5-year
operations of which were simulated using a GALAXIA output as a mock input catalog, in
order to evaluate the science capabilities of the planned instrument. The code is also used for
a similar purpose in the planning of the GALAH survey using the HERMES spectrograph
(Zucker et al. 2013).

2.3.1 Stellar population synthesis from analytic distribution functions

This work makes extensive use the GALAXIA code and derivations from it. In the following
we briefly introduce the principal concepts of the GALAXIA frame-work. The full details and
a suite of basic test applications can be found in Sharma et al. (2011). The code models the
Galaxy as a superposition of a set of stellar components. These could be the Galactic disk(s),
a central bulge/bar and a stellar halo, but also individual stellar streams or in-falling satellite
galaxies. Each component is described by its phase space distribution function (DF)

fj = fj(r,v, τ, Z,m), (2.7)
which is assumed to be a function of position (r), velocity (v), age (τ), metallicity (Z) and
stellar mass (m). The index j stands for the individual components.
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It is further assumed that the DF can be written as a product of several basic functions
describing different physical aspects of the component:

fj = Ψ(τ)
〈m〉

ξ(m, τ)fpos(r, τ)fvel(v, r, τ)fZ(Z, r, τ). (2.8)

Here Ψ(t) is the star formation rate as a function of look-back time or age. The parameter
〈m〉 represents the mean mass of the stars of a simple stellar population with present-day
mass distribution ξ(m, τ), which is a convolution of the initial mass function (IMF) with
stellar evolutionary models predicting the range of stellar masses still observable after the
time τ . The spatial and kinematic DFs, fpos and fvel, are assumed to be functions of age only
as is the metallicity DF, fZ. This latter approximation of the metallicity being uncorrelated
with the kinematics of a star is common in all currently available stellar evolution models, but
too simplistic in the light of newly available data, as we will discuss later in Section 3.2.3.
Once all these distribution laws a fixed, a random realization of the DF is created using
either the inverted cumulative distributions or the von Neumann rejection technique (e.g.
Press et al. 2007). This step is generally the bottle neck of the stellar synthesis codes and
GALAXIA is using a particularly efficient algorithm to do the sampling making it a very
powerful tool to study to fit global Galaxy models to large data sets (e.g. Sharma et al.
2013).
The observable properties of the resulting mock stars can then be obtained from stellar
evolutionary models. These provide the basic stellar parameters, namely surface gravity
(log g), effective temperature (Teff), bolometric luminosity L, and absolute magnitudes in
a variety of astronomical filter systems. Currently, GALAXIA is using the Padova stellar
atmosphere models (Marigo et al. 2008).
A further important ingredient to mock observations is dust extinction along the line of
sight. GALAXIA has a basic scheme implemented which assumes a double exponential dust
disk which is fit to the extinction maps provided by Schlegel et al. (1998). It is well known
that these maps are problematic near the Galactic disk and we apply the ad hoc correction
factor

EB−V,corr = EB−V

(
0.6 + 0.2

(
1− tanh

[
EB−V − 0.15

0.3

]))
(2.9)

proposed by Sharma et al. (2013) to lessen this effect. Note however, since for this work we
want to model the RAVE survey, this is not a major concern as RAVE by construction avoids
the highly extincted regions in the plane. With these extinction estimates E(B−V ) at hand
it is then straightforward to compute the apparent magnitude of the mock stars via

mi = Mi + 5 log10(d[kpc]) + 10 + A(i), (2.10)

where d is the heliocentric distance to the star and A(i) = R(i)E(B−V ) is the extinction in
a given filter i computed using the conversion factors R(i). We use the values R(J) = 0.72
and R(Ks) = 0.306 given by Yuan et al. (2013).

2.3.2 Stellar population synthesis from an N-body model

The major part of the GALAXIA code has the purpose to produce discrete realizations of an
analytically described Galaxy model in observational space. However, with the advancement
of numerical simulations of structure formation it became clear recently that the (outer)
stellar halo is not well described by a smooth relaxed population. It is rather a combination
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of large number of stellar streams resulting from merging and accretion of minor neighbor-
ing galaxies over past cosmic history. Therefore Sharma et al. included a section in the
GALAXIA code that allows to include a stellar halo from an N -body simulation that could
provide the lumpiness expected in a ΛCDM universe.
In this case, the spatial and kinematic DFs taken from the mass particle distributions. The
particles are discrete tracers of the underlying smooth mass distribution and a softening ker-
nel has to be applied to recover this density field. GALAXIA uses a so-called Epanechnikov
kernel for the smoothing:

W (u) =

 NW (1− u2) for u ≤ 1
0 otherwise,

(2.11)

where u2 = (|r|/hr)2 + (|v|/h3)2 and NW is a normalization constant, which is defined
through ∫

d6u W (u) != 1 (2.12)

and has the value NW ' 0.77403670 (Sharma & Steinmetz 2006).
For the standard Galaxy model described in Sharma et al. (2011) the simulations by Bullock
& Johnston (2005) served as a halo model. This simulation was a pure N -body simulation of
dark matter and star particles which were accreted in form of satellite galaxies onto a Milky
Way-like galaxy represented by an analytic potential. Ages and metallicities were assigned
to the star particles only as a post-processing step. Sharma et al. decided not to use these
individual age and metallicity of a certain particle in order to spawn a stellar population
from it, because they were not connected to their individual positions in phase space, but to
the initial properties of the satellite galaxy they belonged to. Instead, the code generates an
age-metallicity function for each individual satellite and based on this randomly assigns age
and chemistry.
In practice, this means that each mass particle represents a simple stellar population that is
distributed in a phase space volume around the particle. The mass is according to the IMF
split up into individual stars that have all the same age and chemical abundances as the host
particle.

2.3.3 Modifications to GALAXIA

For this work we want to be able to process an N -body realization of a complete galaxy
including disk(s), bulge and stellar halo. Clearly, for such a large system the approximation
that the age-metallicity relation is the same globally is not valid anymore. Therefore, we
had to make modifications to the code to ensure that each mock star inherits the age and
chemical properties of its parent particle.
The original version of GALAXIA uses the exponential IMF proposed by Chabrier (2001)
for all N -body input. We implemented the IMF by Scalo (1986) (see Eq. 3.6) as a second
option in order to be consistent with the MCM model (see Section 3.3) which we will study
in the course of this work.
On the suggestion of L. Girardi (private communication) we modified the way how the appro-
priate isochrone is selected given the age τ , the iron abundance [Fe/H] and the α-enhancement
[α/Fe] of a star particle. Instead of adopting the isochrone with a metallicity closest the
metallicity of the particle, we compute a modified metallicity

[M/H]mod = [Fe/H] + [α/Fe] (2.13)
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and select the isochrone which is tagged closest to this value to generate the stellar popula-
tion. The reason for this obviously inconsistent course is that we want to correct, at least
approximately, for the fact that all stellar tracks in GALAXIA were computed with [α/Fe] =
0. According to Giradi the α-enhanced isochrones currently available in the literature are all
suffering from an error in an opacity table and should therefore not be used. Finally, we had
to apply some minor changes to the original code mainly concerning in- and output routines
to facilitate to use of our N -body models and we added the Padova isochrones in the 2MASS
filter system to the code.

2.3.4 Computation of the smoothing parameters

As already done by Sharma et al. for the Bullock & Johnston (2005) halos in the original
version of GALAXIA we use the publicly available code EnBiD (Entropy based Binary De-
composition; Sharma & Steinmetz (2006)) to compute individual smoothing lengths hi for
the mass particles. As for kernel softening in smoothed-particle hydrodynamics (SPH) the
smoothing length are defined as the distance to the Nngb-th nearest neighboring particle,
however, in this case in six-dimensional phase space. The difficulty in this process is to find
a suitable metric to compute distances in phase space. EnBiD evaluates a local metric for
each particle so that the local variance of phase space density is about equal in positional
and velocity space.
The code yields erroneous results if two particles are sitting on the exact same phase space
position which happens in one of the models we will use later on (the MCM model, see Sec-
tion 3.3). In this case we circumvent the problem by randomizing the particles’ azimuthal
positions for the softening computation and rotate their velocities accordingly5. This has
the effect that the softening becomes a function of (cylindrical) radius R and height above
the Galactic plane z only, while without the randomization we should see, e.g., marginally
decreased softening in the spiral arms where the number density of particles is slightly in-
creased. The effect would be negligible, however, since the azimuthal density variations are
very small except, maybe, for the central bar region. But these regions are too distant from
the Sun to be observed by the RAVE survey and so this issue is not of concern for this study.
The GALAXIA standard value of Nngb is 64 for the softening estimates. A smaller value

would increase our resolution (and the shot noise in the density field). Decreasing Nngb by
a factor f will decrease the resulting softening length on average by a factor f 1

6 . So if we
drastically decrease Nngb to 16 the softening lengths will shrink only to ∼80% of their original
value.
This is problematic because the softening in 6D phase space leads to very large spatial soft-
ening length. Figure 2.5 shows the spatial and kinematic softening parameters for particles
in the solar annulus computed for a disk configuration with more than 2 million particles.
If we consider only the three spatial dimensions we find softening lengths around 200 pc
which is even somewhat smaller than the canonical scale height of 300 pc for the thin disk.
However, in the full 6D case the spatial softening is around 1 kpc, erasing all information
about a possible thin and thick disk dichotomy.

5The existence of 2 particles at the same phase space point is actually a numerical artifact arising during
the construction of the MCM model. The increased mass density at these points is hence not physically
motivated and moving these particles away from each other does actually improve the model in this
specific aspect.
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Figure 2.5: Softening parameters computed for an N -body disk with more than 2 million
particles in total. The left an d right panels show the distribution of the spatial and kinematic
softening parameters for particles in the solar annulus for various values of Nngb. For the
spatial softening we show also the softening lengths if we smooth only in positional space as
is typically done in SPH simulations. Only particles with 7.5 < R < 8.5 kpc and |z| < 1 kpc
were considered.

One of the underlying problems is that GALAXIA cannot distinguish between different spa-
tial directions for the softening. While this is fine for the spherical or moderately flattened
distributions of satellite galaxies, in highly anisotropic configurations a lot of information is
lost. For thin stellar streams as found in the halo Sharma et al. (2011) improved the situation
by ensuring that – if possible according to the observational constraints – one mock star gets
assigned the exact phase space position of the parent particle. This improves the resolution
significantly if only one or a few stars are spawned per mass particle, i.e. for particles which
are distant from the Sun.
In the case of the Galactic disk, parts of which are very close, this approach does not work
anymore because particles get heavily over-sampled. In order to conserve as much informa-
tion as possible we decided to use spatial softening lengths computed without considering
the velocity space. For the velocity smoothing we use a constant value h3, which we set to
be the median value of distribution of velocity softening length computed with EnBiD in 6D
phase space with Nngb = 32. For this we only consider particles in the solar annulus, which
we define as 7.5 < R < 8.5 kpc and |z| < 1 kpc, because these are the most relevant particles
for our study. We test the effect of this somewhat arbitrary decision in Section 3.3.2.
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3 Mock RAVE surveys from models of
the Galaxy

An empirical measurement is usually influenced by a great multitude of minor effects that
results in a stochastic scattering of the observed value around the actual value of the quantity
of interest. The large number of different influences usually drives the scattering distribution
towards a Gaussian function, the width of which can be easily evaluated by several repetitions
of the experiment. For astronomical observations such influences can be stochastic photon
emission of the source, the current state of the atmosphere above the telescope, temperature
variations in the telescope or read-out noise on the CCD detector to name just a few. Things
get more complicated when the observations are used in a further analysis, which is often
equivalent to a non-linear transformation. This can severely alter the shape of the uncertainty
distributions.
A further level of complexity is added if the measurements that enter the data set are not
entirely randomly selected, i.e. if the data set has a selection function. A typical example for
such a complication is the Malmquist bias that describes the fact that a magnitude-limited
survey is biased towards intrinsically brighter objects. There are however, also more subtle
effects like a metallicity bias that can be easily introduced by a color cut in a stellar survey.
Even if the effects of a selection function are well understood it is sometimes extremely
difficult to correct for them.
A very simple illustration of the problems that can arise during such a correction is offered by
the case of a stellar sample of a completeness (w.r.t. all potentially observable targets) that
varies as a function of magnitude. This can be achieved by weighting each star in the sample
by the inverse completeness of its magnitude region. As a result it can happen that very few
stars get extremely high weights and thereby introduce a large statistical uncertainty in the
results. Typically this happens at the faint end of the magnitude range where potential target
numbers are high and signal-to-noise ratios of the measurements are low so many targets are
lost due to quality issues. Together with possibly non-Gaussian uncertainty distributions the
evaluation of the uncertainty in the final result of such an analysis becomes non-trivial.
In the study presented in this chapter we follow a different approach. Instead of trying to
remove the selection effects from the data we ask what would we observe using a given survey
selection function if a given model was true. This allows us to repeat the target selection
and observing process in the same order as for the real survey and thereby successively
introduce the same measurement uncertainties and selection criteria (see also Bovy et al.
2012c). A great advantage of this approach is that we (have to) deal with observational
quantities which have relatively simple uncertainty distributions (e.g. line-of-sight velocities
and proper motions instead of the computed Cartesian coordinates U, V,W ). The downside
of the approach is that we have to apply very comprehensive and hence complex models
which require many assumptions that then are all tested simultaneously.
In the course of this work we will explore three different Galaxy models for their consistency
with the results of the RAVE survey. Depending on the type of the input model we are able to
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study different aspects of the survey data. First (Section 3.2) we will use the standard model
implemented in the original version of GALAXIA. As this model is a close twin of the well-
tested Besançon model (Robin et al. 2003), this exercise will firstly provide an independent
test of this model, in particular the implemented kinematics and chemistry and secondly
establish a benchmark for a good Galaxy model to which other models can be compared to.
The model is also the only one based on analytic distribution functions that we will study.
We will then move over to models based on discrete mass particle distributions. Here we will
initially (Section 3.3) use the chemodynamical MCM model of the Milky Way (Minchev et al.
2013a) that consists of a pseudo-cosmological simulation of the evolution of a disk galaxy.
Stellar ages and chemical abundances were added in a sophisticated post-processing step
using a chemical evolution model of the Milky Way. Finally (Section 3.4), we will explore
a fully cosmological simulation of the formation of a disk galaxy from the simulation suite
of Scannapieco et al. (2009), following self-consistently also the chemical evolution of the
inter-stellar medium.
Our study is meant to be a pilot study in the sense that we do not try to improve or modify
these models in the light of our results. Although it would be possible to develop a new
Milky Way model with a more comprehensive use of our method, this is beyond the scope of
this thesis.

3.1 Creating a synthetic RAVE survey

Before we can actually evaluate the RAVE selection function in the way described in Sec-
tion 2.1 we have to decide about the part of the RAVE data we want to compare with.
The measurements have to be of good quality or at least their uncertainties have to be well
understood otherwise a comparison to the resulting mock survey is meaningless.
First of all we have to sort out the repeat observations, which amount to ∼ 10% of the
RAVE measurements. We keep always the observation with the highest S/N value. Fur-
ther we remove all measurements that are flagged to have a problem in the spectrum (any
SpectraFLAG is present). For similar reasons we discard all measurements for which a ra-
dial velocity correction larger than 10 km s−1 (correctionRV) was applied or that have an
uncertainty in the radial velocity (eHRV) larger than 7 km s−1. A large value in one of these
quantities could point to problems in the spectrum. The RAVE analysis pipeline returns
estimates for the line-of-sight velocities for all measurements regardless of the quality of the
spectrum or the fit of the synthetic spectrum. The Tonry & Davis (1979) correlation coef-
ficient (CorrelationCoeff) is provided for each spectrum fit that reflects the compatibility
of the observed and the selected synthetic spectrum. We select all measurements where this
coefficient is larger than 10. As we use the 2MASS catalog to evaluate the completeness of
the selected sample we use only those targets which have a secure counter-part in 2MASS
(Cross-identification flag XIDquality2MASS is A). We also restrict our targets to have an
I2MASS between 8 and 13 mag.
As already mentioned before, below a Galactic latitude of b = 25◦ RAVE observed only stars
with J − Ks > 0.5 mag to favor of cool giant stars over hot dwarfs. However, there are a
couple of calibration observations which do not follow this selection criterion. We discard
all stars which violate the criterion for the sake of a clear selection function. The Schlegel
et al. (1998) extinction maps are known to be inaccurate in regions of high extinction and we
therefore avoid such regions. The RAVE survey did the same, but for the reason that highly
extinguished spectra pose large difficulties for the analysis pipelines. We follow the footprint
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of the second input catalog (see Kordopatis et al. 2013, their Figure 1). This means that
we exclude stars with |b| < 10◦ and |l| < 45◦ in both hemispheres and – on the Northern
Hemisphere only – stars with b < 25◦ and |l| < 30◦ (see, e.g., Figure 2.2 for an illustration).
Finally, we want to get a handle on the uncertainties in the stellar parameter estimates of
the input data. We do this by imposing a lower limit on the S/N of the measurements. By
default we set this limit to 40, but depending on the parameters we want to compare we will
sometimes choose a higher value. The relatively high default threshold anticipates already
an additional data quality cut connected to the RAVE DR4 analysis pipeline that we cannot
perform at this stage, but has to be done on the mock data (see Section 3.1.3). By imposing
a strong cut in S/N at this point leads to a clearer selection function. After applying all these
selection criteria we obtain a sample of ∼ 225 000 stars. This is about 53% of the ∼ 425 000
unique stars in the RAVE DR4 catalog.

3.1.1 Application of the selection function

Together with the RAVE selection function and the modified GALAXIA code we have now
all the tools in hand to create a sample of mock stars which resembles the original RAVE
sample as close as possible for a given model of the Galaxy. We have to define a tiling of the
sky (via HEALPix) and bins in I2MASS (bin width 0.2 mag) to compute the completeness S
as a function of angular position and magnitude. In the following we use HEALPix pixels of
size ' 3.35 degree2 (HEALPix parameter NSIDE = 32). This is larger than the pixel size used
for Figure 2.3 which served illustrative purposes. A larger pixel area reduces stochastic noise
in the mock survey, but has the consequence that we do not recover the empty stripes along
equatorial declination in the RAVE inherited from the DENIS survey. Instead we obtain a
reduced completeness in pixels intersecting with the stripes. Since there are no significant
variations on scales comparable to the widths of the stripes this does not affect our results1.
Then we apply the same HEALPix tiling and magnitude binning to the GALAXIA output,
which we use as the mock equivalent of the 2MASS catalog, except that we have, in addition to
the positional and magnitude information, the full phase space, chemical and age information
about every single entry. To be consistent we do not use the I magnitudes provided by the
code, but again compute I2MASS from the J and Ks magnitudes. We also add extinction to
the apparent magnitudes in the way described in Section 2.3.2. Note that we thus neglect
the photometric uncertainties in the data.
In each (l, b, I2MASS)-bin we randomly select the same fraction of total number of available
mock stars as given by S2. We use statistical rounding to fix the (integer) number of stars
to be picked: for each bin we draw a random number X between zero and unity. If X is
smaller than the floating point part of the product of the completeness of the bin and the
number of available targets in the bin, we round up otherwise we round down. The resulting
mock sample is an equivalent model realization of the input RAVE sample and can be treated
exactly in the same way.

1The same argument generally applies for the statistical usability of the RAVE survey itself.
2Alternatively we could assign a weight to each mock star equal to the completeness of the bin in which it
is located. In this way we could reduce the scatter to the mock data. We leave this approach for future
investigations
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Figure 3.1: Mean uncertainties of the RAVE stellar parameter estimates of Teff (first row),
log g (second row) and [M/H] (third row) as well as of the parallax estimates, $ (bottom
row), as a function of the star’s location in the parameter space. The dashed black lines mark
the borders of the regions with similar uncertainties which we defined to introduce errors of
the mock data. The black contours show the number density distribution of the RAVE data
and mark locations with 10, 100 and 1000 stars per bin.

3.1.2 Introduction of observational errors

Observational data sets never contain the “true” values of the physical quantities listed, but
the most likely values given the observations (and the analysis pipeline). The precision of the
measurements is usually expressed as an uncertainty which indicates a range of values which
contains the true value to a certain confidence level α. If we want to compare our artificial
data set, which contains the true values predicted by the underlying model, with real data
we have to add similar errors to the mock data. We distinguish between the uncertainty or
precision, u(X), of a measured quantity X, which is a property of the probability distribu-
tion of this quantity, and an error e(X) which is a random value drawn from this probability
distribution. In order to do this we will assume that the probability distribution follows a
Gaussian in each parameter. To obtain a similar uncertainty distribution as in the real RAVE
data we randomly associate the set of uncertainty values of a real RAVE measurement (from
our input sample) to each mock star.
This is possible because the DR4 pipeline provides individual uncertainties (68% confidence)
for each measurement. How well a parameter can be constrained by the RAVE spectrum
depends also on the type of star, i.e. where it is located in parameter space. As illustrated
in Figure 3.1 different regions in the parameter space allow different precisions in the esti-
mate. The reason for this is that for some parameter combinations certain features in the
spectrum are more sensitive to small changes in the parameters than for other combinations.
The abrupt jumps visible in Figure 3.1, e.g. at log g = 3.5 dex, do result from discontinu-

32



Figure 3.2: Left panel: Distribution of the differences ∆X between the astrophysical param-
eter estimates, X, coming from RAVE repeat observations of the same star. The stars were
separated into dwarfs (log g > 3.5, red color) and giants(log g ≤ 3.5, green color). The con-
tour lines mark positions where the number density dropped to 1%, 10%, 50% and 90% of the
maximum value (located at (0, 0)). The dashed lines highlight the orientation of the major
axis of the distributions as computed from the covariance matrix. Right panel: Distribution
of the differences in the parallax, ∆$, and surface gravity, ∆ log g, estimates coming from
RAVE repeat observations of the same star. The contour lines are the same as in the left
panel.

ous changes in the stellar model atmospheres that are compared to the data by the analysis
pipeline. To take this into account we divide the parameter space into regions in which the
variation of the uncertainties is small, i.e. the regions that are marked with black dashed
lines in Figure 3.1. Then, we choose a suite of uncertainties for each mock star from a single
RAVE star located in the same region as the mock star. The choice of the borders was
mainly determined by the aforementioned jumps in the uncertainty distributions. Note that
this procedure is somewhat inconsistent as we use the measured location of the RAVE star
and associate it with the unaltered location of the mock star in the parameter space. This
is unavoidable since we cannot know the real location of the RAVE stars. However, because
the uncertainties in the parameters are usually small compared to the sizes of the regions of
similar uncertainty values we consider this a minor problem.
A further issue to investigate is whether there are degeneracies for measurements of differ-
ent astrophysical quantities. Such correlations can arise if several parameter combinations
yield very similar spectra. The stars with repeat observations in RAVE offer the possibil-
ity to identify such correlations, because we can study the differences ∆X of the measured
parameters X coming from two measurements of the same star. Figure 3.2 reveals that an
over-estimated value for the stellar surface gravity log g leads to a too high value for the
effective temperature Teff and the metallicity [M/H]. We treat dwarfs and giants separately
by cutting the sample at log g = 3.5 and approximate these correlations by shifting Teff and
[M/H] according to the following formula:

ebias(X) = SXe(log g), (3.1)

where the correlation coefficient SX is computed via the covariance matrix σ of ∆X and
∆ log g obtained from the RAVE data:

SX = σ2
12
σ2

11
= d∆X

d∆ log g . (3.2)
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We find STeff ,dwarfs = 531 K, STeff ,giants = 122 K, S[M/H],dwarfs = 0.132 and S[M/H],giants = 0.155.
We have to take into account that these correlations already went into the uncertainties of
the parameter estimates. We therefore reduce the uncertainties by multiplying with the ratio
of the standard deviations of ∆X that we find before and after subtracting the correlations.
For giants (dwarf) stars the scatter in the effective temperature is reduced to 87% (67%)
and in metallicity to 76% (93%) of the original value. The computed shifts ebias(X) are then
combined to the random value e(X) drawn from the Gaussian distribution of width u(X)
and added to the original value of X.
In addition to the internal uncertainties which reflect the analysis pipeline’s ability to chose
the correct linear combination of model spectra, there are external uncertainties which are
determined by comparing the derived parameters with external reference estimates obtained
via different observations and analysis techniques. Kordopatis et al. (2013) quantify the
deviations for different types of stars (see their Table 3) with an additional standard deviation
σext. However, for the surface gravity estimates systematic shifts can be found (Figures 6 &
10 in Kordopatis et al. (2013)) which imply a general underestimation of ∼ 0.5 dex for giants
(reference log g . 3) and a more complex systematic behavior for stars with higher surface
gravity. The sample of reference observations is a compilation of (inhomogeneously analyzed)
literature values, but the behavior is consistently observed in all homogeneous sub-sets. A
further hint that this systematic is intrinsic to the RAVE data comes from a comparison with
APOGEE observations of a number of RAVE stars revealing very similar trends in log g (M.
Steinmetz, C. Chiappini & F. Anders, private communication).
We also add errors to the phase space coordinates of the stars. We consider the uncertainties
in the angular positions to be negligible and the three velocity components to have un-
correlated Gaussian errors. The deviations in the distances, d, are more complicated to
model, however, since these are derived on the basis of the stellar parameters (and apparent
magnitudes) of the stars. Therefore the distance errors are strongly correlated with the
errors in these parameters. Ideally, the distances of the mock stars would be recomputed
using the error-prone stellar parameters and the same methodology of Binney et al. (2014)
as the distance estimates in RAVE. Here, we use the simple approach we already used for the
stellar parameters: we assume Gaussian errors in the parallaxes $ = 1/d of the stars and use
the individual uncertainties provided by Binney et al. (2014). Note that the authors explicitly
showed via a comparison to a sample of Hipparcos stars that the probability distributions are
close to Gaussian for the parallaxes. As the bottom panel of Figure 3.1 illustrates the relative
uncertainties are predominantly below 30%, except for the sub-giants with high metallicities.
To reproduce this behavior we bin the RAVE data in the Teff − log g-plane with bin widths
of 500 K and 0.25 dex. Then we associate uncertainties of RAVE stars to the mock stars in
corresponding bins.
We again searched for correlations of the parallax and stellar parameter estimates using the
RAVE repeat observations. Only for the surface gravity, we found a significant correlation
(cf. Figure 3.2, right panel) of 0.272%dex−1 for the relative parallax differences. We take
this into account by shifting the parallax values accordingly and rescaling the uncertainties
by a factor of 0.67, which is, as above, the ratio of the standard deviations in the parallax
differences before and after removing the correlation.
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3.1.3 Stellar parameter dependent selections

The RAVE sample described above is used to evaluate the completeness S(l, b, I2MASS, J−Ks)
w.r.t. the 2MASS catalog. As a next step we have to take into account that the RAVE spectral
analysis pipeline does not deliver reliable results for all types of stars. For the estimates of the
stellar parameters from the DR4 pipeline clear limits were defined beyond which the derived
values are not reliable anymore (Kordopatis et al. 2013) and hence should not be used for
our purposes. The limits are

0.5 ≤ log g ≤ 5 dex,
3800 ≤ Teff ≤ 8000 K,
−5 ≤ [M/H] ≤ 0.3 dex.

(3.3)

Furthermore all stars with

Teff ≤ 4250 K and log g ≤ 4.5 dex
or

Teff ≥ 6250 K and log g ≥ 4.5 dex
(3.4)

were removed from the mock stellar sample, because these parameter combination were ex-
cluded from the solution space of the RAVE spectral analysis pipeline (Kordopatis et al.
2013). These restrictions can not be included in the photometric selection function, because
they require knowledge on the targets which is not provided by the photometric input cata-
logs, but is available only after the observation is made. Therefore we cannot include it in
the selection procedure described in Section 2.1. However, these limits have to be taken into
account when comparing a mock catalog to the RAVE data and so we have to remove them
from the mock stellar sample after the completeness matching.
First, we identify all stars that were classified to be ’normal’ stars according to the classi-
fication scheme by Matijevič et al. (2012) (c1 – c6 are all ’n’). This excludes objects with
peculiar spectra which are likely not well fit with the RAVE synthetic spectral library. Rea-
sons for this range from trivial things like problems in the continuum fit of the spectrum, over
double-peaked absorption lines implying a spectroscopic binary to more problematic cases
like spectra with emission lines at the centers of the absorption lines, so-called chromospheric
activity. The last point is problematic in the sense that chromospheric activity is believed to
correlate with the stellar age (Mamajek & Hillenbrand 2008). This implies that by selecting
against these stars we might introduce an age bias into our sample. For the moment there is,
however, not enough information to do a detailed selection, e.g. as a function of age, for these
stars and we have to accept this source of uncertainty for the time being. We refer the reader
to Žerjal et al. (2013) and Matijevič et al. (2012) for more extensive studies of these stars.
Preliminary tests (e.g. removing a fraction of the youngest stars from the mock samples)
indicated that there is no clear way to include this effect into the modeling, but also that this
effect does not present a major uncertainty. More comprehensive investigations are planned
for future work. We evaluate the fraction of ’normal’ stars in each (l, b, I2MASS)-bin of our
RAVE sample and randomly reduce the number of stars by this factor in the corresponding
bin in the mock survey.
The DR4 pipeline uses two methods to derive the astrophysical parameters of a spectrum:
DEGAS and MATISSE. The former is a decision tree algorithm that searches for the closest
point on a discrete grid of model spectra and is used to provide starting values for MATISSE.
The latter is a machine-learning algorithm that interpolates between the spectral grid points
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via a projection method to provide more accurate stellar parameters. A more detailed de-
scription of the pipeline can be found in Kordopatis et al. (2013) and references therein. If
the DEGAS estimate lies outside of the MATISSE learning grid of synthetic spectra or S/N
≤ 35, the DEGAS values are listed in the data base. We want to use only observations for
which MATISSE converged (Algo_conv_k = 0), because the DEGAS values are concentrated
on discrete points in the parameter space at the points of the grid of synthetic spectra. We
introduce this selection into our mock survey in the same way as we did for the spectral
classification criterion by reducing the number of mock stars in each (l, b, I2MASS)-bin to the
fraction of successful MATISSE estimates in the corresponding bin for the RAVE data.
We can summarize our generation process as follows:

1. Definition of the RAVE input sample using photometric and data quality criteria.

2. Evaluation of the completeness in (l, b, I2MASS)-bins.

3. Application of the J −Ks color cut to the all-sky survey of mock stars generated via
GALAXIA

4. Random selection of mock stars matching the completeness in the same (l, b, I2MASS)-
bins.

5. Adding observational errors on the stellar parameters of the mock stars.

6. Removing real and mock stars from the samples in those regions in the parameter space
than cannot be reliably analyzed by the RAVE analysis pipeline.

7. Identification of those RAVE stars in each (l, b, I2MASS)-bin for which the MATISSE
part of the RAVE analysis pipeline did not converge or that are not ’normal’ according
to Matijevič et al. (2012) and randomly remove the same fraction of mock stars in this
bin.

The ordering of these selection steps is important while modeling the impact of the analysis
pipeline as closely as possible. The final number of stars in our RAVE sample after all these
cuts is almost 150 000 or 35% of all stars observed by RAVE.

3.2 The GALAXIA/Besançon model

The GALAXIA code is, generally speaking, a frame-work for the generation of stellar popu-
lations according to any model of the Galaxy and the user is free to provide her or his own
model. The original version of GALAXIA also provides a Galaxy model, which is in most
aspects identical to the popular Besançon model by Robin et al. (2003). Sharma et al. (2011)
illustrate that the model reproduces well the magnitude distributions of the Besançon model
as well as the properties of the Hipparcos stars and gives a reasonable fit to the kinematics
of the Geneva-Copenhagen survey (Nordström et al. 2004).
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Figure 3.3: Left panel: I2MASS distribution in the mock survey (red line) and the RAVE input
sample (gray area). The mock sample was selected to follow the I2MASS distribution of the
input sample using the same bins in I2MASS as in the figure. Deviations appear because we
are matching the completeness of the sample instead of the exact number counts in each
bin. Right panel: Comparison of the J −Ks color distributions in the model (red line) and
the real RAVE input sample (gray area). No observational errors were added to the mock
data, because the uncertainties in the 2MASS photometry are better than 1% in the relevant
magnitude range and hence negligible for our purposes.

3.2.1 General description of the model

The Galaxy model is described in detail in Sharma et al. (2011) and Robin et al. (2003). In
particular, the details of the distribution functions in the model can be found in the Tables
1 – 3 in Sharma et al. (2011). Here we provide only a brief summary and highlight a few
details that we will refer to in the later analysis.
The Galactic disk is modeled as a superposition of isothermal populations with flattening,
velocity dispersion and mean metallicity being functions of age. The model also contains a
discrete thick disk component with a constant scale height and age, a spheroidal component,
representing the stellar halo and the classical bulge, and a central bar. The metallicity
distributions are modeled as Gaussian functions. The thin disk population spans over mean
metallicities from +0.03 dex down to -0.37 dex at the solar radius. It is the only component
with a Galactocentric radial metallicity gradient (d[M/H]/dR = -0.07 dex). The thick disk
and the halo have mean metallicities of -0.78 dex and -1.78 dex, respectively. The circular
velocity at the solar radius is 226.84 km s−1. It is important to mention that the velocities
are assigned without regard of the metallicity of the stars. The latter has important effects
when we look for correlations between more general orbital properties of the stars and the
chemistry (see at the end of this section).
We will now use this model to generate a mock RAVE survey as described in the previous
section. The distribution functions are based on Robin et al. (2003), so the model could
be seen as the summary of the knowledge of the Galaxy at the time when the first RAVE
spectra were taken. It is thus very interesting to check whether the model correctly predicts
the general properties of the RAVE data.
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Figure 3.4: Comparison of the velocity distributions in the model (red line) and the real
RAVE input sample (gray area). The medians of the 3los distributions are 9.3 km s−1

and 7.4 km s−1 and the regions containing 90% of the data are [−51, 70] km s−1 and
[−50, 69] km s−1, respectively. The right panels show the proper motions.

3.2.2 Comparison to RAVE

For a faint (un-reddened) magnitude limit I < 14 mag and all-sky coverage GALAXIA
produces a catalog with 86 million stars. This is our mock input catalog equivalent to
2MASS for the real RAVE survey. Applying our selection procedure as described above we
obtain a list of almost 165 000 mock stars which compares very well to the number of RAVE
stars in the input sample. Note that this is a non-trivial result, because the GALAXIA model
was not tuned to match the 2MASS data.
Figure 3.3 compares the I2MASS magnitudes and colors J −Ks of the mock and the real data
sets. These two quantities are not measured by RAVE, but come from the input catalog.
The magnitude distribution should be similar by construction, but does not necessarily match
perfectly, because we selected our mock sample to reproduce the completeness and not the
exact number counts in each magnitude bin. The J −Ks color distributions of the real and
the mock survey also agree relatively well. The deviations suggest that the model is deficient
of cool stars with J −Ks & 0.8 and an over-abundance at intermediate temperatures around
J −Ks ' 0.5 and of very hot stars with J −Ks < 0.25.

Velocities The most robustly measured quantities in the RAVE survey itself are the line-
of-sight velocities, 3los, and in addition we have proper motions from the UCAC4 catalog
Zacharias et al. (2013) for almost all RAVE stars. To directly compare the velocities in the
mock and real data sets we need to define the solar motion. For the solar peculiar motion
we use the values from Schönrich et al. (2010): U� = 11.1 km s−1, V� = 12.24 km s−1 and
W� = 7.25 km s−1. The local standard of rest, 3LSR, is the circular speed at the solar radius.
For the Besançon mass model we have 3LSR = 226.84 km s−1.
In the left panel of Figure 3.4 we examine the line-of-sight velocities. Their distributions
agree well for small absolute velocities, but the model under-predicts the number of stars
for |3los| > 160 km s−1. Note that the model exhibits a similar trend in the skewness of
the distribution showing a slightly extended tail at positive 3los. The RAVE stars with
3los > 300 km s−1 are mainly counter-rotating or non-rotating metal-poor giant stars. These
features identify them clearly as halo stars and we hence conclude that the stellar halo is
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under-represented in the model.
The median 3los of the mock and the real sample differ by about 2 km s−1. With the large
sample sizes this difference is likely not the result of Poisson noise (the uncertainty of the
mean value is 0.14 km s−1), but reflects a mismatch between the model and the data. The
value is comparable to the total uncertainties on the solar peculiar motion Schönrich et al.
(2010) and considering the large uncertainties on the value of 3LSR we see it as a good match.
If we only vary V�, which is because of the asymmetric drift the most uncertain component
of the solar peculiar velocity, we find a best match for V� ' 16 km s−1, or a total azimuthal
velocity of the Sun w.r.t. the Galactic center, VLSR + V�, of 243 km s−1. We note, however,
that this estimate relies on the circular speed curve to be correct, because of the large spatial
volume covered by the RAVE stars. There are already several attempts to constrain the solar
motion from RAVE data (Coşkunoǧlu et al. 2011; Pasetto et al. 2012b; Golubov et al. 2013)
that use a more dedicated analysis technique and that find lower values for V� than ours.
Our value is however still smaller than the 26 km s−1 recently reported by Bovy et al. (2012a)
and broadly consistent with the value of 14 km s−1 by Schönrich (2012).
The proper motion distributions (right panels in Figure 3.4) are matching equally well with
the median values differing by less than 0.01 mas yr−1 in µα and 0.45 mas yr−1 in µδ. Here
the model produces broader distributions in both directions for |µi| > 50 mas yr−1. Such
large proper motions can only arise from nearby stars and this is confirmed by the stellar
parameters revealing that these are relatively metal-rich dwarf stars. Deviations for the
velocities of the giant stars as observed for the line-of-sight velocities are hidden in the peak
at zero proper motion, because of the typically large distances of these stars.

Stellar parameter distributions We now move on to higher order analysis products, namely
the stellar parameters estimated by the RAVE spectral analysis pipeline. In Figure 3.5 we
compare the mock and distributions of the effective temperature Teff and the surface gravity
log g.
The mock temperature distribution fit the data quite well at low and very high values, but
the central minima do not agree. It is important to note that the positions of the peaks in
the mock data are determined to a large degree by the stellar isochrones used during the
generation of the stars. Especially the low temperature peak is strongly constrained by the
location of the giant branch. Significant shifts can only result from drastic changes in the
metallicity distribution. The high temperature peak has an additional dependency on the
age distribution in the sample. It is thus not surprising that we find good agreement for the
location of the low temperature peak. The real data shows a much broader peak with the
center slightly shifted to lower temperatures by about 200 K. Interestingly, there is a known
difference in the temperature scale between RAVE DR4 temperatures and the temperatures
measured for the same stars in the Geneva-Copenhagen survey (Kordopatis et al. 2013). The
RAVE estimates are on average lower by 170 K, which is broadly consistent with the shift
we observe here. The common stars in the two surveys are all dwarf stars, so it is not clear
whether this discrepancy is constant for all Teff and log g values. On the other hand, the
comparison of stellar parameter estimates for stars measured in RAVE and in the APOGEE
survey (Allende Prieto et al. 2008) reveal an off-set of the RAVE DR4 temperatures to higher
values by ∼ 100 Ks (F. Anders & C. Chiappini, private communication).
The mock surface gravity distribution (right panel) appears to be generally shifted with
respect to the RAVE distribution by ∼ 0.3 dex. When we correct for the shift we find
only relatively small discrepancies. The real distribution has a pronounced tail at low log g
that is not matched by the model. Besides the nearby explanation that the model is not
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Figure 3.5: Hess diagram of the mock survey (gray scales) and the real data (orange and green
contours). The smaller panels show the distribution marginalized over Teff (right panel) and
over log g (top panel). The contour lines in the large lower left panel illustrate the density
distributions of the two RAVE parameter sets. The lines mark locations with 3, 30 and 300
stars per (100 K × 0.1 dex)-bin. The black dotted lines in the two side panels show the mock
data before observational errors are added. The thin blue line is the same as the red line,
but shifted by -0.3 dex.

correct, this tail could also be an artifact induced by the RAVE analysis pipeline that shows
a systematic shift for low log g values towards even lower values (see Kordopatis et al. (2013),
their Figure 10). There is further secondary peak in the RAVE distribution around log g ∼
3.3 is located in the region of cool sub-giants (cf. large panel of Figure 3.5). The gap
between this peak and the giant branch is most likely a result of the discretization of the
RAVE parameter estimates that is introduced by the DEGAS part of the pipeline (Kordopatis
et al. 2013). This gap is most likely also the reason for the shifted location of the central
minimum between the giant and the dwarf star peak, even after we corrected for the general
shift between model and data.

Metallicity distribution In Figure 3.6 we compare the overall metallicity distributions. The
model peaks at too high metallicities, predicts too many stars with metallicities between -0.5
and -1.5 dex and fails to produce the tail to very metal-poor stars with [M/H] below -2 dex.
In the right panels we plot the metallicity distributions for two sub-samples of the catalogs, a
giant sample and a dwarf sample, that were selected avoiding the overlap log g zone between
3 and 4 dex. In this way we are not affected by the different log g scales in the data and the
model.
Consistently the giants extend to lower metallicities than the dwarfs. Giant stars are in-
trinsically brighter stars and are therefore observed at larger distances than the dwarfs in
our magnitude limited survey. With increasing distance to the Galactic plane the fraction
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Figure 3.6: Metallicity distributions of the model (red line) and the RAVE input sample (gray
area). In the model we have knowledge of the host population of each star. The thick green
line shows the metallicity distribution of the stars belonging to the Thick disk population.
The dashed black line shows the model before observational error were included.

of Thick disk and halo stars increases. In contrast, the dwarfs sample is confined to regions
where the thin disk dominates the population and therefore it becomes less likely that a
metal-poor star enters the survey sample. The RAVE giant sample exhibits a qualitatively
similar behavior as the model. Both exhibit a more pronounced tail to low metallicities than
the dwarf sample.
By construction of the model practically all metal-poor stars belong to either the Thick disk
or the halo population (cf. Figure 3.6). A reduction of the mass in these components or a shift
of their metallicity distributions to higher values would thus also reduce the disagreement
between model and data. The mean metallicity generally appear a bit to low compared to
results from observations (Soubiran et al. 2003). More generally we could speculate that the
discrepancy could be a hint that the division into a thick and thin disk component might be
too simplistic as proposed recently by Schönrich & Binney (2009) and Bovy et al. (2012b).
The aim of this work is the evaluation of the existing model, which was adjusted to and is
fitting many other observational constraints (Sharma et al. 2011; Robin et al. 2003; Reylé
et al. 2009), so we do not attempt to improve it at this stage.
However, the distribution functions of the model are not the only uncertain ingredients to
our mock sample. In particular the Thick disk and the stellar halo host predominantly old
populations (age > 10 Gyr). Both, observations (e.g. Fuhrmann 2011) and the theoretical
considerations on chemical evolution of the inter-stellar medium show that such old stars usu-
ally have enhanced abundances of α-process elements and follow different evolutionary tracks
than stars with solar chemical composition. GALAXIA neither assigns values for [α/Fe] to
the mock stars nor would such values have an effect, because the stellar evolutionary tracks
implemented into GALAXIA were all computed for zero α enhancement.

Distances Finally we can also compare the distance distributions in the two samples. The
distances for the real RAVE sample are spectro-photometric parallaxes derived by Binney
et al. (2014). This method takes the star’s apparent magnitudes in the J,H and Ks bands
and the astrophysical stellar parameters as the input. Therefore we deal with a secondary
data analysis product. The two panels in Figure 3.7 compare the mock and the real distance
and parallax distributions. While the RAVE data shows a slight dip around 500 pc (2 mas),
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Figure 3.7: Left panel: Comparison of the heliocentric distance distributions in the model
(gray) and the real RAVE input sample (blue line). The black histogram show the mock
data without observational errors added. Right panel: Same as the left panel, but with the
parallaxes, $ = 1/d.

this dip is degraded to a kink of the mock data. The fact, that the dip is visible in the RAVE
data, even though these data are also carrying observational errors, could be caused by two
problems: (1) the dip is actually much more prominent and simply not accurately reproduced
by the model or (2) the dip is a result of the discretization of the RAVE stellar parameter
estimates. Since the distances and their uncertainties were confirmed by Binney et al. (2014)
by comparing the spectro-photometric parallaxes to parallaxes directly measured by the
Hipparcos satellite, a combination of both issues seems to be the most likely explanation.

3.2.3 Correlating dynamics and chemistry

Boeche et al. (2013b) used RAVE measurements of dwarf stars with high S/N to investigate
radial metallicity gradients in the Galactic disk as a function of height above the Galactic
plane. To interpret the result it was crucial to understand the role of the selection effects in
the data. For this an equivalent mock sample based on the GALAXIA/Besançon model was
used. The generation of the mock data was the contribution of the author of this thesis to the
paper and the focus will hence lie on the comparison of the model with the data. Through
this comparison insights on the relation of the measured and the intrinsic gradient of the
stellar population were be obtained and the limits of the Besançon model were brought to
the surface.
The vast majority of the stars observed by RAVE have a heliocentric distance < 2 kpc (cf.
Figure 3.7). Among those, the dwarfs stars peak at a distance of ∼ 300 pc and do not reach
further than 1 kpc. To be able to measure gradients more robustly Boeche et al. computed
the guiding radii, Rg, for all stars in their sample. The guiding radius of a star is defined as
the radius of circular orbit around the Galactic center that has the same (specific) angular
momentum Lz as the star. The idea was thus to use the available information about the
kinematics of the stars to infer the mean properties of regions in the disks outside the survey
volume.
The RAVE sample was further divided to study the evolution of the gradients as a function
of height above the Galactic plane. For the same reasons as above this division was done
according to Zmax, the maximum distance of the star to the Galactic plane along the orbit,
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Figure 3.8: Upper panels: Distributions of dynamically selected RAVE samples of dwarf stars
in the ([Fe/H],Rg) plane (left column) and marginalized over Rg (right column). The different
rows show samples selected in intervals of Zmax as indicated in the panels in the right column.
In the left column the number of data points, N in the panel and the best fitting abundance
gradients are given. Lower panels: Same as the upper panel, but for a mock stellar sample
based on the GALAXIA/Besançon model. The gray and black symbols in the left column
distinguish stars belonging to the thin and thick disk, respectively. Both figures were taken
from Boeche et al. (2013b), their Figure 3, bottom panels.

instead of the present-day z-coordinate of the stars. The upper set of panels in Figure 3.8
shows the resulting gradients for three intervals in Zmax.
The mock sample was created the same way as described above. Two additional quality
criteria on the spectra were imposed that were not taken into account for the mock sample.
These relate to the RAVE chemical pipeline (Boeche et al. 2011) and ensure that the pipeline
provided a reasonable fit (chisq_c < 2000) and that a large enough fraction of the spectrum
could be used for the fit (frac_c > 0.7). Since these criteria are not related to the intrinsic
properties of the stars, neglecting them should not have a significant effect on the results.
The lower set of panels in Figure 3.8 shows the mock data and the gradient fitting results. The
measured gradients are positive for all Zmax interval and thus clearly incompatible with the
results from the real data. It is important to note, that the intrinsic abundance gradients in
the model are negative (thin disk) or zero (other components). A positive gradient therefore
cannot be attributed to a erroneous metallicity distribution function in the model, but must
be the result of more subtle effects in the target selection and the analysis strategy.
In the model it is possible to trace back which Galactic component which each star belongs
to. As expected almost all stars in the sample are associated with either the thin or the
thick disk. In Figure 3.8 this is illustrated by gray (thin disk) and black dots (thick disk
and stellar halo). Dissecting the model data into thin and thick disk stars reveals that the
total positive gradient is the outcome of a combination of selection effects and the usage of
the guiding radius Rg, or, more generally spoken, the finite survey volume and the usage
of a dynamical quantity: the increase in radial coverage gained by using Rg instead of the
actual positions of the stars reflects the internal (radial) velocity dispersion of the stellar
population. For a spatially confined population we further expect a systematic shift to Rg
lower than the mean radial position of the stars for the same reasons that give rise to the
asymmetric drift, namely that more stars visit the solar neighborhood from the inner Galaxy
than from out regions, simply because of the decrease of the mass density with radius. In
fact, we see this effect in the model, because the asymmetric drift is explicitly taken into
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account during the assignment of velocities in the modeling process. This systematic shift is
increasing with the velocity dispersion of the population, i.e. is larger for thick disk stars than
for the dynamically cooler thin disk population. In combination with the lower metallicity
of the thick disk population this produces a rising metallicity as a function of Rg. Note that
the velocity dispersion-metallicity relation within the thin disk population leads to the same
effect on a smaller scale.
The question remains why this is not observed in the real data? The most likely explanation
for this is that there are correlations between the dynamics and the metallicities of the real
stellar population that weaken or even prevent the effects described above and that are not
taken into account in the model. A major weakness of the GALAXIA/Besançon model is
that the metallicities are assigned randomly to the stars without considering their kinematics.
This means that a star has the same metallicity probability DF irrespective of whether it
originates (kinematically) from the inner or the outer Galaxy.
In the real data we expect such correlations as a result of the (negative) chemical abundance
gradient in the ISM. If we neglect radial migration, for stars on close to circular orbits Rg
could be identified with the birth radius of the star. A measurement of the radial abundance
gradient as a function of Rg would then directly provide the abundance gradient in the ISM
at the time of birth of these stars. However, in the presence of radial migration (Sellwood
& Binney 2002) the measured gradient in the stellar component is most likely flatter than
the initial gradient in the ISM. The reason for this is that stellar migration is a stochastic
process and as such has to increase the entropy of the system.

The GALAXIA/Besançon model as well as the original model provide an excellent descrip-
tion of the Galaxy in terms of mass and light distributions. Also the velocity distributions
generated by the model present reasonable approximations to observations. However, if it
comes to more subtle properties of the stellar populations such as the chemodynamical corre-
lations discussed above, the model clearly fails. With large number of massive spectroscopic
surveys like RAVE and SEGUE that are already available today and even more ambitious
projects like Gaia and 4MOST on the horizon there’s a clear need for a more sophisticated
model. In the next section we will explore a new model of the Galaxy that promises to
naturally incorporate correlations of age, metallicity and kinematics. This model, however,
comes with the price that we have to leave the domain of analytic distribution functions.

3.3 The chemodynamic MCM model

In the last section we reached the limits of the Besançon model while examining correlations
between dynamics and chemistry of the model stars. With the advent of massive spectro-
scopic surveys like RAVE, the Gaia-ESO survey, SEGUE or APOGEE and in the near future
HERMES and Gaia, such a model is clearly insufficient. Minchev, Chiappini, & Martig
(2013a) presented a new type of model of the Galaxy which combines a cosmological simu-
lation of disk galaxy formation with a semi-analytic model of the chemical evolution of the
Milky Way. We refer to this as the MCM model. The general idea behind the approach is to
profit from the realistic modeling of the dynamical processes in spatially resolved simulations
of galaxy formation and evolution as well as from the flexibility of semi-analytic models in
which the influence of the input parameters are well understood and which are computa-
tionally very cheap. In particular, the effects of radial migration (Sellwood & Binney 2002;
Minchev & Quillen 2006; Minchev & Famaey 2010) on the distribution of chemical elements
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in the Galaxy should be well taken into account by this technique.
The model has been shown to be compliant with a range of observations, for example, the
metallicity distributions of data at different proximity to the Sun or the mean metallicity vari-
ation with distance from the disc plane (Minchev et al. 2013a). However, these comparisons
were done taking into account the selection effects in a very rough way and, in particular,
without selecting on observational quantities. Here we test and analyze the model for the
first time in a more sophisticated manner.

3.3.1 General description of the model

The technique to produce the MCM model can be summarized as follows: a simulation of
the formation and evolution of a Milky-Way like disk galaxy is run using a numerical scheme
which at minimum has to include star formation. Then, as a post-processing step, the star
particles get assigned metallicities according to their birth time and place in the galaxy
according to an independent theoretical distribution function fZ([X0/H], ..., [XN/H], rbirth, τ),
where Xi is an arbitrary chemical element, or isotope, out of the N chemical elements one
might consider. So, ideally the (stellar) mass distribution function, i.e., the mass density of
stars as a function of position (r), velocity (v), age (τ) and metal abundances ([X/H]) could
be written like

f = f(r,v, τ, [X0/H], ..., [XN/H])

= fpos(r, τ)fvel(r,v, τ)fZ([X0/H], ..., [XN/H], rbirth, τ),
(3.5)

in analogy to the last three terms in Eq. 2.8 for the GALAXIA code. The phase space
distribution fposfvel represents the simulation results. The knowledge and consistent use of
the birth time and birth place rbirth of each star over models like the Besançon model or
TRILEGAL.
In practice, fZ is the outcome of the chemical evolution model for the Galactic thin disk by
Chiappini (2009), which was designed to recover the chemical trends observed in the Milky
Way. This model computes the chemical evolution of the inter-stellar medium (ISM) as a
function of time and projected Galactocentric radius R =

√
x2 + y2. It assumes exponentially

declining smooth gas accretion and a star formation law which is dependent of the local gas
surface density and R. The latter account for the effect of an inside-out formation of the
disk. For the computation of the chemical feedback by the stars to the ISM a stellar initial
mass function had to be assumed. Chiappini opted for the functional form proposed by Scalo
(1986),

ξ(M) =

A1M
−2.35 for M ≤ 2 M�,

A2M
−2.70 otherwise,

(3.6)

where A1 = 0.19 and A2 = 0.24 are normalization constants. Chiappini (2009) also present
a model for the thick disk, but this was ignored in MCM model to test whether the dynamic
evolution in the simulation already results in a thickened low-metallicity component without
explicitly including it in the modeling.
Both, the chemical evolution model and the cosmological simulation provide a star formation
history (SFH). Minchev et al. opted for the SFH of the chemical evolution model and choose
a simulation with a reasonably similar SFH. In cases where the star formation rate (SFR) is
too high in the simulation, only a random subset gets ages and metallicities assigned while
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the excess particles are ignored. In the opposite case, if the SFR in the simulation is too
low at a given radius R, star particles at similar R and with similar kinematics as the newly
born star particles, are selected and get a new age, metallicities (and also a new birth radii)
assigned. This means that some particles in the simulation are used multiple times during
the process. These are then treated as two independent particles. In other words, the exact
SFH of the model is implemented into the simulation outcome and as a result the phase
space distribution is slightly altered. This should not have a major affect, because if the
system is close to equilibrium, i.e. evolving only slowly, to a good approximation stellar and
gas mass can be exchanged in the simulation without changing the dynamics (I. Minchev,
private communication).
The simulation used in the model contains a barred late-type spiral galaxy taken from the
suite of 33 simulations presented by Martig et al. (2012). The authors report a gravitational
softening of 150 pc as the spatial resolution and a stellar particle mass of 7.5 × 104 M� as
mass resolution. The simulations are “resimulations” of a dark matter-only simulation of
a much larger volume. More details concerning the simulation technique are described in
Martig et al. (2009, 2012) and references therein.
The simulation was re-scaled according to the following transformations

r′ = r/f1,

v′ = v×
√
f1/f2,

(3.7)

with f1 = 1.67 and f2 = 1.38, in order to match the size of the Galactic bar and the circular
velocity at the position of the Sun, 3LSR = 220 km s−1. Generally, scaling transformations are
defined in such a way that they preserve the numerical value of the gravitational constant
G. To achieve this we would need to downscale the mass of each particle dividing by f2.
However, because in the metallicity assignment process some particles are ignored and some
are use more than once, it does not make sense to use the original particles masses. This was
not an issue for Minchev et al., because they did not use the masses, but for our processing
with GALAXIA we need an absolute mass for each particle as the normalization of the IMF.
In the metallicity assignment process all particles are treated to have the same mass and thus
we do the same and define

mparticle = Mtot,?

Ntot
, (3.8)

where Mtot,? and Ntot is the total stellar mass and the total number of stellar particles in the
model, respectively. We adopt Mtot,? = 7.8 × 1010 M� because, as we will see later, for this
value we obtain roughly the right number of stars in our mock survey. Note that because
the model is most likely incorrect at small Galactocentric radii, i.e., in the Bulge region, we
should not interpret Mtot,? as the actual stellar mass of the Galaxy. A more robust measure
would be the stellar surface density Σ? in the solar annulus. We find Σ? ' 42 M� pc−2, which
is too large compared to the typical literature value of 30 – 35 M� pc−2 (Bovy et al. 2012b;
Flynn et al. 2006, and references therein). We do not consider this a major problem, because
Mtot,? only acts as a scaling factor determining the total number of stars entering the mock
survey.
Minchev et al. only used mass particles which had a maximum distance |z| to the plane
defined by the Galactic disk smaller than 5 kpc in the final snapshot. The chemical evolution
model does not account for the stellar halo and thus it would not be appropriate to assign
metallicities to particles clearly belonging to this component. Further only particles with a
maximum (not yet re-scaled) projected radius R < 30 kpc were selected. For our study this
latter restriction has an effect only for the mass assignment, because the RAVE survey does
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Table 3.1: Processing options for our test mock surveys. The second columns gives the IMF
applied, the third column indicates which metallicity was used for the isochrone selection and
the last column contains the options for the EnBiD code to compute the softening parameters.

Label IMF Metallicity Smoothing
Chabrier Chabrier (2001) [M/H] 6D, 64 ngbs
Scalo86 Scalo (1986) [M/H] 6D, 64 ngbs
alpha-corrected Scalo (1986) [M/H]? 6D, 64 ngbs
3D-smoothing Scalo (1986) [M/H]? 3D, 32 ngbs

not observe stars at such large distances.
The original MCM model provided contains 2 014 301 stellar particles, some of them located
on common phase space positions. RAVE observed only a small fraction of the Galaxy,
not only by number of stars, but also by volume. According to Binney et al. (2014) 99%
of the RAVE stars have a distance to the Sun below 5 kpc. This implies that also only a
small fraction of the particles in the simulation will be considered during the creation of the
mock survey and, in particular, only particles from the side of the model galaxy facing the
Sun’s position. We can thus increase the resolution of the model by superposing the particle
distribution with a copy of itself which was rotated by 180◦ around the z-axis. In principle,
we could stack even more copies by rotating around smaller angles (e.g. 2 copies rotated by
120◦ and 240◦), but this would erase the effect of (even) non-axis-symmetries like the Bar or
two- and four-armed spiral patterns.
After this superposition the model contains twice the number of stellar particles and the mass
of a single particle, mparticle, becomes 1.94 × 104 M�. We can now compute the softening
parameter for each particles as described in Section 2.3 and then use our modified version
of GALAXIA to produce mock observations equivalent to those already used in Section 3.2
based on the analytic DFs of the Besançon model.
Finally we fixed the position of the Sun, i.e. of the observer, at R0 = 8 kpc with an azimuthal
position such that it rotationally lags the central bar by 30◦.

3.3.2 The effect of different processing options

As described in Sections 2.3.3 and 2.3.4, for the process of generating the mock survey there
are several choices to be made and we want to investigate the effect of our decisions. In
particular, we want to understand the effects of our choice of the IMF, the modified law
to select the isochrones and the influence of the phase space smoothing. To test this we
produced a suite of mock surveys for which we successively move away from the standard
GALAXIA routines. The changes in the processing are listed in Table 3.1.
For these test runs we used the original model data without increasing the resolution as
described in the last section and the Mtot,? was set to 5 × 1010 M�, i.e. a lower value than
what was mentioned above. The first difference does not have any influence on the results in
this section, while the effect of the second is discussed below.

Influence of the IMF We constructed mock RAVE catalog exactly in the same way as
described in Section 3.1. The mock survey based on the Chabrier (2001) IMF contains about
156 000 stars which is too to the 150 000 stars in the RAVE input sample. The rest of the
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Figure 3.9: Upper left panel: The exponential Chabrier (2001) IMF originally used in
GALAXIA for the stellar halo and the Scalo (1986) IMF used in our modified version and in
the chemical evolution model of Chiappini (2009). The latter was used for our input model.
Lower left panel: Normalized distribution of stellar masses in the mock surveys. Right panel:
Stellar isochrones from the Padova set of isochrones in an color-magnitude diagram. Both
tracks have an age of 10 Gyr. For a star with [Fe/H] = -1 and [α/Fe] = 0.4, the original
version of GALAXIA would choose the maroon curve while with the new pseudo-metallicity
the green curve would be adopted.

test runs are based on the Scalo (1986) IMF and contain only 100 000 stars. Since we are
matching the completeness of the RAVE survey in the selection process, this means that the
observable stellar densities in the Scalo (1986) case are too low. The reason for the different
results can be seen in the left panel of Figure 3.9. For the Scalo (1986) IMF a larger fraction
of the mass is in very low mass stars which do not enter the survey sample as can be seen
from the bottom panel where the stellar mass distributions for the two cases are displayed.
The latter are nearly identical, since the age and metallicity distributions are the same and
therefore the same types of stars have the appropriate apparent magnitudes to enter the
survey. As a result applying the Scalo (1986) IMF effectively lowers the observable mass
fraction of each mass particle in the model. The effect can be balanced by increasing the
stellar mass of the Galaxy as a whole.
The stellar parameter distributions for the two cases do not exhibit any significant differences
(Figure 3.10). This implies that we suffer from a degeneracy between the choice of the IMF
and the total stellar mass Mtot,?. In order to be consistent with the assumptions of our input
model we stick to the IMF by Scalo (1986) and increase Mtot,? to the value of 7.8× 1010 M�
for all investigations in later sections. We could optimize Mtot,? in more detail to obtain an
estimate for the local stellar surface density, but such an estimate would be highly model
dependent and so of limited value.

Influence of the new metallicity criterion As a next step we replace the metallicities with
our pseudo-metallicity given in Equation 2.13. We expect significant changes only for the
metal-poor stars which typically have a large [α/Fe] value. Effectively this change results in
adopting a stellar track with a higher metallicity. The leads to an increased brightness for
main-sequence dwarfs and a decreased brightness for giant stars as can be seen in the right
panel of Figure 3.9. The distributions of the effective temperature and the surface gravities
remain almost unchanged, except that there are now slightly more dwarfs in the sample.
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Figure 3.10: Normalized stellar parameter distributions of mock RAVE surveys obtained us-
ing different features during the processing. Please refer to the main text and Table 3.1 for
a detailed explanation of the differences in the individual set-ups.

We find a significant deviation in the metallicity distribution (see Figure 3.10). The are less
stars below [M/H] = -0.5 in the ’alpha-corrected’ run. A likely explanation for this is that
a fraction of the metal-poor giants are moved out of the observable parameter space due to
their decreased brightness. This shifts the balance in the mother sample slightly towards
dwarf stars which appear thus more abundant in the survey sample.

Influence of the smoothing parameters Finally, we address the effects of the phase space
smoothing. Clearly, this processing step leads to a decreased spatial resolution, which is
most severe in the direction perpendicular to the Galactic disk, where the scale lengths are
comparable or even lower than the spatial softening parameter hr. This also means that the
youngest populations which are also the most flattened ones are affected most.
The effect that matters most for our experiment is that stars might enter the survey sample,
which were spawned from particles which are located in regions that were on purpose avoided
by the RAVE survey, in particular the immediate disk plane3.
The develop an idea of the extent of this effect we produced a new mock survey ’3D-
smoothing’ for which we used the much lower softening length arising when we only smooth
in positional space (cf. Figure 2.5, left panel). Otherwise the survey is equivalent to the
’alpha-corrected’ run. The upper panels of Figure 3.11 illustrate the results. We find large
discrepancies at low |z| where in the 6D phase space smoothed case (left panels) many host
particles are located outside the actual survey volume near z = 0 kpc. On the other hand, at
large |z| we find a lower but comparable number of host particles outside the survey volume.
This is easy to explain if we re-call that in regions with low spatial densities the densities
in velocity space must be high (in order of fulfill the collisionless Boltzmann equation). For
this reason in such regions the velocity smoothing is negligible and we find similar spatial
smoothing length as in the 3D case.
As explained in Section 2.3.4 we use a fixed value for the smoothing in velocity space for all

3Except for some special purpose observations which we neglect for our experiment, RAVE did not observe
stars with Galactic latitudes below 5◦
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Figure 3.11: The mock RAVE survey volume in the R-z plane (top) and in the 3x-3y plane
(bottom). The black contour lines indicate the number density of mock stars marking lo-
cations where the density dropped to 90%, 10%, 1% and 0.1% of the maximum value. The
colored dots represent the mass particles from which the stars in the survey sample were
spawned. Color-coding represents metallicity. The left panels show the data from a survey
created with smoothing in 6D phase space while the data in the right panel was smoothed
only in positional space, i.e. with much lower softening lengths.
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Figure 3.12: Comparison of the distributions of the mock RAVE stars and their host particles
(upper panels). The left side shows the distributions vertical to the galaxy disk and the right
side shows the metallicity distributions. The equivalent distributions found in the real RAVE
data are also plotted for comparison. The lower panels show the mean number of mock stars
spawned from a particle in a given z or metallicity bin.

particles. A too low value of h3 would lead to a decomposition of the mock stars into discrete
stellar streams, each corresponding to a single mass particle. Similarly, a large value for h3
erases all velocity sub-structure. The lower panels of Figure 3.11 illustrate that the velocity
distribution shows much more features in the ’3D-smoothing’ case than for the full phase
space smoothing. The velocities clumps far from the bulk of the survey stars are clearly the
result of shot noise. Most of them are due to a single mass particle. This just confirms our
expectation that the resolution of the N -body input is too low to allow a study of veloc-
ity sub-structure, e.g. induced by non-axis-symmetries as found by Antoja et al. (2012) in
the RAVE data. Note that the model is generally not suited for an investigation on stellar
streams, because the metallicity assignment process does not differentiate between stars born
in the disk from those coming from accreted satellite galaxies.
Our expectation, that the general metallicity distribution would shift to lower values with
the smaller softening was not met as can be seen in the right-most panel of Figure 3.10.
The metallicity distribution seems to be robust against the softening. Nevertheless, we find
significant changes in the log g and Teff distributions. Clearly, the balance has shifted to
dwarf stars for the ’3D-softening’ case. A large softening length as in the ’alpha-corrected’
case flattens out the vertical disk profile. This effectively moves mass away from low |z| to
higher values. As a result the density of observable giant stars, which are generally more
distant, is increased on the cost of the density of observable dwarf stars. With the smaller
softening in the ’3D-softening’ case this effect is weakened and thus more dwarf stars enter
the survey on the cost of the giant population. Since giants are generally cooler stars than
dwarfs, this also translates into the effective temperature distribution.

3.3.3 The effect of the RAVE selection function

We have to distinguish the selection function of a survey and the resulting selection effects.
The first quantifies the probability for a star to enter the survey sample and should only
depend on properties known prior to the actual observations for all possible targets or at
least to a clearly defined sub-set of those. The selection effects represent the consequences of
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the selection function in terms of biases in the quantities not known or not considered during
the sample selection.
One simple way to understand the effects of the RAVE selection function is to compare the
properties of the mock RAVE sample with the properties of the particles from which the
mock star originated. In this way we compare the statistical properties of the RAVE stars
with the statistical properties of the full population residing in the survey volume4. Studying
these differences is not strictly necessary for our analysis approach, because by comparing
the survey data directly with their mock equivalents the effects are automatically taken into
account. Yet, uncovering explicitly the relation to the underlying model and what a survey
detects from this, helps to sharpen one’s intuition and understanding why a model is suc-
cessful or why it fails.
When we examine the distribution of heights z above and below the Galactic plane (Fig-
ure 3.12, left panel), we immediately see that the mock stars are much more concentrated to
lower distances than their host particles5 If the same fraction of mass per unit volume was
observable over the whole survey volume we would find coinciding distributions. A natural
explanation for the discrepancy is coming from the IMF. Most of the mass of a (simple)
stellar population is deposed in intrinsically faint low-mass main-sequence stars which are
only observable close to the Sun. Our choice of the functional form of the IMF by Scalo
(1986) plays only a minor role in this issue, because the RAVE stars are covering only a
small interval of the full stellar mass range, where at least the IMFs from Scalo (1986) and
Chabrier (2001) have similar slopes (cf. Figure 3.9).
This over-representation of nearby stars strongly influences the metallicity distribution of the
survey stars (right panel of Figure 3.12). While the abundance distribution of the particles
seems to match well the peak found in the real RAVE data, the distribution of the mock stars
is clearly shifted to higher metallicities, similar to what we found for the Besançon model.
This strikingly demonstrates the necessity to carefully take into account the selection effects
when comparing (or even fitting) a model to survey data. In particular, it is not sufficient to
consider only the survey volume without accounting for the type of stars in the sample.

3.3.4 Comparison to 2MASS

The direct output of the GALAXIA processing is an all-sky stellar survey. With the appro-
priate filter bands this data is ideally suited to do a comparison with the 2MASS catalog.
This exercise reveals whether the model also matches the Milky Way in terms of photometric
star counts.
The 2MASS survey is an photometric all-sky survey in three infrared filter bands, J,H and
Ks. We will use only the Ks band for our comparison, because this should be least affected
by extinction. Using the other filter bands give in similar results. In the Ks band 2MASS
is complete down to an apparent magnitude of 14.3 mag (Skrutskie et al. 2006). We first
look at the magnitude functions in different regions of the sky (Figure 3.13, left panel). Ex-
cept for the Galactic center region we find good agreement between the model and the data,

4This is an approximation. To be exact we would need to weight the particles according to the fraction of
their spatial smoothing volume overlapping with the RAVE survey volume. The latter is not trivial to
define, however.

5Note that the particle distribution does not reflect the real vertical structure of the disk, because the
RAVE survey volume has a conical structure growing narrower towards the disk (cf. upper left panel of
Figure 3.11). The asymmetry of the stellar distribution with respect to zero is further a result of the
varying completeness of RAVE.
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Figure 3.13: Left panel: Ks magnitude distribution in four regions of 10 degree diameter on
the sky: the Galactic center at (l, b) = (0◦, 0◦) (dot-dashed lines), the Galactic anti-center at
(l, b) = (180◦, 0◦) (solid lines), a superposition of the two Galactic poles at b = ±90◦ (dotted
lines) and a superposition of four intermediate regions at (l, b) = (±90◦,±45◦) (dashed lines).
Right panel: Ratio of the star counts in the mock survey and in the 2MASS catalog as a
function of position on the sky. Axes are a Mollweide projection of a Galactic coordinate
system with the Galactic center ((l, b) = (0◦, 0◦)) in the center of the plot. The color scaling
is in logarithmic units going from log 0.5 to log 2. Only stars with Ks magnitudes within the
limits indicated above the map were considered.

even though the model slightly over-predicts the star counts. In the Galactic center region
the model produces 2–3 times too many stars for most magnitude bins. At the faint end
(Ks > 13) the 2MASS counts drop, most likely because of extinction and crowding issues.
The model does not reproduce this behavior which points to the inaccurate modeling of ex-
tinction in this region and neglected crowding issues.
The right panel of Figure 3.13 plots the angular distribution of star count ratios of the model
and the 2MASS catalog for stars in a small Ks magnitude range. A very patchy structure
is visible which originates from the discrete sampling of the mass density distribution by
the mass particles in the model. The patchy structure is consistently observable in fainter
magnitude ranges (not shown). The two sharp blue spots in the southern hemisphere near
(l, b) = (80◦,−30◦) and (l, b) = (60◦,−45◦) are the two Magellanic clouds which are not
present in the model. This illustrates that a higher mass resolution for an N -body model to
compete with star count predictions from a smooth analytic model like the Besançon model
if predictions for specific regions on the sky are needed. For similar comparisons of the Be-
sançon model with 2MASS and other photometric data sets we refer the reader to Robin
et al. (2003) and Reylé et al. (2009).

3.3.5 Comparison to RAVE

In this section we will again compare the distributions of observables in the model with the
real RAVE data. We will specifically focus on the differences seen to the Besançon model,
which we use as a reference for a widely used standard model of the Galaxy.
We start again examining the apparent magnitude and color distributions (Figure 3.15).
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Figure 3.14: Left panel: I2MASS distribution in the mock survey (gray area) and the RAVE
input sample (orange line). The mock sample was selected to follow the I2MASS distribution
of the input sample using the same bins in I2MASS as in the figure. Deviations appear because
we are matching the completeness of the sample instead of the exact number counts in each
bin. Right panel: Comparison of the J −Ks color distributions in the model (gray) and the
real RAVE input sample (orange line). No observational errors were added to the mock data.

We find a slight over-abundance of faint targets in the model, but generally a still good
agreement. The J−Ks color distribution matches the observed distribution even closer than
the Besançon model with the central minimum at the right position. This better agreement
mainly comes from the red peak (J − Ks > 0.5) which has a less extended tail on its blue
side compared to the Besançon data and has a higher peak value instead. Otherwise the two
model distributions are nearly identical.

Velocities Even though the MCM model has a focus on reproducing the dynamics in the
solar vicinity, the corresponding velocity distributions (Figure 3.14) compare worse to the
real RAVE velocities as e.g. the ones coming from the Besançon model. We have to remember
though that this model is based on a N -body simulation with limited spatial and velocity
resolution. The small peaks in the proper motion distributions of the giant stars consist of
stars originating almost all from the same host particle. It is thus not completely clear what
the model would predict for these velocity regions. In the GALAXIA/Besançon model we
saw a similar lack of high |3los| stars, so this deficiency cannot be solely attributed to the
absence of a stellar halo component in the MCM model – at least not if the halo is modeled
as in the Besançon model.
We can further see that the velocities for the giants are matched better than those of the
dwarf stars. The broad wings in the proper motion distributions of the dwarf stars can be
attributed to the velocity softening and can be reduced via a more aggressive (smaller) values
for the softening parameter h3.
We can quantify the different shapes of the 3los distributions by computing their moments.
For Figure 3.16 we computed the excess kurtosis (γ2), the second moment minus 3, as a func-
tion of limiting velocity for the line-of-sight velocity distributions. The GALAXIA/Besançon
model closely follows the real data up to ∼ 170 km s−1 while the MCM model exhibits flatter
distribution for all velocities.
It is important to note, however, that the advantage in the MCM model does not lie in the
absolute match of the kinematics of the Galaxy, but in the realistic correlations between the
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Figure 3.15: Comparison of the velocity distributions in the model (red line) and the real
RAVE input sample (gray shaded area). The three rows show the distributions for all stars
in the surveys (top row), for the giant stars (log g < 2.7, middle row) only and for dwarf
stars only (bottom row).
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Figure 3.16: Excess kurtosis of the line-of-sight velocity distributions as function of the maxi-
mum velocity modulus considered for the computation. The three lines correspond to the real
RAVE data and to mock surveys based on the GALAXIA/Besançon model and the MCM
model. A value of zero for excess kurtosis corresponds to Gaussian shape of the distribution.

kinematics and the chemical abundances of the stars. This aspect of the model is investigated
later in Section 3.3.6.

Stellar parameter distribution Similar to the Besançon model we find a qualitative agree-
ment between the model prediction for the stellar parameter distributions in RAVE with
those of the mock sample. In Figure 3.17 we compare directly the RAVE data and the two
models. In all three cases we find the double peaked structure for log g and Teff , only with
different relative heights of the peaks. In the temperature distributions the central minimum
shifted for the two models, a feature that was already implied by the differing color distribu-
tions.
Plotting the two models on top of each other confirms that there is a general shift of ∼ 0.3
dex between the peak locations of the surface gravity values in the model predictions and
the RAVE DR4 data. In the figure we shifted the both model distributions by this amount
to allow a better comparison. This shift points to a difference in the surface gravity scales
encoded into the isochrones used for the modeling and the model atmospheres used in the
RAVE spectral analysis pipeline. The different locations of the central minimum is most
likely an artifact coming from the RAVE analysis pipeline as was already discussed in Sec-
tion 3.2.2. Generally, it can be said that the log g estimates are the most uncertain of the
three stellar parameters, because the wave length region observed by RAVE contains only
little information about this quantity (e.g. G. Gilmore, RAVE collaboration meeting 2013).
The metallicity distributions reveal significant differences between the models. The promi-
nent tail to low metallicities visible in the Besançon model data is absent in the MCM model
which in turn is deficient at these low metallicities. The main peak is shifted with respect to
the real RAVE data to higher metallicities by a similar amount in both models. The bump
in the [M/H] distribution in the MCM model data can not be attributed to shot noise in the
N -body model. The population of stars with metallicity below -1.2 dex originates from 326
different mass particles and is thus a intrinsic feature of the model which not visible in the
data.
None of the two models recovers the extended tail to metallicities below -2 dex present in
the RAVE giant star sample (bottom right panel). However, for the MCM model this is
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Figure 3.17: Distributions of the stellar parameters effective temperature, Teff , surface gravity
log g and metallicity [M/H] for the real RAVE stars (gray shaded area) and two mock catalogs
created from the chemodynamical MCM model by (red lines) and the GALAXIA/Besançon
model (blue lines), respectively. The upper row shows the distributions in linear scale, while
in the lower row the [M/H] distributions for all stars (left) and for dwarf and giant sub-
samples are plotted in logarithmic scale to visualize the low metallicity tails. The model
distributions for log g were both shifted by −0.3 dex to correct for a difference in the log g
scales in the model isochrones and the RAVE data.

expected, because the model does not include a stellar halo population by construction. An
additional stellar halo component would have to be substantially more massive or differently
structured than the halo model in the GALAXIA/Besançon model to explain the quanti-
ties of very metal-poor stars found in RAVE. The deficiency of high |3los| stars observed in
both models points in a similar direction as do various observational reports in the literature
(Carollo et al. 2007; Schuster et al. 2012; An et al. 2013).

3.3.6 Modeling the giant sample of Boeche et al. (2013)

The truly unique feature of the MCM model by are the naturally arising correlations between
the chemical composition of the stars and their present dynamics. As we have seen in
Section 3.2.3 such correlations cannot be neglected when analyzing chemodynamical data.
In this section we will try to reproduce the results of a study that directly aimed to discover
the relations between chemical abundances and the orbital properties of a sample of RAVE
stars, namely the study by Boeche et al. (2013a).
Boeche et al. selected a high quality sample of RAVE giant stars and computed their orbits in
a Galactic model potential. In this they followed a study using high-resolution spectroscopy
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Figure 3.18: Color and parallax distribution of a high quality RAVE giant star sample selected
in the same way as in Boeche et al. (2013a) (gray shaded histogram) and a mock equivalent
based on the MCM model (red line). The black dotted line shows the model results without
our error model applied.

Figure 3.19: Distribution of a giant star sample with S/N ≥ 60 in the (e, Zmax)-plane. The
contour lines mark locations where the number density dropped by a factor of e−1/4, e−1 and
e−4 from the maximum value. The dashed lines divide the nine regions defined by Boeche
et al. (2013a). The left panel shows the original RAVE sample and the right panel the results
from the model.
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by Gratton et al. (2003) who tested dynamic against chemical selection criteria to distinguish
thin and thick disk stars. The stellar orbits are characterized by their eccentricity, e, and the
maximum distance to the Galactic plane, Zmax, and their Galactocentric tangential velocity,
Vφ. The eccentricity is defined as follows:

e = Rapo −Rperi

Rapo +Rperi
, (3.9)

where Rapo and Rperi are the Apogalacticon and Perigalacticon of the orbit, respectively.
Nearly circular co-rotating orbits that never moved far from the Galactic plane were defined
as thin disk orbits, while the rest was associated with the thick disk and the non- or counter-
rotating stellar halo. Boeche et al. (2013a) generalized this approach by sub-dividing the
(e, Zmax)-plane into nine panels and analyzing these sub-populations separately.
With our machinery it is now straightforward to produce a sample of mock stars selected in
the same way as the sample of Boeche et al. (2013a). The authors applied two additional data
quality criteria based on the parameters computed by the RAVE chemical pipeline (Boeche
et al. 2011) that ensure that the derived chemical abundances are reliable. Namely, the χ2

value of the pipeline fit has to be low (chisq_c < 1000) and the star spectrum has to be
usable over practically the whole RAVE wavelength range (frac_c > 0.99). The requirements
are not related to the intrinsic properties of the stars and we applied them together with the
S/N cut. Boeche et al. used the high threshold of 60 for their minimum S/N, which we
consequently adopted as well. A giant sample is then produced by selecting for the following
criteria

0.5 ≤ log g ≤ 3.5 dex
4000 ≤ Teff ≤ 5500 K (3.10)

With these criteria we find a RAVE sample with 28 551 stars6 and obtain a mock sample of
25 416 stars. We compare the resulting J−Ks color and parallax distributions of the original
and the mock sample and find excellent agreement (Figure 3.18). The real data exhibits a
very small population of stars with J −Ks < 0.5 that points to an under-estimation of the
effective temperature for these stars. Whether we remove this population or not does not
influence any of the further results and so we decided to keep it for consistency with the
original paper. The mock stars further peak at slightly larger distances (smaller parallax
values) than the real stars. The distributions of the line-of-sight velocities and the proper
motions compare similarly as for the giant sample with S/N > 40 shown in the middle row
of Figure 3.14.
We compute the orbital properties of the stars using a simple test particle computation in a
rigid Galaxy potential. We use a very simple mass model with a Miyamoto & Nagai (1975)
disk (scale length Rd = 4 kpc and scale height Zd = 0.3 kpc), a Hernquist (1990) bulge with
scale radius rb = 0.6 kpc and a spherical NFW halo (Navarro et al. 1996) with scale radius
rh = 36 kpc. The masses were chosen such that the circular speed at the solar radius is
220 km s−1 with disk, bulge and halo contributing 60%, 35% and 5% of the circular speed,
respectively. The specifics of the mass model are not a major concern for our study, because
we use the orbital parameters only to categorize the orbits relative to each other, so that the
absolute values are not in the main focus. Figure 3.19 illustrate the distribution of the sample
stars in the (e,Rmax) plane. We see a generally very similar structure, but the model shows
a broader peak than the real data consistent with the less peaked shape of the line-of-sight
velocity distribution in the model (Figure 3.14). The samples are then sub-divided into nine

6This is a much larger sample than the one used by Boeche et al. (2013a), because we use the later, more
complete version of the RAVE survey than what was available when the original study was done.
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Figure 3.20: Normalized metallicity distribution of the nine sub-populations defined in Fig-
ure 3.19. The original RAVE data is shown as filled green histograms and the model is
over-plotted as a black line. The thin dotted histograms show the model results when no
errors on the phase space positions are applied. In the upper left corners are the numbers of
stars in the corresponding sub-populations, in parenthesis are the numbers for the error-free
model data. The [Fe/H] values of the mock data were shifted by -0.25 dex to allow a better
comparison of the variations of the peak locations for the different sub-populations. The shift
value was chosen to match the peak position in panel (a).

groups as illustrated by the dashed lines in Figure 3.19. Note that the regions in the sections
(c), (f), (g), (h) and (i) extend have no upper limits and hence extend beyond the visible
area of the plot (e.g. section (c) contains stars with e ∈ [0.4, 1.0]).
Boeche et al. (2013a) found a trend of lower iron abundances for kinematically hotter orbits
consistent with previous observations. With the MCM model we can beautifully reproduce
this trend. In Figure 3.20 we plot the metallicity distribution of the nine sub-populations.
For illustrative reasons we shifted all model iron abundances by -0.25 dex to match the peak
location in panel (a). This results in very good agreement in the most of the other panels as
well. However, for the most eccentric populations (panels (c), (f) and (i)) the model predicts
too high [Fe/H]. A comparison with an error-free data set (dotted lines in the panels) reveals
that panel (i) is dominated by contaminants which contribute about 2/3 of the population.
At this point it is thus unclear whether the model is actually in tension with observations or
whether our Gaussian error model is a too crude approximation in this case. The discrepancy
in panel (f) is present even in the error-free data and thus reveals a clear mismatch of model
and real data. Boeche et al. (2013a) concentrated on panel (c) where they discussed a possible
double peaked structure in the [Fe/H] distribution. We do not see any hints for such a feature
in the model data.
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Figure 3.21: Distribution of age in the nine sub-populations defined in Figure 3.19 as pre-
dicted by the model. The dotted lines show the distributions of populations selected with
the error-free estimates of the eccentricity e and Zmax.

Ages and birth radii The fact, that the model reproduces the correlations between chem-
istry and kinematics of the stars gives confidence that the stars in our mock survey have
indeed similar statistical properties as the real RAVE stars. We can thus go a step further
and examine properties of the mock stars that are not or only with great uncertainties ac-
cessible via real observations. First, we examine the distribution of stellar ages in the nine
sub-populations in Figure 3.21. As expected we find a broad and almost uniform age distri-
bution for the dynamically cool thin disk populations in panels (a) and (b) and a strongly
peaked distribution for the hottest orbits in panel (i). In the error-free case the latter panel
contains a population with a single age of 10 – 11 Gyr. We can generally see a trend to older
populations with increasing Zmax and a similar, but weaker trend with increasing eccentricity.
Our input data of the MCM model is based on the cosmological re-simulations by Martig
et al. (2012) that thus we know the birth radius, Rbirth, of the host particle of each star in our
sample. For simplicity we identify the birth radii of the stars and their host particle. Fig-
ure 3.22 plots the distribution of birth radii for our nine sub-populations. If we compare the
birth radius of a star with its present guiding radius Rg we can learn whether the star has mi-
grated radially during its lifetime. Here we use the orbital mean radius Rm = 0.5(Rperi+Rapo)
as an approximation for Rg.
In all panels most of the stars were born inside the solar radius. This is not surprising given
the decreasing stellar density with radius. For the populations with high eccentricities the
Rbirth and Rm distributions agree reasonably well. This means that these populations consist
mainly of stars that were dynamically heated, e.g. by giant molecular cloud, spiral arms, the
Galactic bar or by passing satellite galaxies. For the stars on more circular orbits in the pan-
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Figure 3.22: Distribution of birth radii (black lines) and current mean radii, Rm (red lines), in
the nine sub-populations defined in Figure 3.19 as predicted by the model. The dotted lines
show the distributions of populations selected with the error-free estimates of the eccentricity
e and Zmax. The green histograms show the distribution of Rm in the real RAVE data.

els (a), (d) and (g) the situation is quite different. By construction the Rm distributions are
very narrow, because for these stars the difference between their present (projected) radius R
and their mean radius cannot be large7. The Rbirth distributions are broader and their peaks
are subsequently shifted to lower values with increasing Zmax. Consequently, almost all stars
in panel (g) must have migrated radially via the resonant scattering mechanism described
in Sellwood & Binney (2002) that preserves the circularity of their orbit. The fact that we
find almost no stars on circular orbits with large Zmax that did not migrate implies that the
stars in panel (g) have not acquired their large vertical velocity dispersion after migrating,
but were dynamically heated (or born hot) at their location of birth.

We can summarize that the combination of self-consistent dynamical evolution in N -body
simulations and a chemical evolution tuned to produce the present state of the Galaxy leads
to a very detailed and comprehensive picture of the Milky Way and can help to better
understand the consequences of selection criteria and the resulting stellar samples. The
hybrid approach of the model is particularly productive in the sense that the model can be
made more precise by increasing the resolution in the simulations, even though it will take
a lot of improvement to reach the smoothness of analytical distribution functions. We will
now turn to a model that is fully self-consistent in the sense that the chemical evolution of
the ISM is included in the simulation from the beginning.

7The slight broadening with increasing Zmax is most likely reflecting the cone-shaped RAVE survey volume.
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3.4 A full cosmological simulation

In the previous sections we studied two models that were explicitly designed to serve as
models for our Galaxy. They were tuned to match pre-existing observations and hence their
considerable predictive power is not surprising. We will now put our focus on a galaxy
model that is based on first principles only, namely a full cosmological simulation of galaxy
formation that also follows the chemical evolution of the interstellar medium (ISM). We can
hope that it resembles the Milky Way only because the galaxy has roughly the same mass
as our Galaxy, it lives in a similar, i.e. quiescent, cosmic environment at redshift z = 0 and
because it formed a significant stellar disk.

3.4.1 General description of the model

The simulation we will study now is run C from the suite of simulations by Scannapieco et al.
(2009). A general introduction to the whole suite of simulations was given in Section 2.2 and,
as explained there, we re-scale the simulation such that the galaxy has a circular velocity
3circ(R0) = 220 km s−1 at the solar radius R0 = 8 kpc. The galaxy in this simulation has a
(re-scaled) virial mass M200 ' 0.9 × 1012 M� and a virial radius R200 ' 195 kpc. Its total
mass is lower but comparable to the mass of the Milky Way (see Chapter 4 and references
therein).
We pick simulation C for our study, because in this simulation the galaxy developed the
most prominent disk component of all 8 simulations with a disk-to-total mass ratio of 0.213
(Scannapieco et al. 2009) for kinematic disk-bulge decomposition. Compared to observed
disk galaxies and the Milky Way in particular, this is a very low value, but Scannapieco
et al. (2010) showed that when the decomposition is performed on the basis of the surface
brightness distribution a significantly larger value of 0.49 is obtained. As we will see later the
massive bulge component in this galaxy has a significant impact on the stellar population in
our mock RAVE survey.
It is also worth noting that the ICs of this simulation run were also used in the Aquila
comparison project (Scannapieco et al. 2012). In the course of this project a large variety
of simulation codes using different prescriptions for star formation, supernova feedback, etc.
were compared by running the same initial conditions and comparing the resulting galaxies.
Not all codes produced a disk galaxy. Recently, Aumer et al. (2013) and Marinacci et al.
(2014) partly re-simulated the suite of Aquarius halos with other simulation codes and found
disk-dominated galaxies for almost all halos, including halo C.
The simulations were among the first that produced galaxies with significant disk compo-
nents and self-consistently treated the chemical evolution of the ISM. Because of this they
present an ideal opportunity to test our approach. Another advantage is that this simulation
was already extensively studied in the past (Scannapieco et al. 2009, 2010, 2011, 2012; Scan-
napieco & Athanassoula 2012; Tissera et al. 2012, 2013) so that the general structure and
its consistency with the general population of disk galaxies and the Milky Way in particular
is well known. This means that we can usually relate any features we find in our mock
survey directly to known general properties of the galaxy without the need to perform our
own global analysis. Before this background it is important to note that we cannot expect
a perfect model coming out of this simulation, simply because the spatial resolution is far
too low to accurately resolve the vertical structure of the disk. The gravitational softening
parameter used in the simulation is 1400 pc. This is more than four times the canonical value
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of the scale height of the thin disk (300 pc) and about the same as the thick disk scale height
(e.g. 1450 pc in Gilmore & Reid (1983)). The smoothed-out density peak in the disk plane
will certainly lead to discrepancies with the observations. It is still an interesting exercise to
explore this simulation in the space of observables and see how the well-known short-comings
of the numerical simulations in general translate into observations of individual stars.
The simulated galaxy has ∼ 500 000 stellar particles within 30 kpc around the center. As
done before for the MCM model we increase the resolution of the simulation by superposing
the particle distribution with a copy of itself that was rotated by 180◦ around the rotation
axis of the disk (z-axis). For this particle configuration we find mean spatial and velocity
smoothing parameters of 340 pc and 40 km s−1.

Elemental abundances For our particular application of the simulation data we need real-
istic absolute values for the metallicities of the stars. This is important because we will not
only study the metallicity gradients or correlations, but we will use the values to select the
proper isochrones for the stellar population synthesis.
The GALAXIA processing as well as for the later comparison to the RAVE data we need the
elemental abundances in the bracket notation as defined in Eq. 2.1. The simulation code pro-
vides the mass ratios m(X)/m(H) in the stellar particles for and these relate to the number
ratios through their nucleon numbers nX via

N(X)
N(H) = m(X)

m(H)
nH
nX

= m(X)
m(Y )

1
nX

(3.11)

If we use for N�(X)/N�(H) the standard values for the Sun as, e.g., given in Asplund
et al. (2009) we find that the population of disk particles (defined via the circularity of their
orbit as in Scannapieco et al. (2009)) peaks at [Fe/H] ' −0.8 dex, i.e. a much lower value
than what is observed in the Milky Way. This was already noticed by Tissera et al. (2012)
who studied chemical composition of the galaxies in the same simulations and found that
the general chemical trends are similar to those in the Milky Way Tissera et al. (see also
2013). The reason for the lower absolute values of the elements abundances lies mostly in
the uncertainties of the chemical feedback from supernovae and how this couples with the
surrounding ISM (C. Scannapieco, private communication).
For our work the absolute values of the elemental abundances are of importance, because
these are used for the selection of the stellar isochrones during the GALAXIA processing.
Metal-poor stars are generally more luminous than metal-rich stars, especially in the low
temperature regime where heavy elements and molecules absorb a significant fraction of the
emitted radiation. A lower average metallicity has hence a profound impact on the population
of stars observable by RAVE.
We decided to not to use the real chemical composition of the Sun as a reference, but the
mean composition of the stellar particles in the solar annulus8. This leaves the simulation
not completely self-consistent, because the gas cooling is a function of (absolute) chemical
composition in the code. We consider this a minor loss because only in this way we can exploit
the full potential of the simulation results. We obtain for our pseudo-solar mass fraction of
chemical elements heavier than Helium, Z�, a value of 0.36% instead of the estimate 1.8%
in the real Sun (Asplund et al. 2009). Consequently, the distribution of [Fe/H] in the solar
neighborhood now peaks at -0.1 dex, close to the value of -0.05 dex found by Casagrande
et al. (2011) for the stars in the Geneva-Copenhagen survey.

8We define the solar annulus as a cylindrical shell of radius 8 kpc and with a thickness and height of 1 kpc,
respectively.
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Figure 3.23: Distribution of apparent I2MASS magnitude (left) and J − Ks color (right) of
the real RAVE survey and an equivalent mock star sample based on a cosmological simu-
lation. The black dotted line in the right panel shows the color distribution before obser-
vational errors were applied. This figure corresponds to Figure 3.3 and Figure 3.15 for the
GALAXIA/Besançon model and the chemodynamical MCM model, respectively.

3.4.2 Comparison to RAVE

After processing the galaxy model with GALAXIA and applying the RAVE selection function
we obtain a survey with less than 25 000 stars. This is a factor 6 less than the number of
stars in the RAVE sample we tried to reproduce. The reason for this is the mass distribution
in the galaxy. The stellar mass surface density at the solar annulus is ∼ 30 M� pc−2 in the
model, which is at the low end of what is observed. However, in the real Galaxy most of the
surface density is contributed by the Galactic disk and is hence confined in a volume close to
the Galactic plane. If we compute the stellar surface density in the model and only integrate
between z = ±1 kpc the value falls below 15 M� pc−2. Below 1 kpc the vertical density
profile increases only linearly, i.e. is strongly flattened by the strong gravitational softening
in the simulation.
Due to the large mismatch in the number of stars the apparent I2MASS distributions of mock
and real data (Figure 3.23, left panel) can only be compared by their shape. The slight
deviations can again be interpreted in terms of the smoothed out vertical density profile of the
galaxy: the relative under-abundance of bright stars that is balanced by an over-abundance
of stars in the fainter bins can to first order9 be translated into a too low mass density in
vicinity of the Sun and a too slow drop of the density at larger distances. Consistently, the
color distribution of the model (Figure 3.23, right panel) shows that there are too many
stars of intermediate color between 0.4 and 0.7 dex in the mock sample. This color range
contains cool stars, most of which are likely distant giant stars. Nearby hot dwarf stars with
J−Ks < 0.4 dex are under-represented. The dominant origin of this mismatch hence appears
to be the limited force resolution in the simulation, a problem that will surely be alleviated
in the next generation of simulations.

Velocities The velocity distributions are similarly affected by the low resolution. The orig-
inal simulation does not have an explicit velocity resolution, but with EnBiD we get an
estimate of the extend of the effect. We have to remember that the smoothing parameter

9Assuming all stars to have the same luminosity.
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Figure 3.24: Velocity distribution of the RAVE data and the mock sample based on a sim-
ulated galaxy. The black dotted line in the right panel shows the metallicity distribution
before observational errors were applied.

Figure 3.25: Distributions of the stellar parameter of the RAVE input sample and the mock
data. The RAVE data was re-scaled to match the number of stars in the mock survey in
order to facilitate a better comparison. The mock stars were further sub-divided into a disk
and a spheroid population. Please refer to the main text for a further explanation of the
division.

h3 = 40 km s−1 was computed on the basis of the particle distribution superposed with itself,
so the actual smoothing in the simulation was even stronger. The latter is determining what
structures can be resolved in the simulation. Our method to increase the resolution can
not undo this smoothing, but only helps to decrease the shot noise in our mock survey that
originates from the finite number of particles tracing a smooth density field and that could
produce additional artificial structures. The much broader distribution of line-of-sight veloc-
ities in the model compared to the RAVE data (Figure 3.24, left panel) is a clear signature
of the velocity smoothing. Note, however, that the asymmetry of the high velocity tails is
still detectable in the model data.

Stellar parameters The distribution of surface gravities log g and effective temperatures
Teff in the mock survey exhibit the characteristic two-peaked structure that we already saw
in the previous models (Figure 3.25)as well as the overall log g shift of 0.3 dex. In this case,

66



the dwarf peak is much reduced compared to the giant peak as well as to the peak in the
original RAVE distribution. We further see a flat tail to extremely low log g values that is
clearly not present in the RAVE data. Scannapieco et al. (2009) divided the stellar particles
in the simulation into a disk and a spheroid population according to their Galactocentric
distance and their circularity parameter. The latter is defined as the ratio of the angular
momentum in the z-direction, Lz, and the angular momentum of a circular orbit, Lcirc, at
the position of the particle. If we tag the mock stars according to the classification of their
host particles (green and orange lines in Figure 3.25) we find that the low log g tail consists
entirely of stars belonging to the spheroidal component.
The presence of these stars in our mock survey implies that this component, which is com-
monly associated with the bulge and the stellar halo, is much too prominent in this galaxy.
In fact, the presence of a too massive stellar halo is a well-known problem of almost all
cosmological simulations. This is generally attributed to inefficient stellar feedback in the
simulation that allows the conversion of too much gas into stars in low-mass galaxies at early
times (Scannapieco et al. 2009; Guo et al. 2010; Sawala et al. 2011). These galaxies are
then accreted and disrupted by the progenitor of the Milky Way. Due to their collisionless
dynamics the stars of these satellite galaxies form the stellar halo, while accreted gas would
dissipate its orbital energy and settle into the Galactic disk. More recent simulations (Aumer
et al. 2013; Stinson et al. 2013) identified early energy feedback by the radiation pressure
from young massive stars as an additional source of efficient feedback. Including this effect
leads to much more realistic disk-to-bulge ratios.
The low abundance of dwarf stars in the mock sample is again a signature of a too puffed-up
stellar disk. This shifts the balance of observable dwarf and giant stars in a given line of sight
towards the giants. However, the disk thickness is only one among a number of parameters
determining the relative heights of the dwarf and giant peaks. Apart from the disk-spheroid
mass ratio there is also the distribution of ages in the population, because the the age sets
the ratio of dwarfs and giants in the observable magnitude range.

Metallicities Despite our efforts to increase the realism of the metallicity distribution in
the simulation we find the mock metal abundances too low compared to the actual RAVE
distribution. Interestingly, this model thus deviates in the opposite direction compared to
the models discussed in the previous two sections. Since we match the mean metallicity in
the immediate solar neighborhood by construction, this result must arise from the spatial
distribution of metals that seems to drop too quickly with increased distance from the Galactic
plane. In addition to this the massive stellar halo is also largely responsible for the existence of
a significant population of extremely metal-poor stars (around −3 dex) in our mock survey.

3.4.3 Effects of the selection function

As already done for the MCMmodel we can compare the properties of our mock stellar survey
to the properties of the sample of host particles that contributed these stars (Figure 3.26).
We find an almost flat distribution of heights z above the Galactic plane for the particles
that clearly reflects the large spatial smoothing that had to be applied because of the low
mass resolution in the simulation. The z distribution of the mock stars still resembles the
original RAVE distribution quite well. This again illustrates the important influence of the
selection function on our results. In the metallicity distribution we see a prominent peak at
extremely low metallicities that has only a very weak counterpart in the stellar distribution.
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Figure 3.26: Comparison of the distributions of the mock stars and their host particles (upper
panels). The left side shows the distributions vertical to the galaxy disk and the right side
shows the metallicity distributions. The equivalent distributions found in the real RAVE
data are also plotted for comparison. The lower panels show the mean number of mock stars
spawned from a particle in a given z or metallicity bin. This figure compares to Figure 3.12
that shows the same for the MCM model.

The latter implies that these particles are very distant and that from the stellar population
that they are representing only the very luminous stars, that are rare, can enter the survey.
The low metallicity of these particles shows that they belong to the (too massive) stellar
halo (cf. Figure 3.25). We can further recognize again the tendency of the mock stars to
have the peak of their metallicity distribution at higher values than the peak of the mass
particle distribution, even if we ignore the dominant peak at ∼ −3 dex and consider only
the secondary peak around -1 dex. We found this higher weighting of nearby metal-rich
stars already for the MCM model and this appears to be a general implication of the RAVE
selection function.

Summarizing, we can state that the studied simulation can not serve as a detailed model
for our Galaxy. This result could have been expected, since the simulated galaxy suffers
from the well-known problems that affect almost all cosmological simulations of this type, in
particular the too massive stellar halo. This generation of simulations is not accurate enough
to be seriously analyzed with the sophisticated machinery used in this work. In addition,
the simulation we studied was in no way tuned to produce a close match of our galaxy. We
repeated the analysis with simulation G from Scannapieco et al. (2009), which hosts also a
significant disk component, and found very similar results.
The simulations that form the next generation (Aumer et al. 2013; Stinson et al. 2013;
Marinacci et al. 2014) appear not to suffer from the stellar halo problem anymore. The other
major obstacle for such simulated galaxies to serve as valid models for the Milky Way is
the limited mass and force resolution. If we follow the developments in the field we find a
rapid improvement of this issue. Abadi et al. (2003a) reported or their suite of simulations
a gas particle mass of 3.3 × 106 M�. Only 6 years later the mass resolution in Scannapieco
et al. (2009) has hence increased by a factor of 5 – 15. New standards were set by the Eris
simulation (Guedes et al. 2011) who report a gas particle mass of only 2× 104 M�. We have
to remember, however, that this was a single simulation with a total galaxy mass that is on
the low side of the mass range in Scannapieco et al. (2009). Still it is clear that in the very
near future we will have full cosmological simulations that can resolve the vertical structure
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of the Galactic disk in sufficient detail.
This exercise of applying it to this model still has its value, since we have to assess the
sensitivity of our approach. An inadequate model of the Galaxy should produce an inadequate
mock survey. We showed that we can detect peculiar features in the properties in our mock
samples that could be traced back to the known problems of the simulations. This was not
clear a priori as there is a significant amount of modeling with external ingredients, like
isochrones, between the simulation input and the final mock survey. Finally, we again found
that we must not ignore the detailed selection effects in observational data when comparing
to simulation results.

3.5 Excursion: designing a selection function for 4MOST

The astrometric space mission Gaia, to be launched in November 2013, is expected to rev-
olutionize our knowledge and perception of the Galaxy in the near future. For the next
generation of observing facilities, which will see first light in the post-Gaia era, these re-
sults will have to be anticipated during the planning. The successors of RAVE, SEGUE and
their likes will clearly outperform their precursors because of advanced technology or merely
increased size. But in order to truly maximize the gain in knowledge coming from these in-
struments the insights obtained from the last and on-going generations of surveys have to be
taken into account by developing optimized instrument designs and survey strategies. This
also means that a new generation of surveys can choose a more sophisticated survey strategy
in the post-Gaia era when are large set of observables will be measured homogeneously for a
significant fraction of the stars in the Milky Way.
This is particularly true for high resolution spectroscopic surveys. Here, because of the rela-
tively long exposure times, the number of targets observable during the lifetime of a project
is limited and therefore the input catalog has to be strongly optimized in terms of informa-
tion content. In this section we will describe the outcome of such a process for the 4MOST
instrument (4-metre Multi-Object Spectroscopic Telescope; de Jong et al. (2012)), a survey
machine that is specifically designed to perform Gaia follow-up observations. The detector
will consist of several fiber-fed spectrographs, that divide in low resolution (R ' 7000; LR)
spectrographs and high resolution (R ' 20000; HR) spectrographs. The project is currently
an official study for the European Southern Observatory (ESO) in the preliminary design
phase.
In order to ensure that the capabilities of 4MOST meet the scientific requirements several key
science cases were identified. The design of the instrument shall allow at minimum the com-
pletion of these “design reference surveys” (DRSs) during five years of operations. 4MOST
is planned to perform in parallel several massive surveys that overlap on the sky. To cope
with the complexity of the endeavor the whole five-year data taking process was simulated
including, inter alia, a detailed model of (the through-put of) the actual instrument, the fiber
positioning on individual targets, lunation periods and weather statistics from the telescope
sight at the Paranal Observatory in Chile (Boller & Dwelly 2012). To facilitate this each
DRS provided an input catalog with simulated target data. Here we will briefly describe
the work done for the DRSs concerning high-resolution observations of the Galactic disk and
bulge component.
The number of fibers feeding the high-resolution spectrographs was not fixed during the plan-
ning phase and discussed values ranged from 300 to 1000. The maximum exposure time was
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set to 2 hours – a value that allows competitive observations together with a large sky cover-
age and also keeps the fraction of telescope down-time due to reconfiguration at an acceptable
level. Considering the survey duration and the number of exposures per night this results
in the observation of several millions of targets. During a 2-hour exposure the spectrum of
a star with an apparent V -magnitude of 16 can be measured to a signal-to-noise ratio of
150 (per Å), which was requested as a minimum for a sensible analysis by spectroscopists
(Caffau et al. 2013). The bright limit V = 14 mag for the range of targets was chosen to
be complementary with the GALAH survey that is run on the HERMES instrument (Zucker
et al. 2013) that uses this magnitude as a faint limit.
The general science goal of the 4MOST high-resolution surveys is the exploration of the
chemical and chemodynamical structure of the Milky Way as well as the identification of
sub-structures via chemical tagging (Freeman & Bland-Hawthorn 2002). One requirement
was hence to observe stars covering a large range of Galactocentric projected radii, R, and
heights above and below the Galactic plane, z. This suggests intrinsically bright giant stars
as ideal targets. However, due to their low effective temperatures the spectra of giant stars
are often crowded by molecular absorption lines that hamper the analysis. Main sequence
(dwarf) stars are generally more suitable for a spectral chemical analysis (E. Caffau, private
communication), but are intrinsically fainter. The brightest stars on the main sequence that
can be selected without introducing an age bias10 are F & G dwarf stars. We decided to
use a mixture of such dwarf stars and giants. Simulated observations of model spectra by
P. Satoretti using the 4MOST instrument through-put revealed that observations of dwarf
stars with log g > 3.5 dex and V > 15.5 did not reach S/N > 50 within 2 hours of exposure
and so these stars were also excluded from the list of potential targets. Table 3.2 summarizes
all target selection criteria.
By adopting these requirements we rely on the assumption that by the time 4MOST will take
up operations there is at least a preliminary Gaia data release available. This should provide
for all possibly eligible stars the information needed to apply our stellar parameter cuts. The
potentially considerable uncertainties on the Gaia should not pose a major problem, but we
emphasize that goal of this exercise is to obtain an impression about the number of potential
targets and a mock input catalog for the survey simulations. The selection for the actual
survey can only be fixed when the Gaia data is available.
We defined three sub-samples for the DRS:

The disk sample With this sample we want to study the chemical and chemodynamical
structure of the Galactic disk, both in the radial and in the vertical direction. To
facilitate this we selected a sample of stars that is uniformly distributed in the (R, z)-
plane. We defined (R, z)-bins of size 2 × 0.33 kpc2 and selected a maximum of 20 000
stars in each bin. This means that we neglect any azimuthal dependencies in our
selection process. A further consequence is that the bins close to the Galactic plane
and close to the Sun – where most of the potential targets are located – will have a
low completeness while the more distant bins we do not find enough targets to fill the
bin to the maximum. The maximum number was chosen to allow a good statistical
coverage in chemical space, e.g. the ([Fe/H]-[α/Fe])-plane.

The Bulge sample We define the Bulge volume to be a Galactocentric sphere of 1.5 kpc
and we observe all possible targets in this volume. The number of targets is relatively
small, because of the high extinction on the sight-line to and at the Galactic center.
Recently several stellar sub-populations in the Bulge (Babusiaux et al. 2010; McWilliam

10To prevent an age bias the main-sequence lifetime of the stars has to be longer than the age of the Universe.
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Table 3.2: Target selection criteria for the 4MOST DRS “disk high-resolution”. The variable
r refers to Galactocentric distance.

Description Criterion
Accessible 4MOST sky −70◦ ≤ δ ≤ 20◦

Bright F & G dwarfs
14 ≤ V ≤ 15.5 mag

2.7 dex < log g
5200 ≤ Teff ≤ 7500 K

Faint F & G dwarfs
15.5 < V ≤ 16 mag

2.7 < log g < 3.5 dex
5200 ≤ Teff ≤ 7500 K

Giant stars 15.5 ≤ V ≤ 16 mag
log g ≤ 2.7 dex

Disk sample (2 million stars)
No overlap with bulge region r > 1.5 kpc

Bulge sample (250 000 stars)
Bulge region r ≤ 1.5 kpc
Only giant stars see above

High latitude metal-poor sample (725 000 stars)
No overlap with bulge region r > 1.5 kpc
No stars from the disk sample
High latitude |b| > 30◦
Metal-poor [M/H] < −0.5 dex

& Zoccali 2010; Bensby et al. 2011, 2013; García Pérez et al. 2013) were reported.
With 4MOST we can do a comprehensive study of this issue and thereby gain a better
understanding of the formation history of this component.

A high-latitude metal-poor sample This sample complements the disk sample by specifi-
cally selecting stars that carry the most information about the history of the Galaxy.
This is expected for the metal-poor population, because it tends to have higher ages.
The confinement to high Galactic latitudes is owed to the generally low target densities
in these sky regions.

To produce the mock input catalog we use the code GALAXIA and the implemented standard
(Besançon) model. GALAXIA is an ideal tool for such a project because it efficiently produces
all-sky surveys of enormous size. Based on this we found ∼17 million potential targets for
the disk sample of which 2 million entered the final sample, 250 000 bulge giants and 725 000
stars in the high-latitude metal-poor sample. Figure 3.27 illustrates the three sub-catalogs.
The left-most panel shows the projection of all samples combined. The irregular shape of the
distribution is the result of the limitations to the accessible sky regions for 4MOST because
of its planned location at the Paranal Observatory. An important aspect of our selection
is that our targets still follow the intrinsic angular distribution of target densities on the
sky as close as possible. This is important because the survey will be performed in parallel
with other surveys, in particular the low-resolution survey of the Galactic disk. We therefore
need high target densities for the high-resolution fibers at the same locations where we have
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Figure 3.27: Spatial distribution of the mock input catalog for the 4MOST DRS “disk/bulge
high-resolution” in different projections. The position of the Sun is marked in all panels
with a black ’�’. The left-most panel shows all three sub-catalogs combined. The middle
panel shows the disk panel in the (R, z)-plane. The sample was specifically selected to have
a uniform coverage in this plane. The black, green and white contour lines encircle regions
where the target density is larger or equal to 20 000, 14 000 and 2 000 stars per 2× 0.33 kpc2

bin. The right-most panel illustrates the Bulge and the high-latitude metal-poor sample.
Note the different scales in the different panels. Color-coding is the same in all panels. This
figure was also published in Chiappini et al. (2013).

high target densities for the low-resolution observations. An exception form the high latitude
regions where targets are generally sparse. Here we artificially increased our target densities
via the high-latitude metal-poor sample.
The mock catalogs contain more targets than we expect to be possibly observed by 4MOST,
because this allows a more efficient fiber allocation in the survey simulation. By definition
a successful simulation observed 50% of our catalog. Similar considerations using the same
GALAXIA output were done for the DRS “Disk/Bulge low-resolution” that contained four
sub-samples and also for the DRS “Halo high-resolution” (H. Ludwig). A comprehensive
documentation of the preparation of the science cases and DRSs for 4MOST can be found
in the scientific report that was included in the 4MOST proposal for ESO (Chiappini et al.
2013).

This example illustrates the likely development to more complex selection functions for mas-
sive spectroscopic surveys. Another, real, example for a survey with a complex selection
function is the SDSS extension SEGUE that has a multitude of target categories. The most
widely used category is the G dwarf sample (Lee et al. 2011; Bovy et al. 2012c; Schlesinger
et al. 2012) that has a pure color selection and hence should be kinematically – and to a large
degree also chemically – unbiased. Clearly, not all stars in the Galaxy carry the same amount
of information about the general structure of the system. An extreme case are the very few
stars in thin stellar stream GD-1 that allow to find strong constraints on the global shape
of the Galactic gravitational potential (Koposov et al. 2010). It is hence imperative to tune
the target list and sort out stars that would add little information to a data base. However,
the balance has to be kept for the selection process to be reproducible in order to preserve
the statistical validity of the sample. Our selection criteria for the 4MOST targets were
specifically defined to obtain a directly recoverable selection function. Due to the expected
dramatic increase in a priori knowledge from Gaia and other surveys this selection function
can and must be more sophisticated.
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3.6 Discussion

The generation of synthetic observations, be it to mimic existing data or to plan future ob-
servations, requires contributions from many other fields in addition to the Galaxy model
itself. Many of those are still under debate themselves, for example the shape and univer-
sality of the IMF. There is also much uncertainty in the stellar atmosphere models and the
isochrones, in particular concerning stellar populations with non-solar abundance patterns
(e.g. α-enhancement). The shift in the log g distributions between model and RAVE data
illustrates this clearly. The stellar parameters represent characteristic values that are used
to classify the stars with respect to each other rather than they are used in their original
physical meaning. The problem of differing scales for the stellar parameters is a general one
that is always present when different (synthetic or real) surveys are compared. A solution
will be need in the near future if surveys like RAVE and SEGUE which have no stars in
common should be productively combined. Synthetic copies of the data set based on the
same model might be able to help for this issue.
Another open question is interstellar extinction and its unclear 3-dimensional distribution.
By focusing on the RAVE survey we were able to circumvent this problem, because RAVE
itself avoided sky regions with high extinction. Other surveys, e.g. APOGEE, that observe
in the infrared wavelength region have observations at low Galactic latitudes where a lot of
dust is in the lines of sights. If we wanted to model such surveys we need better dust maps
of the Galaxy. Efforts to produce such maps have been done (Marshall et al. 2006) or are
under way (Sale et al. 2009; Schlafly et al. 2013).
Despite these uncertainties we find good agreement between the models and the RAVE data.
While the good performance of the Besançon model could be explained with the fact that the
model was fitted to observational data using the exact same set of isochrones etc. , this does
not hold for the MCM model. The consistency of the two models and the data is hence a
remarkable result. The ability of the MCM model to reproduce the chemodynamical results
found by Boeche et al. (2013a) rises some hope that the model indeed covers important parts
of the evolution our Galaxy. Future observations that allow at least rough age determinations
could further test the predictions by the model on the age distributions in the dynamically
selected sub-samples.
The deficiency of stars that are moderately metal-poor in the MCM model illustrates, how-
ever, that the model is yet incomplete. Minchev et al. (2013a) explicitly neglected a separate
thick disk population to test whether a (single-infall) model with only one disk component
can already explain the data. Our finding point to a missing component in addition to the
stellar halo.
Our test with a full cosmological simulation showed that the detailed structure of the color
and stellar parameter distributions contain information on the global structure of the Galaxy.
The too low disk-to-bulge ratio in the Galaxy model was clearly detectable in the data as
was the too thick disk component. The effect of varying disk thickness could already be
seen in our evaluation of the influence of the GALAXIA processing options when we tested
different smoothing options. A larger spatial smoothing length effectively thickens the disk
and a characteristic change in the relative heights of the dwarf and giant peaks in the log g
distribution could be observed.
A next step for this line of research is clearly an extension to other surveys. A study with
the SEGUE survey could clearly shed more light on the structure of the thick disk and the
inner stellar halo.
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4 The Galactic escape speed and the
mass of the Galaxy∗

We will now turn to a completely different study that also makes use of the RAVE survey
in combination with cosmological simulations. This time, however, the focus is more on the
RAVE data and its information content itself. RAVE was specifically designed to provide
a kinematically unbiased sample of stars. However, due to its magnitude-limited nature
it contains a distance bias favoring stars with a distance between 0.2 and 1.5 kpc (e.g.
Figure 3.7). The specific spatial extent of the RAVE stars has to be taken into account
even for a purely kinematic study, because velocity is clearly correlated with position in the
Galaxy. In the following we will select a sample of high-velocity halo stars for which this
correlation is well understood and therefore can be accounted for. This application is hence
one of the few examples where we can extract a general property of the Galaxy – the (local)
Galactic escape speed and the virial mass – almost without a detour over a comprehensive
model of the Galaxy. We write ’almost’, because in fact we will use a set of simulated galaxies
to obtain prior knowledge on a nuisance parameter we want to marginalize over during the
analysis.

In the recent years quite a large number of studies concerning the mass of our Galaxy were
published. This parameter is of particular interest, because it provides a test for the current
cold dark matter paradigm. There is now convincing evidence (e.g. Smith et al. 2007) that
the Milky Way (MW) exhibits a similar discrepancy between luminous and dynamical mass
estimates as was already found in the 1970’s for other galaxies. A robust measurement of this
parameter is needed to place the Milky Way in the cosmological framework. Furthermore, a
detailed knowledge of the mass and the mass profile of the Galaxy is crucial for understand-
ing and modeling the dynamic evolution of the MW satellite galaxies (e.g. Kallivayalil et al.
(2013) for the Magellanic clouds) and the Local Group (van der Marel et al. 2012b,a).
Generally, it can be observed, that mass estimates based on stellar kinematics yield low val-
ues . 1012 M� (Smith et al. 2007; Xue et al. 2008; Kafle et al. 2012; Deason et al. 2012;
Bovy et al. 2012a), while methods exploiting the kinematics of satellite galaxies or statistics
of large cosmological dark matter simulations find larger values (Wilkinson & Evans 1999; Li
& White 2008; Boylan-Kolchin et al. 2011; Busha et al. 2011; Boylan-Kolchin et al. 2013).
There are some exceptions, however. For example, Przybilla et al. (2010) find a rather high
value of 1.7 × 1012 M� taking into account the star J1539+0239, a hyper-velocity star ap-
proaching the MW. On the other hand Vera-Ciro et al. (2013) estimate a most likely MW
mass of 0.8 × 1012 M� analyzing the Aquarius simulations (Springel et al. 2008) in com-
bination with semi-analytic models of galaxy formation. Watkins et al. (2010) report an
only slightly higher value based on the line of sight velocities of satellite galaxies (see also
∗Content and text of this chapter have almost identically been published as Piffl et al. (2014). See also the
remarks at the end of the Introduction (Chapter 1). Credit: Piffl et al., A&A, 562, A91, 2014, reproduced
with permission c©ESO.
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Sales et al. (2007)), but when they include proper motion estimates they again find a higher
mass of 1.4× 1012 M�. Using a mixture of stars and satellite galaxies Battaglia et al. (2005,
2006) also favor a low mass below 1012 M�. McMillan (2011) found an intermediate mass
of 1.3 × 1012 M� including also constraints from photometric data. A further complication
of the matter comes from the definition of the total mass of the Galaxy which is different
for different authors and so a direct comparison of the quoted values has to be done with
care. Finally, there is an independent strong upper limit for the Milky Way mass coming
from Local Group timing arguments that estimate the total mass of the combined mass of
the Milky Way and Andromeda to 3.2± 0.6× 1012 M� (van der Marel et al. 2012b).
In this study we attempt to estimate the mass of the MW through measuring the escape
speed at several Galactocentric radii. In this we follow up on the studies by Leonard &
Tremaine (1990), Kochanek (1996) and Smith et al. (2007) (S07, hereafter). The latter work
made use of an early version of the RAVE survey.
The escape speed measures the depth of the potential well of the Milky Way and there-
fore contains information about the mass distribution exterior to the radius for which it is
estimated. It thus constitutes a local measurement connected to the very outskirts of our
Galaxy. In the absence of dark matter and a purely Newtonian gravity law we would expect
a local escape speed of

√
2VLSR = 311 km s−1, assuming the local standard of rest, VLSR to

be 220 km s−1 and neglecting the small fraction of visible mass outside the solar circle (Fich
& Tremaine 1991). However, the estimates in the literature are much larger than this value,
starting with a minimum value of 400 km s−1 (Alexander 1982) to the currently most precise
measurement by S07 who find [498,608] km s−1 as 90% confidence range.

4.1 Methodology

The basic analysis strategy applied in this study initially introduced by Leonard & Tremaine
(1990) and later extended by S07. They assumed that the stellar system could be described
by an ergodic distribution function (DF) f(E) that satisfied f → 0 as E → Φ, the local
value of the gravitational potential Φ(~r). Then the density of stars in velocity space will be a
function n(3) of speed 3 and tend to zero as 3→ 3esc = (2Φ)1/2. Leonard & Tremaine (1990)
proposed that the asymptotic behavior of n(3) could be modeled as

n(3) ∝ (3esc − 3)k, (4.1)

for 3 < 3esc, where k is a parameter. Hence we should be able to obtain an estimate of 3esc
from a local sample of stellar velocities. S07 used a slightly different functional form

n(3) ∝ (32esc − 32)k = (3esc − 3)k(3esc + 3)k, (4.2)

but, as we will see in Section 4.2, results from cosmological simulations are better approxi-
mated by Eq. 4.1.
Currently, the most accurate velocity measurements are line-of-sight velocities, 3los, obtained
from spectroscopy via the Doppler effect. These measurements have typically uncertainties
of a few km s−1, which is an order of magnitude smaller than the typical uncertainties on
tangential velocities obtained from proper motions currently available. Leonard & Tremaine
(1990) already showed that because of this, estimates from radial velocities alone are as ac-
curate as estimates that use proper motions as well (Fich & Tremaine 1991). The measured
velocities 3los have to be corrected for the solar motion to enter a Galactocentric rest frame.
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Table 4.1: Structural parameters of the baryonic components of our Galaxy model
disk
scale length Rd 4 kpc
scale height zd 0.3 kpc
mass Md 5× 1010 M�
bulge and stellar halo
scale radius rb 0.6 kpc
mass Mb 1.5× 1010 M�

These corrected velocities we denote with 3‖.
Following Leonard & Tremaine (1990) we can infer the distribution of 3‖ by integrating over
all perpendicular directions:

n‖(3‖ | ~r, k) ∝
∫

d~3 n(~3 | ~r, k)δ(3‖ −~3 · ~̂m)

∝
(
3esc(~r)− |3‖|

)k+1
(4.3)

again for |3‖| < 3esc. Here δ denotes the Dirac delta function and ~̂m represents a unit vector
along the line of sight.
We do not expect that our approximation for the velocity DF is valid over the whole range of
velocities, but only at the high velocity tail of the distribution. Hence we impose a lower limit
3min for the stellar velocities. A further important requirement is that the stellar velocities
come from a population that is not rotationally supported, because such a population is
clearly not described by an ergodic DF. In the case of stars in the Galaxy, this means that
we have to select for stars of the Galactic stellar halo component.
We now apply the following approach to the estimation of 3esc. We adopt the likelihood
function

L(3‖) = (3esc − |3‖|)k+1∫ 3esc
3min

d3 (3esc − |3‖|)k+1 = k + 2
2

(3esc − |3‖|)k+1

(3esc − 3min)k+2 (4.4)

and determine the likelihood of our catalog of stars that have |3‖| > 3min for various choices of
3esc and k, then we marginalize the likelihood over the nuisance parameter k and determine
the true value of 3esc as the speed that maximizes the marginalized likelihood.

4.1.1 Non-local modeling

Leonard & Tremaine (1990) (and in a similar form also S07) used Eq. 4.3 and the maximum
likelihood method to obtain constraints on 3esc and k in the solar neighborhood. This rests
on the assumption that the stars of which the velocities are used are confined to a volume
that is small compared to the size of the Galaxy and thus that 3esc is approximately constant
in this volume.
In this study we go a step further and take into account the individual positions of the stars.
We do this in two slightly different ways: (1) one can sort the data into Galactocentric radial
distance bins and analyze these independently. (2) Alternatively all velocities in the sample
are re-scaled to the escape speed at the Sun’s position,

3
′
‖,i = 3‖,i

(
3esc(~r0)
3esc(~ri)

)
= 3‖,i

√√√√ |Φ(~r0)|
|Φ(~ri)|

, (4.5)
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where ~r0 is the position vector of the Sun. For the gravitational potential, Φ(~r), model
assumptions have to be made.This approach makes use of the full capabilities of the maximum
likelihood method to deal with un-binned data and thereby exploit the full information
available.
We will compare the two approaches using the same mass model: a Miyamoto & Nagai (1975)
disk and a Hernquist (1990) bulge for the baryonic components and for the dark matter halo
an original or an adiabatically contracted NFW profile (Navarro et al. 1996; Mo et al. 1998).
As structural parameters of the disk and the bulge we use common values that were also
used by S07 and Xue et al. (2008) and are given in Table 4.1. The NFW profile has, apart
from its virial mass M340, the (initial) concentration parameter c as a free parameter. In
most cases we fix c by requiring the circular speed at the solar radius, 3circ(R0), to be equal
to the local standard of rest, VLSR (after a possible contraction of the halo). As a result our
simple model has only one free parameter, namely its virial mass. For our results from the
first approach using Galactocentric bins we alternatively apply a prior for c taken from the
literature to reduce our dependency on the somewhat uncertain value of the local standard
of rest.

4.1.2 General behavior of the method

To learn more about the general reliability of our analysis strategy we created random velocity
samples drawn from a distribution according to Eq. 4.3 with 3esc = 550 km s−1 and k = 4.3.
For each sample we computed the maximum likelihood values for 3esc and k. The left panel
of Figure 4.1 shows the resulting parameter distributions for three different sample sizes: 30,
100 and 1000 stars. 5000 samples were created for each value. One immediately recognizes
a strong degeneracy between 3esc and k and that the method tends to find parameter pairs
with a too low escape speed. This behavior is easy to understand if one considers the
asymmetric shape of the velocity distribution. The position of the maximum likelihood pair
strongly depends on the highest velocity in the sample – if the highest velocity is relatively
low the method will favor a too low escape speed. This demonstrates the need for additional
knowledge about the power-index k as was already noticed by S07.

4.2 Constraints for k from cosmological simulations

Almost all of the recent estimates of the Milky Way mass made use of cosmological sim-
ulations (e.g. Smith et al. 2007; Xue et al. 2008; Busha et al. 2011; Boylan-Kolchin et al.
2013). In particular, those estimates which rely on stellar kinematics (Smith et al. 2007; Xue
et al. 2008) make use of the realistically complex stellar velocity distributions provided by
numerical experiments. In this study we also follow this approach. S07 used simulations to
show that the velocity distributions indeed reach all the way up to the escape speed, but
more importantly from the simulated stellar kinematics they derived priors on the power-law
index k. This was fundamental for their study on account of the strong degeneracy between
k and the escape speed shown in Figure 4.1 (left panel), because their data themselves were
not enough to break this degeneracy. As we will show later, despite our larger data set we
still face the same problem. However, with the advanced numerical simulations available
today we can do a much more detailed analysis.
In this study we make use of the simulations by Scannapieco et al. (2009) that we described
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Figure 4.1: Left panel: Maximum likelihood parameter pairs computed from mock velocity
samples of different size. The dotted lines denote the input parameters of the underlying
velocity distribution. The contour lines denote positions where the number density fell to
0.9, 0.5 and 0.05 times the maximum value. Right panel: Median values of the likelihood
distributions of the power-law index k as a function of the applied threshold velocity 3min.

in Section 2.2. An important aspect of the Scannapieco et al. (2009) sample is that the eight
simulated galaxies have a broad variety of merger and accretion histories, providing a more
or less representative sample of Milky Way-mass galaxies formed in a ΛCDM universe (Scan-
napieco et al. 2011). Our set of simulations is thus useful for the present study, since it gives
us information on the evolution of various galaxies, including all the necessary cosmological
processes acting during the formation of galaxies, and at a relatively high resolution.
We remind the reader that we re-scaled the simulations to have a circular speed at the solar
radius, R0 = 8.28 kpc, of 220 km s−1 to allow a better comparison to the Milky Way. The
resulting masses, M340, radii, R340, and velocities, V340 as well as the scaling factors are given
in Table 2.2. Throughout this study we use a Hubble constant H = 73 km s−1 Mpc−1 and
define the virial radius to contain a mean matter density 340 ρcrit, where ρcrit = 3H2/8πG is
the critical energy density for a closed universe.
Since the galaxies in the simulations are not isolated systems, we have to define a limiting
distance above which we consider a particle to have escaped its host system. We set this dis-
tance to 3R340 and set the potential to zero at this radius which results in distances between
430 and 530 kpc in the simulations. This choice is an educated guess and our results are
not sensitive to small changes, because the gravitational potential changes only weakly with
radius at these distances and in addition, the resulting escape speed is only proportional to
the square root of the potential. However, we must not choose a too small value, because
otherwise we underestimate the escape speed encoded in the stellar velocity field. On the
other hand, we must cut in a regime where the potential is yet not dominated by neighboring
(clusters of) galaxies. Our choice is in addition close to half of the distance of the Milky Way
and its nearest massive neighbor, the Andromeda galaxy. We further test our choice below.
With this definition of the cut-off radius we obtain local escape speeds at R0 from the center
between 475 and 550 km s−1.
Now we select a population of star particles belonging to the stellar halo component. In many
numerical studies the separation of the particles into disk and bulge/halo populations is done
using a circularity parameter which is defined as the ratio between the particle’s angular
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momentum in the z-direction2 and the angular momentum of a circular orbit either at the
particle’s current position (Scannapieco et al. 2009, 2011) or at the particle’s orbital energy
(Abadi et al. 2003b). A threshold value is then defined which divides disk and bulge/halo
particles. We opt for the very conservative value of 0 which means that we only take counter-
rotating particles. Practically, this is equivalent to selecting all particles with a positive
tangential velocity w.r.t the Galactic center. This choice allows us to do exactly the same
selection as we will do later with the real observational data for which we have to use a very
conservative value because of the larger uncertainties in the proper motion measurements.
For similar reasons we also keep only particles in our sample that have Galactocentric dis-
tances between 4 and 12 kpc which reflects the range of values of the stars in the RAVE
survey which we will use for this study. This further ensures that we exclude particles be-
longing to the bulge component.
Finally, we set the distance R0 of the observer from the Galactic center to be 8.28 kpc and
choose an azimuthal position φ0 and compute the line-of-sight velocity 3‖,i for each particle
in the sample. We further know the exact potential energy Φi of each particle and therefore
their local escape speed 3esc,i is easily computed.
We do this for 4 different azimuthal positions separated from each other by 90◦. The positions
were chosen such that the inclination angle w.r.t. a possible bar is 45◦. The corresponding
samples are analyzed individually and also combined. Note that these samples are practically
statistically independent even though a particle could enter two or more samples. However,
because we only consider the line-of-sight component of the velocities, only in the unlikely
case that a particle is located exactly on the line-of-sight between two observer positions it
would gain an incorrect double weight in the combined statistical analysis.
Figure 4.2 shows the velocity-space density of star particles as a function of 1− 3‖/3esc and
we see that, remarkably, at the highest speeds these plots have a reasonably straight section,
just as Leonard & Tremaine (1990) hypothesized. The slopes of these rectilinear sections
scatter around k = 3 as we will see later.
We also considered the functional form proposed by S07 for the velocity DF, that is n(3) ∝
(32esc − 32)k. Figure 4.3 tests this DF with the simulation data. The curvature implies that
this DF does not represent the simulation data as good as the formula proposed by Leonard
& Tremaine (1990).
If we fit Eq. 4.3 to the velocity distributions while fixing k to 3 we recover the escape speeds
within 6%. This confirms our choice of the cut-off radius for the gravitational potential,
3R340, that was used during the definition of the escape speeds.

4.2.1 The velocity threshold

We now try to find the best value for the lower threshold velocity 3min. S07 had to use a
high threshold value for their radial velocities of 300 km s−1, because the threshold had an
additional purpose, namely to select for stars from the non-rotating halo component. If one
can identify these stars by other means the velocity threshold can be lowered significantly.
This adds more stars to the sample and thereby puts our analysis on a broader basis. If
the stellar halo had the shape of an isotropic Plummer (1911) sphere the threshold could be
set to zero, because for this model our approximated velocity distribution function would be
exact. However, for other DFs we need to choose a higher value to avoid regions where our
approximation breaks down. Again, we use the simulations to select an appropriate value.

2The coordinate system is defined such that the disk rotates in the x− y-plane.
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Figure 4.2: Normalized velocity distributions of the stellar halo population in our 8 simula-
tions plotted as a function of 1 − 3‖/3esc. Only counter-rotating particles that have Galac-
tocentric distances r between 4 and 12 kpc are considered to select for halo particles (see
Section 4.2.1) and to match the volume observed by the RAVE survey. To allow a com-
parison each velocity was divided by the escape speed at the particle’s position. Different
colors indicate different simulations and for each simulation the 3‖ distribution is shown for
four different observer positions. The up-most bundle of curves shows the mean of these four
distributions for each simulation plotted on top of each other to allow a comparison. The
profiles are shifted vertically in the plot for better visibility. The gray lines illustrate Eq. 4.3
with power-law index k = 3.

Figure 4.3: Same as the upper bundle of lines in Figure 4.2 but plotted as a function of
1 − 32‖/32esc. If the data would follow the velocity DF proposed by S07 (gray line) the data
should form a straight line in this representation.
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We compute the likelihood distribution of k in each simulation using different velocity thresh-
olds using the likelihood estimator

Ltot(k | 3min) =
∏
i

L(3‖,i). (4.6)

The right panel of Figure 4.1 plots the median values of the likelihood distributions as a
function of the threshold velocity. We see a trend of increasing k for 3min . 150 km s−1

and roughly random behavior above. For low values of 3min simulation G does not follow
the general trend. This simulation is the only one in the sample that has a dominating
bar in its center (Scannapieco & Athanassoula 2012) which could contain counter-rotating
stars. Before this background a likely explanation for its peculiar behavior is that with a
low velocity threshold bar particles start entering the sample and thereby alter the velocity
distribution.
Simulation E exhibits a dip around 3min ' 300 km s−1. A spatially dispersed stellar stream
of significant mass is counter-orbiting the galaxy and is entering the sample for one of the
observer positions. This is also clearly visible in Figure 4.2 as a bump in one of the velocity
distributions between 0.2 and 0.3. Furthermore, this galaxy has a rapidly rotating spheroidal
component (Scannapieco et al. 2009).
The galaxy in Simulation C has a satellite galaxy very close by. We exclude all star particle
in a sphere of 3 kpc around the satellite center from our analysis, but there will still be
particles entering our samples which originate from this companion and which do not follow
the general velocity DF.
All three cases are unlikely to apply for our Milky Way. Our galaxy hosts a much shorter
bar and up to now no signatures of a massive stellar stream were found in the RAVE data
(Seabroke et al. 2008; Williams et al. 2011; Antoja et al. 2012). However, it is very interesting
to see how our method performs in these rather extreme cases.
We adopt a threshold velocity 3min = 200 km s−1 and 300 km s−1. Both are far enough from
the regime where we see systematic evolution in the k values (3min ≤ 150 km s−1). For the
latter we can drop the criteria for the particles to be counter-rotating because we can expect
the contamination by disk stars to be negligible (S07) and thus partly compensate for the
reduced sample size.

4.2.1.1 An optimal prior for k

From Figure 4.1 (right panel) it seems clear that the different simulated galaxies do not share
exactly the same k, but cover a considerable range of values. Thus in the analysis of the real
data we will have to consider this whole range. We fix the extent of this range by requiring
that it delivers optimal results for all four observer positions in all eight simulated galaxies.
Hence we applied our analysis to the simulated data by computing the posterior probability
distribution

p(3esc) ∝
∫ kmax

kmin
dk
∏
i

L(3′‖,i | 3esc, k), (4.7)

where L was defined in Eq. 4.4 and 3′‖,i is the ith re-scaled line-of-sight velocity as defined in
Eq. 4.5. We define the median of p(3esc), 3̃esc, as the best estimate. For a comparison of the
estimates between different simulations we consider the normalized estimate 3̂esc = 3̃esc/3esc,true
with 3esc,true being the true local escape speed in the simulation. By varying kmin and kmax
we identify those values that minimize the scatter in the sample of 32 3̂esc values and at the
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Figure 4.4: Distribution of 3̂esc resulting from our 32 test runs of our analysis on simulation
data equipped with RAVE-like observational errors and observed in a RAVE-like sky region.
In each of the eight simulations four different azimuthal observer positions were tested. A
value of unity means an exact recovery of the true local escape speed. The two histograms
correspond to our two velocity thresholds applied to the data.

same time leave the median of the sample close to unity. We find very similar intervals for
both threshold velocities and adopt the interval

2.3 < k < 3.7 . (4.8)

Reassuringly, this is very close to the lower part of the interval found by S07 (2.7 – 4.7)
using a different set of simulations. The scatter of the 3̂esc〉 values is smaller than 3.5% (1σ)
for both velocity thresholds. This scatter cannot be completely explained by the statistical
uncertainties of the estimates, so there seems to be an additional uncertainty intrinsic to our
analysis technique itself. We will try to quantify this in the next section.

4.2.1.2 Realistic tests

One important test for our method is whether it still yields correct results if we have im-
perfect data and a non-isotropic distribution of lines of sight. To simulate typical RAVE
measurement errors we attached random Gaussian errors on the parallaxes (distance−1), ra-
dial velocities and the two proper motion values with standard deviations of 30%, 3 km s−1

and 2 mas, respectively. We computed the angular positions of each particle (for a given
observer position) and selected only those particles which fell into the approximate survey
geometry of the RAVE survey. The latter we define by declination δ < 0◦ and galactic lati-
tude |b| > 15◦.
Figure 4.4 shows the resulting distributions of 3̂esc for the two velocity thresholds. Again, the
width of the distributions cannot be solely explained by the statistical uncertainties computed
from the likelihood distribution, but an additional uncertainty of ' 4% is required to explain
the data in a Gaussian approximation. The distribution for 3min = 300 km s−1 in addition
exhibits a shift to higher values by ' 3%. Due to the low number statistics the significance
of the shift is unclear (∼ 3σ). As we will see in Section 4.4, compared to the statistical
uncertainties arising when we analyze the real data it would presents a minor contribution
to the overall uncertainty and we neglect the shift for this study.
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Figure 4.5: Ratios of the estimated and real virial masses in the 8 simulations. For each
simulation four mass estimates are plotted based on four azimuthal positions of the Sun
in the galaxy. The symbols with error-bars represent the estimates based on the median
velocities 3̃esc obtained from the error-prone simulation data, while the black symbols show
mass estimates for which the real escape speed was used as an input.

We can go a step further and try to recover the masses of the simulated galaxies using the
escape speed estimates. To do this we use the original mass profile of the baryonic com-
ponents of the galaxies to model our knowledge about the visual parts of the Galaxy and
impose an analytic expression for the dark matter halo. As we will do for the real analysis
we try two models: an unaltered and an adiabatically contracted NFW sphere. We adjust
the halo parameters, the virial mass M340 and the concentration c, to match both boundary
conditions, the circular speed and the escape speed at the solar radius. Figure 4.5 plots the
ratios of the estimate masses and the real virial masses taken from the simulations directly.
The adiabatically contracted halo on average over-estimates the virial mass by 25%, while
the pure NFW halo systematically understates the mass by about 15%. For both halo models
we find examples which obtain a very good match with the real mass (e.g. simulation B for
the contracted halo and simulation H for the pure NFW halo). However, the cases where the
contracted halo yields better results coincide with those cases where the escape speed was
underestimated. The colored symbols in Figure 4.5 mark the mass estimates obtained using
the exact escape speed computed from the gravitational potential in the simulation directly.
This reveals that the mass estimates from the two halo models effectively bracket the real
mass as expected. Note that we also recover the masses of the three simulations C, E and G
that show peculiarities in their velocity distributions. Only for simulation E we completely
fail to recover the mass for one azimuthal position of the observer. In this case there is a
prominent stellar stream moving in the line of sight direction.

4.3 Data

4.3.1 Sample selection in RAVE

The major observational data for this study comes from the fourth data release (DR4) of
RAVE survey (see Section 2.1). The wealth of information in the RAVE survey presents an
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ideal foundation for our study. Compared to S07 the amount of available spectra has grown
by a factor of 10 and at that time there were only velocities derived from the spectra. The
number of high-velocity stars has unfortunately not increased by the same factor, which is
most likely due to the fact that RAVE concentrated more on lower Galactic latitudes where
the relative abundance of halo stars – which can have these high velocities – is much lower.
We use only high-quality observations by selecting only stars which fulfill the following cri-
teria:

• the stars must be classified as ’normal’ according to the classification by Matijevič et al.
(2012),

• the Tonry-Davis correlation coefficient computed by the RAVE pipeline measuring the
quality of the spectral fit (Steinmetz et al. 2006) must be larger than 10,

• the radial velocity correction due to calibration issues (cf. Steinmetz et al. 2006) must
be smaller than 10 km s−1,

• the signal-to-noise ratio (S/N) must be larger than 25,

• the stars must have a distance estimate by Binney et al. (2014),

• the star must not be associated with a stellar cluster.

The first requirement ensures that the star’s spectrum can be well fitted with a synthetic
spectral library and excludes, among other things, spectral binaries. The last criterion re-
moves in particular the giant star (RAVE-ID J101742.6-462715) from the globular cluster
NGC3201 that would have otherwise entered our high-velocity samples. Stars in gravita-
tionally self-bound structures like globular clusters, are clearly not covered by our smooth
approximation of the velocity distribution of the stellar halo. We further excluded two stars
(RAVE-IDs J175802.0-462351 and J142103.5-374549) because of their peculiar location in
the physical Hertzsprung-Russell diagram3 (green symbols in Figure 4.7).
In some cases RAVE observed the same target multiple times. In this case we adopt the
measurements with the highest S/N, except for the line-of-sight velocities, 3los, where we use
the mean value. The median S/N of the high-velocity stars used in the later analysis is 56.
We then convert the precisely measured 3los into the Galactic rest-frame using the following
formula:

3‖,i = 3los,i + (U� cos li + (V� + VLSR) sin li) cos bi +W� sin bi, (4.9)

We define the local standard of rest, VLSR, to be 220 km s−1 and for the peculiar motion
of the Sun we adopt the values given by Schönrich et al. (2010): U� = 11.1 km s−1, V� =
12.24 km s−1 and W� = 7.25 km s−1.
As mentioned in Section 4.1 we need to construct a halo sample and we do this in the same
way as done for the simulation data. We compute the Galactocentric tangential velocities,
3φ, of all stars in a Galactocentric cylindrical polar coordinate system using the line-of-
sight velocities, proper motions, distances and the angular coordinates of the stars. For the
distance between the Sun and the Galactic center we use the value R0 = 8.28 kpc (Gillessen
et al. 2009). We performed a full uncertainty propagation using the Monte-Carlo technique
with 2000 re-samplings per star to obtain the uncertainties in 3φ. As already done for the
simulations we discard all stars with positive 3φ and also those for which the upper end of
the 95% confidence interval of 3φ reaches above 100 km s−1 to obtain a pure stellar halo
sample. This is important because a contamination of stars from the rapidly rotating disk

3Including these stars does not significantly affect our results.
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component(s) would invalidate our assumptions made in Section 4.1. Note that only for this
step we make use of proper motions.
We use the measurements from the UCAC4 catalog (Zacharias et al. 2013) and we avoid
entries that are flagged as (projected) double star in UCAC4 itself or in one of the additional
source catalogs that are used for the proper motion estimate. In such cases we perform the
Monte-Carlo analysis with a flat distribution of proper motions between -50 and 50 mas yr−1,
both in Right Ascension, α and declination, δ.
In principle, we could also use a metallicity criterion to select halo stars. There are several
reasons why we did not opt for this. First, we want to be able to reproduce our selection
in the simulations. Unfortunately, the simulated galaxies are all too metal-poor compared
to the Milky Way (Tissera et al. 2012) and are thus not very reliable in this aspect. This is
particularly important in the context of the findings by Schuster et al. (2012) who identified
correlations between kinematics and metal abundances in the stellar halo that might be
related to different origins of the stars (in-situ formation or accretion). Note, however,
that despite the unrealistic metal abundances the formation of the stellar halo is modeled
realistically in the simulations including all aspects of accretion and in-situ star formation. In
the simulated velocity distributions (Figure 4.2) we do not detect any characteristic features
that would indicate that the duality of the stellar halo as found by Schuster et al. (2012)
is relevant for our study. Second, we would have to apply a very conservative metallicity
threshold in order to avoid contamination by metal-poor disk stars. Because of this our
sample size would not significantly increase using a metallicity criterion instead of a kinematic
one.
It is worth mentioning, that the star with the highest 3‖ = −448.8 km s−1 in the sample used
by S07 (RAVE-ID: J151919.7-191359) did not enter our samples, because it was classified
to have problems with the continuum fitting by Matijevič et al. (2012). S07 showed via
re-observations that the velocity measurement is reliable, however, the star did not get a
distance estimate from Binney et al. (2014). Zwitter et al. (2010) estimate a distance of
9.4 kpc which, due to its angular position (l, b) = (344.6◦, 31.4◦), would place the star behind
and above the Galactic center. The star thus clearly violates the assumption by S07 to deal
with a locally confined stellar sample and potentially leads to an over-estimate of the escape
speed. For the sake of a homogeneous data set we ignored the alternative distance estimate
by Zwitter et al. (2010) and discarded the star.
The left-most panel of Figure 4.6 depicts the velocities 3′‖ of all RAVE stars as a function

of Galactic longitude l and the two velocity thresholds 3min = 200 and 300 km s−1. By
selecting for a counter-rotating (halo) population (blue dots) we automatically select against
the general sinusoidal trend of the RAVE stars in this diagram. The middle and right panels
in Figure 4.6 illustrate the spatial distribution of our high-velocity sample. As a result of
RAVE avoiding the low Galactic latitudes, stars with small Galactocentric radii are high
above the Galactic plane. Furthermore, because RAVE is a southern hemisphere survey, the
stars in the catalog are not symmetrically distributed around the Sun. The stars in our high-
velocity sample are mostly giant stars with a metallicity distribution centered at −1.25 dex
as can be seen in Figure 4.7.

4.3.2 Including other literature data

To increase our sample sizes we also consider other publicly available and kinematically un-
biased data sets. We use the sample of metal-poor dwarf stars collected by Beers et al. (2000,
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Figure 4.6: Left panel: Rescaled radial velocities, 3′r, of our high-velocity samples plotted
against their Galactic longitudes, l. The dashed horizontal lines mark our threshold velocities,
±200 and ±300 km s−1. Blue and orange symbols represent RAVE stars and B00 stars,
respectively. Open circles mark stars that have |3′‖| > 300 km s−1, while filled circles represent
stars that have |3′‖| > 200 km s−1 and a classified as halo stars. Colored dots show all stars
which we identify as halo stars, i.e. which are on counter-rotating orbits. The small gray
dots illustrate the complete RAVE mother sample. Middle and right panel: Locations of the
stars in our high-velocity sample in the R-z-plane (left panel) and the x-y-plane (right panel)
as defined in the left-most panel. Blue and orange symbols represent RAVE stars and B00
stars, respectively. The error bars show 68% confidence regions (∼ 1σ). Grey dots show the
full RAVE catalog and the position of the Sun is marked by a white ’�’. The dashed lines in
both panels mark locations of constant Galactocentric radius R =

√
x2 + y2.

B00 hereafter). The authors also provide the full 6D phase space information including pho-
tometric parallaxes. We updated the proper motions by cross-matching with the UCAC4
catalog (Zacharias et al. 2013). We found new values for 2011 stars using the closest coun-
terparts within a search radius of 5 arcsec. For ten stars we found two sources in the UCAC4
catalog closer than 5 arcsec and hence discarded these stars. There were further 5 cases
where two stars in the B00 catalog have the same closest neighbor in the UCAC4 catalog.
All these 10 stars were discarded as well. Finally, we kept only those stars with uncertainties
in the line-of-sight velocity measurement below 15 km s−1.
There is a small overlap of 123 stars with RAVE, 68 of which have a parallax estimate, $, by
Binney et al. (2014) with σ($) < $. By chance two of these stars entered our high-velocity
samples. This, on the first glance, very unlikely event is not so surprising if we consider
our selection for halo stars, the strong bias towards metal-poor halo stars of the B00 catalog
and the significant completeness of the RAVE survey >50% in the brighter magnitude bins
(Kordopatis et al. 2013).
In order to compare the two distance estimates we convert all distances, d, into distance
moduli, µ = 5 log(d/10 pc), because both estimates are based on photometry, so the error
distribution should be approximately4 symmetric in this quantity. We find that σBeers should
be about 1.3 mag for the weighted differences (Figure 4.8, upper panel) to have a standard
deviation of unity. B00 quote an uncertainty of 20% on their photometric parallax estimates,

4Note that Binney et al. (2014) actually showed that the RAVE parallax uncertainty distribution is close to
normal. However, since both, the RAVE and the B00 distances, are based on the apparent magnitudes
of the stars. Comparing the distance moduli seems to be the better choice, even though the uncertainties
are not driven by the uncertainties in the photometry.
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Figure 4.7: Upper panel: Distribution of our high-velocity stars as defined in Figure 4.6 in
a physical Hertzsprung-Russell diagram (symbols with blue error-bars). For comparison the
distribution of all RAVE stars (gray dots) and an isochrone of a stellar population with an age
of 10 Gyr and a metallicity of−1 dex (red line) is also shown. The two green symbols represent
two stars that were excluded from the samples because of the their peculiar locations in this
diagram. Lower panel: Metallicity distribution of our high-velocity sample (blue histogram).
The black histogram shows the metallicity distribution all RAVE stars.

while our estimate corresponds to roughly 60%. We adopt our more conservative value and
emphasize that this uncertainty is only used during the selection of counter-rotating halo
stars.
We further find a systematic shift by a factor fdist = 1.5 (δµ = 0.9 mag) between the two dis-
tance estimates, in the sense that the B00 distances are greater. Since more information was
taken into account to derive the RAVE distances we consider them more reliable. In order
to have consistent distances we decrease all B00 distances by f−1

dist and use these calibrated
values in our further analysis.
The data set with the currently most accurately estimated 6D phase space coordinates is
the Geneva-Copenhagen survey (Nordström et al. 2004) providing Hipparcos distances and
proper motions as well as precise radial velocity measurements. However, this survey is
confined to a very small volume around the Sun and therefore even stronger dominated by
disk stars than the RAVE survey. We find only 2 counter-rotating stars in this sample with
|3‖| > 200 km s−1 as well as two (co-rotating) stars with |3‖| > 300 km s−1. For the sake of
homogeneity of our sample we neglect these measurements.
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Figure 4.8: Upper panel: Distribution of the differences of the distance modulus estimates,
µ, by B00 and Binney et al. (2014), divided by their combined uncertainty for a RAVE-
B00 overlap sample of 68 stars. With σBeers = 1.3 mag we find a spread of 1σ in the
distribution with the median shifted by 0.6σ ' 0.9 mag. The gray curve shows a shifted
normal distribution. The two red data points mark 2 stars which were also entering our
high-velocity samples. Lower panel: Direct comparison of the two distance estimates with
1− σ error bars. The solid gray line represents equality, while the dashed-dotted line marks
equality after reducing the B00 distances by a factor of 1.5.

4.4 Results

4.4.1 Comparison to Smith et al. (2007)

As a first check we do an exact repetition of the analysis applied by S07 to see whether we
get a consistent result. This is interesting because strong deviations could point to possible
biases in the data due to, e.g., the slightly increased survey footprint of the sky. RAVE
contains 76 stars fulfilling the criteria, which is an increase by a factor 5 (3 if we take the
19 stars from the B005 catalog into account). The median values of the distributions are
effectively the same (537 km s−1 instead of 544 km s−1) and the uncertainties resulting from
the 90% confidence interval ([504,574]) are reduced by a factor 0.6 (0.7) for the upper (lower)
margin, respectively. If we assume that the precision is proportional to the square root of
the sample size we expect a decrease in the uncertainties of a factor 3− 1

2 ' 0.6.
With the distance estimates available now, we know that this analysis rests on the incorrect
assumption that we deal with a local sample. If we apply a distance cut dmax = 2.5 kpc

5Due to the different values of the solar peculiar motion ~U� we have one more star than S07 from this
catalog with |3‖| > 300 km s−1. A further difference is our velocity uncertainty criterion.
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Figure 4.9: Likelihood distributions of parameter pairs 3esc, k (lower panel). The positions of
the maximum likelihood pairs are marked with the symbols ’x’ for the V200 samples and
’+’ for the V300 samples. Contour lines mark the locations where the likelihood dropped
to 10% and 1% of the maximum value. The upper panel shows the likelihood distributions
marginalized over the most likely k-interval [2.3,3.7]

onto the data we obtain a sample of 15 RAVE stars and 16 stars from the B00 catalog
and we compute a median estimate of 526+63

−43 km s−1. A lower value is expected because
the distance criteria removes mainly stars from the inner Galaxy where stars generally have
higher velocities. The reason for this is that RAVE is a southern hemisphere survey and
therefore observes mostly the inner Galaxy.

4.4.2 The local escape speed

As described as option (2) in Section 4.1.1 we can estimate for all stars in the catalogs what
their radial velocity would be if they were situated at the position of the Sun. We then
create two samples using the new velocities. For the first sample we select all stars with
re-scaled velocities 3′‖ > 300 km s−1. S07 showed that such a high velocity threshold yields
predominantly halo stars. The resulting sample contains 53 stars (34 RAVE stars) and we
will refer to it as V300. The second sample has a lower velocity threshold of 200 km s−1, but
stars are pre-selected, in analogy to the simulation analysis, considering only stars classified
as ’halo’ (Section 4.3.1). This sample we call V200 and it contains 86 stars (69 RAVE stars).
Most of the stars are located closer to the Galactic center than the Sun and thus the correction
mostly leads to decreased velocity values. In both samples about 7% of the stars have repeat
observations. The maximum difference between two velocity measurements is 2.5 km s−1.
The resulting likelihood distribution in the (3esc, k) parameter plane is shown in the lower
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Figure 4.10: Escape speed estimates and 90% confidence intervals in Galactocentric radial
bins. The solid black line shows our best-fitting model. Only the filled black data points
were used in the fitting process. The red data point illustrates the result of our ’localized’
approach.

panel of Figure 4.9. The maximum likelihood pairs for the different samples agree very
well, except for the pair constructed from RAVE-only V300 sample, which is located near
3esc ' 410 km s−1 and k ' 0. In all cases a clear degeneracy between k and the escape speed
is visible. This was already seen by S07 and reflects that a similarly curved form of the
velocity DF over the range of radial velocities available by different parameter pairs.
We go further and compute the posterior probability DF for 3esc, p(3esc) using Eq. 4.7, which
effectively means that we marginalize over the optimized k-interval derived in Section 4.2.1.1.
For the medians of these distributions we obtain higher values than the maximum likelihood
value for all samples. This behavior is consistent with our findings in Section 4.1.2 where we
showed that the maximum likelihood analysis tends to yield pair with too low values of k
and 3esc. These median values can be found in Table 4.2 (”Localized“).

4.4.3 Binning in Galactocentric distance

For halo stars with original |3‖| ≥ 200 km s−1 we are able to fill several bins in Galactocentric
distance r and thereby perform a spatially resolved analysis as described as option (1) in
Section 4.1.1. We chose 6 overlapping bins with a radial width of 2 kpc between 4 and
11 kpc. This bin width is larger than the uncertainties of the projected radius estimates for
almost all our sample stars (cf. Figure 4.6). The number of stars in the bins are 11, 28,
44, 52, 35 and 8, respectively. The resulting median values (again after marginalizing over
the optimal k-interval) of the posterior PDF and the 90% confidence intervals are plotted
in Figure 4.10. The values near the Sun are in very good agreement with the results of the
previous section. We find a rather flat escape speed profile except for the out-most bins which
contain very few stars, though, and thus have large confidence intervals.
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4.5 Discussion

4.5.1 Influence of the input parameters

The 90% confidence intervals provided by our analysis technique reflect only the statistical
uncertainties resulting from the finite number of stars in our samples. In this section we look
for further systematic uncertainties. In Section 4.2.1.2 we already showed that our adopted
interval for the power-law index k introduces a systematic scatter of about 5%.
A further source of uncertainties comes from the motion of the Sun relative to the Galactic
center. While the radial and vertical motion of the Sun is known to very high precision,
several authors have come to different conclusions about the tangential motion, V� (e.g.
Reid & Brunthaler 2004; Bovy et al. 2012a; Schönrich 2012). In this study we used the
standard value for VLSR = 220 km s−1 and the V� = 12.24 km s−1 from Schönrich et al.
(2010). We repeated the whole analysis using VLSR = 240 km s−1 and compared the resulting
escape speeds with the values of our standard analysis (cf. the lower part of Table 4.2). The
magnitudes of the deviations are statistically not significant, but we find systematically lower
estimates of the local escape speed for the higher value of VLSR. The shift is close to 20 km s−1

and thus comparable to the difference ∆VLSR. This can be understood if we consider that
most stars in the RAVE survey and – also in our samples – are observed at negative Galactic
longitudes and thus against the direction of Galactic rotation (see Figure 4.6). In this case
correcting the measured heliocentric line-of-sight velocities with a higher solar tangential
motion leads to lower 3‖ which eventually reflects into the escape speed estimate. Note that
this systematic dependency is induced by the half-sky nature of the RAVE survey, while
for an all-sky survey this effect might cancel out. In contrast, the exact value of R0 is not
influencing our results, as long as it is kept within the range of proposed values around 8 kpc.
The quantity with the largest uncertainties used in this study is the heliocentric distance of
the stars. In Section 4.3.2 we found a systematic difference between the distances derived for
the RAVE stars and for the stars in the B00 catalog. Such systematic shifts can arise from
various reasons, e.g. different sets of theoretical isochrones, systematic errors in the stellar
parameter estimates or different extinction laws. Again we repeated our analysis, this time
with all distances increased by a factor 1.5, practically moving to the original distance scale
of B00. Again we find a systematic shift to lower local escape speeds of the same order as
for alternative value of VLSR.
We finally also tested the influence of the Galaxy model we use to re-scale the stellar velocities
according to their spatial position. We changed the disk mass to 6.5×1010 M� and decreased
the disk scale radius to 2.5 kpc, in this way preserving the local surface density of the standard
model. The resulting differences in the corrected velocities are below 1% and no measurable
difference in the escape speed estimates were found illustrating the robustness of our methods
to reasonable changes in the Galaxy parameters.

4.5.2 A critical view on the input assumptions‖

Our analysis stands and falls with the reliability of our approximation of the velocity DF
given in Eq. 4.1. The conceptual underpinning of this approximation is very weak for four
reasons:
‖Most of this section was written by James Binney.

91



• In many analytic equilibrium models of stellar systems at any spatial point there is
a non-zero probability density of finding a star right up to the escape speed 3esc at
that point, and zero probability at higher speeds. For example the Jaffe (1983) and
Hernquist (1990) models have this property but King-Michie models (King 1966) do
not: in these models the probability density falls to zero at a speed that is smaller than
the escape speed. There is hence an important counter-example to the proposition that
n(3) first vanishes at 3 = 3esc.

• All theories of galaxy formation, including the standard ΛCDM paradigm, predict that
the velocity distribution becomes radially biased at high speed, so in the context of an
equilibrium model there must be significant dependence of the DF on the total angular
momentum J in addition to E.

• As Spitzer & Thuan (1972) pointed out, in any stellar system, as E → 0 the periods
of orbits diverge. Consequently the marginally-bound part of phase space cannot be
expected to be phase mixed. Specifically, stars that are accelerated to speeds just short
of 3esc by fluctuations in Φ in the inner system take arbitrarily long times to travel
to apocenter and return to radii where we may hope to study them. Hence different
mechanisms populate the outgoing and incoming parts of phase space at speeds 3 ∼ 3esc:
while the parts are populated by cosmic accretion (Abadi et al. 2009; Teyssier et al.
2009; Piffl et al. 2011), the outgoing part in addition is populated by slingshot processes
(e.g. Hills 1988) and violent relaxation in the inner galaxy. It follows that we cannot
expect the distribution of stars in this portion of phase space to conform to Jeans
theorem, even approximately. Yet Eq. 4.1 is founded not just on Jeans theorem but a
very special form of it.

• Counts of stars in the Sloan Digital Sky Survey (SDSS) have most beautifully demon-
strated that the spatial distribution of high-energy stars is very non-smooth. The origin
of these fluctuations in stellar density is widely acknowledged to be the impact of cosmic
accretion, which ensures that at high energies the DF does not satisfy Jeans theorem.

From this discussion it should be clear that to obtain a credible relationship between the den-
sity of fast stars and 3esc we must engage with the processes that place stars in the marginally
bound part of phase space. Fortunately sophisticated simulations of galaxy formation in a
cosmological context do just that. Figure 4.2 illustrated that Eq. 4.1 catches the general
shape of the velocity DF very well. The fact that we find a relatively small interval for the
power-law index k, that suits for all simulated galaxies with their variety of morphologies,
argues for the appropriateness of the functional form by Leonard & Tremaine (1990).
The question remains whether the applied simulation technique influences the range of k-
values we find, since all 8 galaxy models were produced with the same simulation code. In
particular, the numerical recipes for so-called sub-grid physics like star formation and stellar
energy feedback can have a significant impact on the simulation result as was recently demon-
strated in the Aquila code comparison project (Scannapieco et al. 2012). However, the main
differences were found in the formation of galaxy disks, while in this study we explicitly focus
on the stellar halo that was build up from in-falling satellite galaxies. Differing implemen-
tations of sub-grid physics might change the amount of stellar and gas mass being brought
in by small galaxies, but it appears unlikely that the phase-space structure of Galactic halo
will change significantly. This view is confirmed by the very similar k-interval found by S07
using simulations with a completely different implementation of sub-grid physics.
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Table 4.2: Median and 90% confidence limits from different analysis strategies. The masses
M340,NFW are estimated assuming an NFW profile for the dark matter halo and the masses
M340,contr are based on an adiabatically contracted NFW profile. The upper part of the table
shows the results when VLSR is assumed to be 220 km s−1. In the lower part of the table
we show the results if we assume a value of 240 km s−1 to facilitate a comparison to other
estimates based on this alternative value.

Strategy V200 V300
3esc(R0) M340,NFW M340,contr 3esc(R0) M340,NFW M340,contr

(km s−1) (1012 M�) (1012 M�) (km s−1) (1012 M�) (1012 M�)
Estimates considering the RAVE and B00 data; VLSR = 220 km s−1.

Binned 557+87
−63 1.13+0.59

−0.35 1.81+1.02
−0.62

Localized 543+67
−52 1.06+0.66

−0.37 1.71+1.14
−0.66 533+54

−41 0.98+0.49
−0.28 1.55+0.85

−0.50

Estimates considering the RAVE data only; VLSR = 220 km s−1.
Binned 585+109

−76 1.25+0.74
−0.43 2.01+1.24

−0.74

Localized 559+76
−59 1.19+0.82

−0.45 1.94+1.41
−0.79 517+70

−46 0.86+0.60
−0.28 1.35+1.05

−0.50

Estimates considering the RAVE and B00 data; VLSR = 240 km s−1.
Binned 541+93

−65 0.88+0.54
−0.31 1.32+1.02

−0.53

Localized 526+72
−54 0.76+0.53

−0.28 1.09+0.97
−0.47 511+48

−35 0.67+0.30
−0.17 0.94+0.54

−0.29

Estimates considering the RAVE data only; VLSR = 240 km s−1.
Binned 557+107

−74 0.95+0.68
−0.35 1.47+1.25

−0.63

Localized 535+80
−57 0.81+0.64

−0.31 1.18+1.17
−0.52 483+52

−37 0.52+0.29
−0.15 0.70+0.49

−0.24

4.5.3 Estimating the mass of the Milky Way

We now attempt to derive the total mass of the Galaxy using our escape speed estimates.
Doing this we exploit the fact that the escape speed is a measure of the local depth of the
potential well Φ(R0) = 1

23
2
esc. A critical point in our methodology is the question whether the

velocity distribution reaches up to 3esc or whether it is truncated at some lower value. S07
used their simulations to show that the level of truncation in the stellar component cannot be
more than 10%. However, to test this they first had to define the local escape speed by fixing
a limiting radius beyond which a star is considered unbound. The authors state explicitly
that the choice of this radius to be 3Rvir is rather arbitrary. More stringent would be to state
that the velocity distribution in the simulations point to a limiting radius of ∼ 3Rvir beyond
which stars do not fall back onto the galaxy or fall back only with significantly altered orbital
energies, e.g. as part of an in-falling satellite galaxy.
It is not a conceptual problem to define the escape speed as the high end of the velocity
distribution in disregard of the potential profile outside the corresponding limiting radius.
Then it is important, however, to use the same limiting radius while deriving the total mass
of the system using an analytic profile. This means we have to re-define the escape speed

93



to
3esc(r | Rmax) =

√
2|Φ(r)− Φ(Rmax)|. (4.10)

Rmax = 3R340 seems to be an appropriate value.
This leads to somewhat higher mass estimates. For example, S07 found an escape speed of
544 km s−1 and derived a halo mass of 0.85× 1012 M� for an NFW profile, practically using
Rmax =∞. If one consequently applies Rmax = 3Rvir the resulting halo mass is 1.05×1012 M�,
an increase by more than 20%. This is the reason why our mass estimates are higher than
those by S07 even though we find a similar escape speed. Note that these values represent
the masses of the dark matter halo alone while in the remainder of this study we mean the
total mass of the Galaxy when we refer to the virial mass M340. Keeping this in mind it
is then straightforward to compute the virial mass corresponding to a certain local escape
speed. As already mentioned we use the simple mass model presented in Section 4.1.
In the case of the escape speed profile obtained via the binned data the procedure becomes
slightly more elaborate. We have to compute the escape speeds at the centers of the radial
bins Ri and then take the likelihood from the probability distributions PDFRi

(3esc) in each
bin. The product of all these likelihoods7 is the general likelihood assigned to the mass of
the model, i.e.

L̂(M340) =
∏
i

PDFRi
(3esc(Ri | M340)) (4.11)

The results of these mass estimates are presented in Table 4.2. As already seen in Figure 4.5
for the simulations the adiabatically contracted halo model yields always larger results than
the unaltered halo.

4.5.4 Fitting the halo concentration parameter

Up to now we assumed a fixed value for the local standard of rest, VLSR = 220 km s−1, to
reduce the number of free parameters in our Galaxy model to one. Recently several authors
found larger values for VLSR of up to 240 km s−1 (e.g. Bovy et al. 2012a; Schönrich 2012).
If we change the parametrization in the model and use the halo concentration c as a free
parameter we can compute the likelihood distribution in the (M340, c)-plane in the same way
as described in the previous section. Figure 4.11 plots the resulting likelihood contours for
an NFW halo profile (left panel) and the adiabatically contracted NFW profile (right panel).
The solid black curves mark the locations where the likelihood dropped to 10% and 1% of the
maximum value (which lies near c ' 0). Grey dotted lines connect locations with common
circular velocities at the solar radius.
Navarro et al. (1997) showed that the concentration parameter is strongly related to the
mass and the formation time of a dark matter halo (see also Neto et al. 2007; Macciò et al.
2008; Ludlow et al. 2012). With this information we can further constrain the range of likely
combinations (M340, c). We use the relation for the mean concentration as a function of halo
mass proposed by Macciò et al. (2008). For this we converted their relation for c200 to c340 to
be consistent with our definition of the virial radius. There is significant scatter around this
relation reflecting the variety of formation histories of the halos. This scatter is reasonably
well fitted by a log-normal distribution with σlog c = 0.11 (e.g. Macciò et al. 2008; Neto et al.
2007). If we apply this as a prior to our likelihood estimation we obtain the black solid con-
tours plotted in Figure 4.11. Note that in the adiabatically contracted case the concentration

7We only use half of the radial bins in order to have statistically independent measurements.
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Figure 4.11: Likelihood distribution resulting from our simple Galaxy model when we leave
the halo concentration c (and therefore also VLSR) as a free parameter (blue area) for an NFW
profile as halo model (left panel) and an adiabatically contracted NFW profile (right panel).
The red contours arise when we add the constraints on c from cosmological simulations: the
relation of the mean c for a given halo mass found by Macciò et al. (2008) is represented
by the thick dashed orange line. The orange area illustrates the spread around the mean c
values found in the simulations. The different shades in the blue and orange colored areas
mark locations where the probability dropped to 10%, 1% of the maximum value. Dotted
gray lines connect locations with constant circular speed at the solar radius.

parameters we are quoting are the initial concentrations before the contraction. Only these
are comparable to results obtained from dark matter-only simulations.
The maximum likelihood pair of values (marked by a black ’+’ in the figure) for the adiabat-
ically contracted halo is M340 = 1.09× 1012 M� and c = 5, which implies a circular speed of
229 km s−1 at the solar radius. The unaltered NFW profiles yields the same c but a somewhat
larger mass of 1.22× 1012 M�. Here the resulting circular speed is only 187 km s−1.
If we marginalize the likelihood distribution along the c-axis we obtain the one-dimensional
posterior PDF for the virial mass. The median and the 90% confidence interval we find to
be

M340 = 1.3+0.4
−0.3 × 1012 M�

for the un-altered halo profile. For the adiabatically contracted NFW profile we find

M340 = 1.2+0.4
−0.3 × 1012 M�

It is worth noting that in this approach the adiabatically contracted halo model yields the
lower mass estimate, while the opposite was the case when we fixed the local standard of rest
as done in the previous section.
There are several definitions of the virial radius used in the literature. In this study we used
the radius which encompasses a mean density of 340 times the critical density for closure
in the universe. If one adopts an over-density of 200 the resulting masses M200 increase to
1.6+0.5
−0.4 × 1012 M� and 1.4+0.4

−0.3 × 1012 M� for the pure and the adiabatically contracted halo
profile, respectively. For an over-density of 340 Ω0 ∼ 100 (Ω0 = 0.3 being the cosmic mean
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Figure 4.12: Additional constraints on the parameter pairs (M340, c) coming from studies
from the literature. The black contours are the same as in Figure 4.11. Gnedin et al. (2010)
measured the mass interior to 80 kpc from the GC, Xue et al. (2008) interior to 60 kpc and
Kafle et al. (2012) interior to 25 kpc. The yellow solid and dotted line separate models for
which the satellite galaxy Leo I is on a bound orbit (below the lines) from those which it is
unbound.

matter density), as used, e.g., by Smith et al. (2007) or Xue et al. (2008), the values even
increase to 1.9+0.6

−0.5 × 1012 M� and 1.6+0.5
−0.4 × 1012 M�. The corresponding virial radii are

R340 = 180± 20 kpc

for both halo profiles (R200 = 225± 20 kpc).

4.5.5 Relation to other mass estimates

We can include as further constraints literature estimates of total masses interior to various
Galactocentric radii by Xue et al. (2008), Gnedin et al. (2010) and Kafle et al. (2012). Gnedin
et al. (2010) obtained an estimate of a mass of 6.9×1011 M� ±20% within 80 kpc. Xue et al.
(2008) found a mass interior to 60 kpc of 4.0± 0.7× 1011 M�. Kafle et al. (2012) measured a
Galactic mass of 2.1×1011 M� interior to 25 kpc from the Galactic center using a similar data
set as Xue et al. (2008), but an analysis technique that is less model dependent. We use a 68%
confidence interval of [1.8, 2.3]× 1012 M� for this last estimate (green shaded area; P. Kafle,
private communication). Models fulfilling these constraints are marked in Figure 4.12 with
colored shaded areas. In the case of the unaltered NFW halo we find an excellent agreement
with Gnedin et al. (2010) and Kafle et al. (2012), while for the adiabatically contracted model
the combination of these estimates favor higher virial masses. The estimate by Xue et al.
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(2008) is only barely consistent with our results on a 1σ-level for both halo models.
Tests with a different model for the Galactic disk (Md = 6.5×1010 M�, Rd = 2.5 kpc, similar
to the one used by Kafle et al. (2012) and Sofue et al. (2009)) resulted in decreased mass
estimates (10%), well within the uncertainties. This model changes the values for the circular
speed (223 km s−1 and 264 km s−1 for the un-altered and the contracted case, respectively)
but not the consistency with the mass estimates by Kafle et al. (2012), Gnedin et al. (2010)
or Xue et al. (2008).
Another important constraint for the Galactic halo is the space motion of the satellite galaxy
Leo I. Boylan-Kolchin et al. (2013) showed that in the ΛCDM paradigm it is extremely
unlikely that a galaxy like the Milky Way has an unbound close-by satellite galaxy. If we
take the recent estimates for the Galactocentric distance of 261 ± 13 kpc and the absolute
space velocity of 200+22

−29 km s−1 (Sohn et al. 2013) we can identify those combinations ofM340
and c that leave Leo I on a bound orbit. The line separating models in which Leo I is bound
from those where it is not bound is also plotted in Figure 4.12. All models below this line
are consistent with a bound orbit of Leo I. The dotted lines show the uncertainties in the
sense that they mark the ridge lines for the extreme cases that Leo I is slower and closer by
1σ and that it is farther and faster by 1σ. In the case of the un-altered halo profile our mass
estimate is consistent with Leo I being on a bound orbit, while in the contracted case the
mass of the Galaxy would be too low.
Finally, Przybilla et al. (2010) found a star, J1539+0239, with a velocity of 694+300

−221 km s−1

at a Galactocentric distance of ∼ 8 kpc moving inwards to the Galaxy. The authors argue
that this star should therefore be bound to the Milky Way (see also Irrgang et al. 2013).
The star is not in the solar vicinity as its heliocentric distance measured to be 12± 2.3 kpc,
but its Galactocentric distance is comparable to R0. We can therefore directly compare our
results. Due to the large uncertainties in the velocity estimate it is not surprising that our
most likely value for 3esc is consistent with J1539+0239 to be on a bound orbit. However, if
their median velocity is correct this star is clearly unbound in our model of the Galaxy and
must have obtained its high speed via some other mechanism or be of Extragalactic origin.

4.5.6 On the dark matter halo profile

The two halo models, un-altered and adiabatically contracted NFW halo, are rather extreme
cases and the true shape of the Galactic halo is most likely intermediate to these options
(Abadi et al. 2010). When we fixed the circular speed at the Sun’s position (as done for
the estimates shown in Table 4.2) the resulting halo masses were strongly dependent on the
shape of the profile. However, when we loosened this constraint using a prior on the halo
concentration c (as in Section 4.5.4) our mass estimates become fairly robust to changes
of the halo model. In this approach the tension between the constraints coming from the
circular speed at the solar radius and the mass estimates at larger distances are likely to be
resolved by an intermediate halo model as proposed by Abadi et al. (2010).

4.5.7 Future prospects

The ESO cornerstone mission Gaia Prusti (2012) will soon revolutionize the field of Galactic
astronomy. It will deliver the full 6D phase space information for more 100 million stars in
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the extended solar neighborhood. With these data we will not be restricted anymore to the
use of radial velocities alone as tangential velocities with similar or even smaller uncertainties
will be available. Repeating our analysis with Gaia observations will hence deliver much more
precise results.
On the other hand we expect that the full complexity of the Galaxy will appear in these
data as well. The comparatively sparse RAVE data allowed to neglect many of the details
of the Galactic structure, in particular the clumpy nature of the stellar halo. This might be
no longer possible with the Gaia data, or in other words, the precision of the estimate might
no longer be limited by the data, but by the assumptions in the analysis method itself. It
is hence possible that the gain is smaller than one might expect naively if the analysis is
repeated in the exact same manner. More robust knowledge about the structure of the inner
galaxy obtained, for example, via the analysis of cold tidal streams (Koposov et al. 2010;
Sanders & Binney 2013) might allow to refine these assumptions.
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5 An alternative origin for hyper-velocity
stars∗

In the last chapter we used high-velocity halo stars from the RAVE survey to estimate the
Galactic escape speed. In this analysis we treated the halo as a smooth spherically symmet-
ric population. The lumpiness of stellar halos, which can be observed in our own Galaxy
(Belokurov et al. 2006) as well as in external galaxies (Martínez-Delgado et al. 2010) played
only a minor role as a possible disturbance. In this chapter we will direct our focus on the
implications of the presence of sub-structure in the Galactic halo.
The growth of galaxies via the accretion of smaller companion systems is one of the ma-
jor ingredients in the current perception of galaxy formation and evolution. These satellite
galaxies are disrupted in the tidal field of their host galaxies and the new material is dispersed
near the orbit of the progenitor. Recent theoretical work has shown that especially the outer
stellar halo is predominantly made of stars which were born outside the main galaxy (Abadi
et al. 2006; Zolotov et al. 2009; Scannapieco et al. 2011). Such stars are thought to have
low metallicities and to be old. The small fraction of material born inside the main galaxy
reaching these large radii was mostly re-distributed during violent major merger events. As
these events were more frequent when the galaxy was still young, these stars are also predom-
inantly old. A third small population of the outer halo are the so-called Hypervelocity stars
(HVSs) which are ejected via a three-body interaction involving the super-massive black hole
(SMBH) in the Galactic center (Hills 1988). Such stars have no age constraints and should
be metal-rich as they originate from the innermost region of the galaxy.
The latter population earned attention since they could serve as an indirect proof for the
SMBH in the Galactic center (Hills 1988) and also because they could be used to measure
the shape of the Galactic potential (Gnedin et al. 2005; Yu & Madau 2007; Perets et al.
2009). Yu & Tremaine (2003) estimated a HVS ejection rate of 10−5 yr−1 and Perets et al.
(2007) showed that this rate could increase by a magnitude if massive perturbers such as
giant molecular clouds or star clusters were considered. Aside from the classical ejection
mechanism by Hills (1988) several authors have suggested alternative formation scenarios: a
binary black hole of equal (Yu & Tremaine 2003) and un-equal masses (Levin 2006; Sesana
et al. 2009), a supernova in a binary near the SMBH (Zubovas et al. 2013) or the accretion
of a satellite galaxy (Abadi et al. 2009).
Recent observations of stars in the Galactic halo with unusually high velocities (Brown et al.
2005; Hirsch et al. 2005; Edelmann et al. 2005; Brown et al. 2006a,b, 2007a,b, 2009a; Tillich
et al. 2009; Brown et al. 2012; Palladino et al. 2014) raised new interest on the topic. By
design of the search strategy these stars have typically blue colors. They move with velocities
up to 720 km s−1 with respect to the Galactic center and are thought to reside at Galac-
tocentric distances of 20-130 kpc. Interestingly, the targeted HVS survey of Brown et al.
∗Content and text of this chapter have almost identically been published as Piffl et al. (2011). See also the
remarks at the end of the Introduction (Chapter 1). Credit: Piffl et al., A&A, 535, A70, 2011, reproduced
with permission c©ESO.
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(2009a) only yield out-going HVSs, a fact that is typically attributed to the short lifetimes
of the stars compared to the long orbital periods. However, eventually also an in-going star
with extremely high velocity was observed (Przybilla et al. 2010).
Despite the small number of HVSs reported to date several peculiarities in the distribution of
the observed population were already claimed. Abadi et al. (2009) found that a large part of
the population clusters around a certain travel time (∼ 130 Myr), i.e. the time a star would
need to travel from the GC and arrive at its current radius with its current radial velocity.
Such a clustering is not expected from Hills’ original SMBH-ejection scenario. It could be
explained, however, by a star burst event near the GC triggering an increased ejection rate
of HVSs for certain times.
Also the angular distribution on the sky shows signs of anisotropy. Abadi et al. (2009) and
Brown et al. (2009b) report a significant over-density of HVSs around the constellation of
Leo. Stars ejected by one or more black holes in the GC should appear on the sky in an
approximately homogeneous distribution or in a ring-like structure (Levin 2006). However,
a preferred ejection direction as found in the data is not naturally explained with this mech-
anism (however, see Lu et al. (2010)).
The accreted population of stars in the outer halo can also contain stars with large radial
velocities. Teyssier et al. (2009) showed that there should exist an energetically loosely or
un-bound population of stars originating from disrupted dwarf galaxies. Abadi et al. (2009)
commented that a larger total mass of the Galaxy would allow the normal virialized halo
population to reach these velocity regimes. The authors further suggested that the peculiari-
ties in the HVS distribution would be naturally explained if part of the observed HVSs would
actually belong to a stream of tidal debris of a recently accreted dwarf galaxy. An example
for a HVS likely being generated by this mechanism was recently found in M31 (Caldwell
et al. 2010).
Several theoretical studies have already investigated properties of the tidal debris of satellite
galaxies. Johnston (1998) approximated the energy distribution of tidal debris particles with
a triangular shape to build up a stellar halo distribution. Choi et al. (2007) showed that
the energy kick obtained by stripped stars via tidal forces and also the deviations between
leading and trailing tidal arms are both increasing with the mass of the approaching satel-
lite. Warnick et al. (2008) investigated the relation between observable properties of tidal
streams like radial velocity dispersion or thickness to the properties of the progenitor system.
D’Onghia et al. (2009, 2010) investigated the effect of resonances during tidal stripping of
rotating systems.
In the present study we investigate the kinematic properties of tidal debris stars with a
special focus on the fastest stars of this population. For this we systematically study tidal
encounters of satellite galaxies with their hosts and investigate the process in detail. We ran
a suite of collisionless N -body simulations following the passage of a small companion galaxy
through its massive Milky Way-like host galaxy. These simulations are used to obtain an
idea of what properties an observer would find in an HVS population generated in a tidal
collision. We develop a simple analytical model and test it against the simulations and show
in how this model can be used to predict the energy distribution of the tidal debris star.

5.1 Simulation set-up

All simulations were run using the publicly available simulation code Gadget-2 (Springel
2005). For the main galaxy we used the model parameters proposed by Klypin et al. (2002).
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Figure 5.1: Black symbols show the applied values for the halo concentration parameter c for
a given satellite mass Msat. The errorbars have a width of 0.5 to reflect the fact that only
integer numbers were used for c. The red line shows a power law with exponent 0.36.

The galaxy consists of three components, an adiabatically contracted spherical NFW halo
(Navarro et al. 1996), an exponential stellar disk and a spherical stellar bulge with a Hernquist
density profile (Hernquist 1990). The disk density profile is

ρdisk(R, z) = Mdisk

4πR2
diskzdisk

exp
(
− R

Rdisk

)
sech2

(
z

zdisk

)
, (5.1)

where R =
√
x2 + y2. The vertical scale height is set as zdisk = 0.2Rdisk, as was found in

observations of other disk galaxies (Kregel et al. 2002). Table 5.1 presents the parameters
used. The dark matter halo is smoothly truncated outside of R200 as described in Springel
& White (1999). The satellite galaxies are modeled as an adiabatically contracted NFW
halo hosting a Hernquist sphere as the spherical baryonic component. The models fulfill
the constraints from the Fundamental plane of dE+dSph galaxies given in de Rijcke et al.
(2005):

logLB ∼ 4.39 + 2.55 log σ0 (5.2)
logLB ∼ 8.69 + 3.55 logRe (5.3)

Here, LB is the B-band luminosity, Re is the effective radius enclosing half the light of the
galaxy and σ0 is the luminosity-weighted mean velocity dispersion. A Hernquist sphere has
an effective radius Re ' 1.82rbulge (Hernquist 1990). For the velocity dispersion σ0, in analogy
to the dispersion used by de Rijcke et al. (2005), we computed the mass-weighted mean of the
line-of-sight velocity dispersions in different radial annuli of the visible component. Finally,
to relate the luminosity LB to the baryonic mass content of the galaxy we assume a mass-
to-light ratio ΥB = 2ΥB,�.
The ratio between total, Msat, and baryonic mass, Msat,b, was fixed using the relation found
by McGaugh et al. (2010):

logMsat,b = 4.0 log vcirc + 1.65. (5.4)
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To relate the circular velocity of the dark halo, vcirc, to the mass of the satellite, Msat, we
used the same relation as in McGaugh et al. (2010):

Msat = (1.5× 105km−3s3M�)v3
circ (5.5)

With these constraints the dwarf galaxy is fully determined by only one parameter. In this
work we used the total massMsat as a free parameter which was varied for different simulation
runs. The requirement to match all the constraints given above fixes also the concentration
parameter c of the satellite dark halo. The obtained mass-concentration relation is given in
Figure 5.1. It is best described by a power law:

c ' 19.3
(

Msat

1010M�

)0.36

(5.6)

Note, that this relation was obtained by fitting our basic satellite model to the observational
constraints. Our concentration parameter should thus not be interpreted in the original sense
of an evolutionary sequence in the frame-work of ΛCDM cosmology (Navarro et al. 1997).
For the initialization of the phase-space positions of the particle samples we followed a method
outlined by Springel & White (1999) which is a modified version of the method of Hernquist
(1993) which assumes Gaussian velocity distributions. The latter leads to slight deviations
from a perfect equilibrium configuration. To account for this both host and satellite galaxies
are allowed to relax for 1 Gyr in isolation before they are implemented into the actual
simulations. We use a softening length of 0.01 (0.2) kpc for the satellite star (dark matter)
particles in all our simulations.

Simulation time All simulations ran until the satellite reached the Apogalacticon after its
first pericentric passage or crossed the virial radius of the host galaxy, R200. This was done
because we wanted to study the properties of a population of tidal debris particles generated
during a single stripping event. As we also have a focus on the stars escaping from the
combined satellite and host system we chose to study only the first orbit. We expect this
orbit to generate the largest spread in velocities as the initial unperturbed satellite population
covers the complete possible phase space regions. At later orbits the satellite will have lost
its most energetic population (Choi et al. 2009). Furthermore, considering only the first orbit
allows an easier comparison between the different simulation runs as one has the full control
over the satellite configuration at the beginning of the orbit.

A suite of simulations To create a suite of comparable simulations we then ran this scenario
with varying initial satellite masses Msat = 0.1− 2× 1010 M� and different starting positions
in the satellite phase space. In the majority of cases the satellite is on a bound polar orbit
with respect to the host disk component. To determine the influence of an inclined orbit we
also ran a couple of simulations with 0◦ (planar) and 45◦ inclination angle. We found that the
differences in the results for varying inclinations were small compared to other uncertainties.
We thus did not consider inclination as a major parameter and neglect it completely. The
initial angular momenta, Lsat, of the satellites range between 0 and 15×103 kpc km s−1 which
corresponds to pericenter distances Rperi from 0 to 50 kpc. A list of the initial conditions and
some of the analysis results for all runs can be found in the appendix of Piffl et al. (2011).
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Table 5.1: Parameters of the host galaxy
NFW halo

Total mass, Mhalo 113× 1010 M�
Virial radius, R200 258 kpc
Concentration, c 12
Virial velocity, vcirc(R200) 129 km s−1

Particle number, Nhalo 5× 105

Softening, εhalo 0.4 kpc
Exponential disk

Disk mass, Mdisk 4.0× 1010 M�
Scale length, Rdisk 3.5 kpc
Scale height, zdisk 0.7 kpc
Particle number, Ndisk 105

Softening, εdisk 0.1 kpc
Hernquist bulge

Bulge mass, Mbulge 0.8× 1010 M�
Scale radius, Rbulge 0.7 kpc
Particle number, Nbulge 2× 104

Softening, εbulge 0.1 kpc

5.2 Observable properties from the simulations

Of the 41 simulations performed for this study 23 yielded particles with velocities higher than
the local escape speed of the host galaxy. These particles are gravitationally unbound and
are the simulated equivalent to HVSs2. However, in the real Milky Way the escape speed is
still uncertain to a considerable degree as neither the total mass (1− 2× 1012 M�, e.g. Smith
et al. 2007; Xue et al. 2008; Guo et al. 2010; Boylan-Kolchin et al. 2011; Przybilla et al.
2010; McMillan 2011; Piffl et al. 2014) nor the global shape of the gravitational potential
(Law et al. 2009) is precisely measured. Moreover, the asymmetry of the Galaxy introduces
a direction dependency. Thus the value of the escape speed must not be seen as a sharp
limiting velocity dividing bound and unbound stars. It is rather a characteristic value to
compare to when evaluating the probability whether a star will eventually fall back onto its
host or not. For the dynamics of a star located within the virial radius of the Galaxy it
makes no qualitative difference whether it is gravitationally unbound. Because of this, and
also to obtain better statistics, we will thus in this section analyze the most energetic 0.1% of
the satellite particles, i.e. the Most Energetic Particles (MEPs, for short) regardless whether
they reach velocities higher than their local escape speed.
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Figure 5.2: Aitoff projection of a simulation run about 200 Myr after Perigalacticon. Green
dots represent all satellite particles (only every 5th particle plotted) while the MEPs are
marked by red stars. Disk and bulge of the host galaxy is also shown as black mass-density
contour-lines. The median distance of the MEPs is ∼ 60 kpc, comparable to the Galacto-
centric distances of the observed HVSs. The MEPs are concentrated to confined area on the
sky, in this case enclosed by a circle with angular radius 15◦.

5.2.1 Angular distribution

Figure 5.2 shows the angular distribution of the MEPs in one of our simulations (red stars)
as seen by an observer on the Sun’s location. The snapshot is taken at a time when the
particles have moved from the satellite Perigalacticon out to a galactocentric distance of
∼ 60 kpc, similar to the observed HVS population. Green dots indicate the positions of all
satellite particles while black dots represent star particles belonging to the host galaxy. As
already reported by Abadi et al. (2009) the MEPs are clustered in a tightly confined region
on the sky (in Fig. 5.2 marked by the solid magenta circle of radius ∼ 15◦). Averaging over
all 39 simulations and over 10 equispaced angular positions of the Sun on the solar circle
the mean radius of a circular region encompassing all MEP is 16◦ and the maximum angular
radius is 27◦. At a distance of 60 kpc the viewing angle of the observer relative to the orbital
plane of the satellite does not play a significant role as the stripped-off particles had not
enough time yet to unfold into a prominent stream and are thus observable in a compact
area from all directions (cf. the upper left panel of Fig. 5.3).
Furthermore, the position of the satellite relative to the MEPs is not arbitrary. In all our
simulations the satellite has a smaller angular distance to the host galactic center then the
MEPs. This is due to the fact that the satellite as well as the MEPs have just passed
their perigalacticon and now move away from the host. Since the MEPs have higher orbital
energies they leave the satellite behind and are thus observed at larger angular distances
in the vast majority of cases. The angular distance between the MEPs and the satellite
remnant is determined by projection effects depending on the viewing angle relative to the
orbital plane of the satellite. In our simulations the satellite core is observed always within
22◦ (90 percent within 16◦) separation to the center of the MEP population.

2In this simulation set-up the escape speed is well defined, because the system is simulated in isolation.
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Figure 5.3: Time series of the galactocentric RV-distance plane for two simulation runs. The
time elapsed since Perigalacticon, ∆tperi, is shown in the upper left corner, respectively. Red
stars represent the MEPs, green dots satellite particles and dashed lines the local escape speed
of the respective radius. Dotted lines mark lines of constant travel times corresponding to
∆tperi. The eccentricity of the satellite orbit is given in the lower right corner of the right most
panel, respectively. In the left most panels the mean distance of the MEPs is 60 kpc similar
to the observed HVS population which is shown in the right most panel in the upper row for
comparison. At this point the MEPs did not have time yet to leave the remaining satellite
far behind. Note that none of the simulations were designed to reproduce the observed HVS
population.

5.2.2 The radial velocity-distance plane

The particles stripped-off the satellite quickly disperse in physical space and are soon indistin-
guishable from the already existing Galactic halo population. However, when Galactocentric
radial velocities, 3r, are plotted against Galactocentric distance, r, the particles form an
elongated pattern reflecting their common origin from the Perigalacticon of the satellite.
Figure 5.3 shows time series of two simulations with satellite systems on orbits with different
eccentricity. Green dots represent satellite particles while red stars show the MEPs. Particles
of the host galaxy are not plotted. The upper series is based on the same simulation that
was used for Fig. 5.2 and the upper left most panel shows the same point of time. The lower
panel row shows a simulation run with an almost purely radial orbit which has also lower
orbital energy. The initial structural properties of the satellite are the same as in the upper
run. Note that despite the lower satellite orbital energy the maximum tidal debris velocities
are larger than in the run with a lower eccentricity.
The dashed line represents the escape speed from the host system at the respective distance.
This corresponds to the trajectory of a test body on a parabolic (purely radial) orbit. Parti-
cles below this line are not necessarily bound as part of their motion is hidden in the other
velocity components. This explains why particles can cross the dashed line while still con-
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serving their energy.
The dotted lines in the panel are lines of constant travel time, i.e. mark positions in the
(r, 3r)-plane which are occupied by test bodies which started from a common point with
varying initial (radial) velocities. The starting point is usually chosen to be the center of
the gravitational potential, as in Fig. 5.3. However, lines from other starting points have
similar shapes which explains the good alignment of the tidal debris particles even though
the satellite in the upper row run never comes close to the Galactic center (the pericenter
distance for this run was 18 kpc).
The width of the tidal debris streams in the (r, 3r)-plane also changes with eccentricity. This
can be understood when considering that most of the stripping happens during a short period
of time around the pericenter passage. For more circular orbit this period get more extended
as more time is spent by the satellite at radii similar to the pericenter distance.
Hence the clustering in travel time already reported by Abadi et al. (2009) has an intrinsic
scatter which scales with eccentricity of the orbit of the progenitor system. This is especially
so shortly after the pericentric passage, when the distances to the GC are not large and lines
of constant travel times have a large slope. At this time the scatter can be stronger than the
trend to lines of constant travel time.
The left more panel (upper row) shows the distribution of the observed HVSs in the distance-
velocity plane for comparison. The possible tidal debris group in the population proposed by
Abadi et al. (2009) clusters around the 133 Myr-line of constant travel time show as dotted
black line. Note that none of the two simulation runs was designed to reproduce the observed
population as this was not the goal of this more general parameter study.

5.2.3 Maximum velocities

In the classical SMBH sling shot scenario the extremely large ejection velocities are a result
of the extreme orbital velocities occurring near a SMBH plus the large orbital velocities
of the components of a hard binary system (Yu & Tremaine 2003). Compared to such an
environment, collisions of galaxies are much less violent events as the time scales are much
larger and potential gradients much shallower. We thus cannot expect the extraordinary
velocities up to 3000 km s−1 predicted by Hills (1988). Still, the simulations show that
stars can be accelerated to their local escape speed and above. The maximum velocities
reached by the MEPs at r ' 60 kpc in our simulations range between 200 and 400 km s−1

(3esc(60 kpc) = 330 km s1 in our Galaxy model).

5.3 A model for tidal stripping

To guide our further analysis we develop a simple, succinct model to describe the accreted
satellite mechanism. It was inspired by the calculations of HVS ejection velocities by Yu
& Tremaine (2003) as it treats the galaxy-galaxy encounter similar to an binary-SMBH
encounter: a satellite galaxy is moving on an orbit in the gravitational potential Φhost(~r) of
its much more massive host galaxy. Its specific orbital energy is thus

Esat = 1
23

2
sat + Φhost(~rsat) (5.7)
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Since the satellite is an spatially extended object it is subject to tidal forces which lead to a
mass loss of the satellite. Under the assumption of an at least moderately eccentric orbit the
majority of this stripping will happen in a short period of time when the satellite is closest
to the center of the host galaxy where tidal torques are strongest, i.e., at its perigalacticon,
Rperi, where it has the velocity 3sat = Vperi.
To model the stripping we now assume what we call instantaneous escape: a star i with a
position ~ri relative to the satellite center and a velocity ~3i in the co-moving rest frame of
satellite has an orbital energy

Ei = 1
2(~3sat +~3i)2 + Φhost(~rsat + ~ri) + Φsat(~ri). (5.8)

The star is lost to the satellite when the gravitational potential from the satellite, Φsat is less
than the difference in the host potential between the satellite position and the position of
the particle, ~ri,

Φhost(~rsat + ~ri)− Φhost(~rsat) ≥ −Φsat(~ri), (5.9)
which is equivalent for it to be outside of the tidal radius, Rtidal. We now assume that this
energy transition occurs instantly and the star is left to move in the host potential only. Thus
the orbital energy of the star after the stripping is

E ′i = 1
2(~3sat +~3i)2 + Φhost(~rsat) =

= ~3sat~3i + 1
23

2
i + 1

23
2
sat + Φhost(~rsat) = (5.10)

= ~3sat~3i + 1
23

2
i + Esat.

The energy kick obtained by the star compared to the satellite is then

∆Ei = ~3sat~3i + 1
23

2
i (5.11)

We now ask for the maximum of ∆E. Equation 5.11 leads to the assumption that three
conditions need to be fulfilled for the maximum energy kick:

1. The star has the maximum velocity possible which is the local escape speed at the tidal
radius: 3i = 3esc(Rtidal),

2. Satellite and stellar velocities have to be aligned: ~3sat||~3i,

3. The satellite has to be at its maximum velocity, which occurs during the passage of the
Perigalacticon: 3sat = Vperi.

Moreover, if the star is to gain orbital energy it needs to be at larger Galactocentric radii
than the satellite, i.e. |~rsat + ~ri| > rsat, because only then the tidal force pushes the star
away from the galactic center and thus from the potential well. This, together with the first
condition, requires the star to be on a prograde orbit with respect to the satellite motion.
This view is also confirmed by Fig. 5.4. It shows three snapshots of a simulation run shortly
before, at and shortly after Perigalacticon. Red stars and blue triangles mark those particles
which will have the highest/lowest orbital energy at the end of the simulation, respectively.
The two groups are situated are very distinct locations with respect to the satellite. The
particles which gain energy move along with the satellite on an orbit prograde with respect
to the satellite motion while for particles which lose energy the orbital phase is such that
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Figure 5.4: Snapshots of the satellite (small green dots) shortly before, during and shortly
after its pericentric passage. Red stars show the positions of those particles which will have
the highest orbital energy at the end of the simulation. Blue triangles show those with the
lowest energy. The latter have a relative motion opposite to the satellite motion and are
on retrograde orbits. The high energy particles move with the satellite and are on prograde
orbits.

their motion is contrary to the direction of the system velocity.
Thus we arrive at

∆Emax = Vperi3esc(Rtidal) + 1
23esc(Rtidal)2. (5.12)

The quantities Vperi and 3esc(Rtidal) can be estimated if we know

• the radial mass profile of the host galaxy,

• the radial dark matter and baryonic mass profile of the satellite galaxy,

• the parameters of the satellite orbit, namely the initial angular momentum Lsat and
the initial orbital energy Esat.

In a first step we estimate the minimum distance to which the satellite approaches the
host center, i.e. the pericenter distance Rperi. For this we use the effective potential Φeff =
L2

sat/(2r2) + Φhost(r) exploiting

Esat −
1
2∆EDF = Φeff(Rperi), (5.13)

where we compute the energy loss from dynamical friction ∆EDF using Eq. 5.19. Further we
compute the satellite velocity in the Perigalacticon via

Vperi =
√

2(Esat −
1
2∆EDF − Φhost(Rperi)). (5.14)

To compute the escape velocity 3esc(Rtidal) from the satellite system we first have to determine
the tidal radius Rtidal which we assume to be equal to the Jacobi radius at the distance Rperi:

Rtidal =
(

M ′
sat

3Mhost(Rperi)

) 1
3

Rperi. (5.15)
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Figure 5.5: Energy gain with respect to Esat predicted by our simplified model ∆Emax com-
pared to the maximum energy gain found in each simulation. The latter are by a factor of
∼ 0.45 (slope of the gray dotted lines) lower than the estimates, which is most likely due
to oversimplification of the model. Phase-space sampling due to the limited particle number
does not play a significant role as can be seen from the gray circles which mark the runs with
10 times lower resolution. Left panel: the estimated energy gain as obtained from our model.
Right panel: the energy gain from our model corrected for an additional dependency on the
angular momentum of the satellite. See text for a discussion.

However, we do not take the total satellite mass Msat for the final radius. We also take into
account that due to its much larger extension the dark matter halo of the satellite is stripped
much earlier the the baryonic component. Consequently in a first step we compute the tidal
radius using the total satellite mass Msat and assume that all material outside this “dark
matter tidal radius” Rtidal,DM is lost. We then compute the “baryonic tidal radius” using
Equation 5.15 with the mass M ′

sat = Msat(r < Rtidal,DM).
Finally we obtain the escape speed

3esc(Rtidal) =
√

2|Φsat(Rtidal)|. (5.16)

Note that the tidal radius computed in this two-step process also allows a very good estimate
of the baryonic mass loss of the satellite when it is assumed that all mass outside this tidal
radius is lost, i.e.

funbound = Mlost

Msat
= Msat(r > Rtidal)

Msat
. (5.17)

In the left panel of Fig. 5.5 we compare this model prediction obtained from Equation 5.12
to simulation results. For the latter we analyzed our simulations at Apogalacticon after
the satellite’s passage through the host system and the particle with the highest orbital
energy max(Ei) was identified. The energy gain ∆Emax,sim is then defined as max(Ei)−Esat.
Solid lines in Fig. 5.5 indicates equality. Equation 5.12 systematically overestimates the
maximum energy kick by a (constant) factor of 2.2, as indicated by the dashed line with
slope α = 2.2−1 ' 0.45. The overestimation are most likely due to oversimplification of
our estimate, e.g. the neglection of the structural evolution of the satellite in the tidal field.
Surprisingly, the mass resolution only plays a minor role in the sense that simulation runs
with lower particle numbers do not yield significantly smaller maximum energy differences.
This is most likely due to the steep slope of the energy distribution of the tidal debris stars
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(see Sect. 5.4).
Much of the scatter in the left panel of Fig. 5.5 turned out to be a residual dependency on the
initial angular momentum of the respective satellites in the simulation. We obtain a tighter
relation (right panel) when we use

∆Emax,c = ∆Emax

√
Lsat + Lchar

Lchar
, (5.18)

with Lchar = 6300 kpc km s−1. Thus the value α∆Emax,c gives a robust estimate of the
maximum energy gain occurring during a satellite-host galaxy encounter.

Dynamical friction In the course of its orbit the satellite galaxy is also subject to dynamical
friction. This means that it will sink deeper into the potential well of the host system. By
the time it reaches its Perigalacticon stripped-off stars might have to get over an energy gap
much wider to become HVSs. The extent of the energy loss depends mainly on the massMsat
and the orbit of the satellite, in a way which is counterproductive to the ejection energies
∆Emax: a more massive satellite ejects stars at higher energies as its internal velocities are
larger. This energy gain for the stripped-off stars goes roughly spoken with

√
Msat since

3esc(r) ∝
√
Msat which goes into our estimate (Eq. 5.12). On the other hand a higher mass

results in stronger dynamical friction which roughly goes ∝ Msat (Chandrasekhar 1943). In
fact in our simulations we find that the loss in orbital energy after one orbit is

∆EDF = 2× 10−4
(
Msat

M�

)0.78 (
1 + L0

5900 kpc kms−1

)−1

, (5.19)

which reflects the dependency of the physical extent of the satellite on its mass and also
the change of the orbital trajectories with changing orbital angular momentum. We use this
simplistic approach as it covers best the effect of a possible reaction of the host galaxy on the
intruder (however, see Taylor & Babul (2001) and Gan et al. (2010) for a more elaborated
approach to model dynamical friction).
Thus above a certain mass the satellite will not be able to eject any HVSs since the energy
loss of the whole system is larger than the energy gain of the single stars. However, judging
from our simulations this will only happen at masses > 1011 M�. Extrapolating our results
into this (major merger) mass regime is not meaningful as a massive intruder will significantly
perturb the host galaxy. We can thus just state that this scenario does not occur for minor
mergers in the present work.

Hypervelocity stars In the context of hypervelocity stars which are unbound to the total
system we have to compare ∆E with Esat, the orbital energy of the satellite, since the energy
E of such an unbound object must be

E = Esat −∆EDF + ∆E ≥ 0. (5.20)

Thus the condition
α∆Emax,c ≥ −Esat + ∆EDF. (5.21)

must be full-filled to allow unbound stars to be generated during such a satellite-host galaxy
encounter with α ' 0.45.
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Figure 5.6: A histogram of the orbital energies of all particles which initially belonged to the
satellite but became unbound to it in the course of the first orbit (tidal debris particles). The
two peaks correspond to the two tidal arms torn out of the satellite. The central gap coincides
with the orbital energy Esat of the remaining satellite system. The dashed red line shows the
fitting function (Eq. 5.22) which is used to characterize the distribution. The meaning of the
fitting parameter εw which is used to determine the width of the high energy peak is also
indicated. Note that throughout this work we only consider the high energy peak, as this is
where HVSs would reside.

5.4 The energy distribution

A more robust measure of range of orbital energies covered by the stripped-off stars can
be obtained when looking on the overall width of the energy distribution of all particles
gravitationally unbound to the satellite. We determine these stars using an iterative method
described by Tormen et al. (1998). The energy distribution is plotted in Fig. 5.6. The two
peaks represent the leading and trailing tidal arm, respectively. The gap between them is
centered on the orbital energy of the satellite. We apply an empirical fitting function

ffit(E) = fhigh

C

 1
(1 + exp(γ(∆E

εw
− 1)))2 − finner exp

−( ∆E
εinner

)2
 , (5.22)

again with ∆E = E −Esat. To normalize the function we use the factor fhigh/C, where fhigh
is the number of particles in the high energy (trailing) arm divided by the initial number of
satellite particles and

C = 1
fhigh

∫∞
Esat ffit(E)dE

= εw

[
1 + 1

γ

(
ln(1 + e−γ)− 1

1 + exp(−γ)

)]
−
√
πfinnerεinner

2 .
(5.23)

The function is shown in Fig. 5.6 as red dashed line. For the fitting procedure we only consider
the high energy peak of the distribution, i.e. where E ≥ Esat. The fitting parameters provide
us with some characteristics of respective distribution: the width or typical energy, εw, the
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Figure 5.7: Upper panel: The histograms of the energies differences ∆E = Ei − Esat of the
tidal debris particles of all simulations used in this work over-plotted. The distributions are
plotted as functions of ∆E in units of the width of the high energy peak εw. The histograms
are also renormalized so that the high energy peak covers the same area. The lines are
color-coded according to the initial angular momentum of the progenitor system (from red
representing more radial orbits to blue for more circular orbits) Lower panel: The mean
distribution obtained from the distribution plotted in the upper panel (solid black line). The
standard deviation is also indicated with the thin gray lines. Over-plotted in red is our fitting
function using the parameters given in Eqs. 5.25 and εw = 1.

width of the central minimum, εinner, a measure of how fast the distribution drops off with
increasing energy, γ, and the relative depth of the central minimum, finner.

A composite distribution Following an idea by Johnston (1998) we assume the general
shape of the distributions to be invariant and only the width and the normalization to be
specific to the respective orbit and satellite parameters. This means that the parameters
εinner, γ, finner are either constant for all situations or a function of εw. To compare the
distribution shapes we rescaled the particle energies into units of their specific typical energy
εw via

∆Êi = Ei − Esat

εw
. (5.24)

The resulting energy distributions were then renormalized to eliminate the influence of the
number particles in the respective (trailing) tidal arm. The upper panel of Fig. 5.7 plots the
energy distributions of all our simulations onto each other. Note that these include satellites
varying over more than a magnitude in mass and angular momentum. The resulting mean
distribution (black line) with the standard deviation (gray line) is also plotted. Applying our
fitting function Eq. 5.22 results in the following parameter values:

εinner = 0.14εw,
γ = 5.21, (5.25)

finner = 0.94.
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Figure 5.8: Relation between the maximum energy gain ∆Emax,sim and the width εw of the
energy distribution of all tidal debris stars obtain via fitting Equation 5.22. The gray dotted
line has a slope of 1.5.

The fit is shown as a dashed red line in Fig. 5.7. We then repeat the fitting procedure for
all single distributions with only εw as a free parameter. The resulting widths are plotted in
Fig. 5.8 against the highest energy of all satellite particles, ∆Emax,sim. Grey dots represent
the lower resolution runs. The tight correlation

∆Emax,sim = βεw (5.26)

with β ' 1.5 (which is not strongly affected by the resolution in the simulations) is a result of
the steep drop at the high energy tip of the distribution. Using the simple model developed
in the previous section we can thus obtain an estimate for the width of the high energy peak
via

εw = β−1∆Emax,sim '
α

β
∆Emax,c

= 0.3∆Emax,c. (5.27)

Note that 3esc(r) is a proxy for the mass of the satellite. Thus more massive satellites will
produce a larger energy spread in the stripped-off stars. One could also say that the higher
velocity dispersion of a more massive galaxy directly translates into a larger energy dispersion
in the tidal debris.

5.5 Discussion

It is now straightforward to compute the maximum velocities generated during a tidal collision
at certain galactocentric radius r > Rperi:

3max(r) = [2(Emax − Φhost(r))]
1
2

= [2(Esat,apo + 0.45∆Emax,c − Φhost(r))]
1
2 , (5.28)

113



106 107 108 109 1010 1011

Msat [M¯]

0

100

200

300

400

500

600

v m
a
x
(r

=
60
k
p
c
) 

[k
m

 s
−

1
]

vesc

L =   100 kpc km s−1

L =  1000 kpc km s−1

L =  3000 kpc km s−1

L = 10000 kpc km s−1

Figure 5.9: The maximum ejection velocities at a galactocentric distance of 60 kpc as a
function of initial satellite mass as computed from Eq. 5.28 assuming an initial orbital energy
of the satellite Esat = 0 km2s−2. The energy loss due to dynamical friction was computed
using the empirical law (Eq. 5.19) obtained from our simulations. The lower gray lines show
the velocity of the satellite remnant at the same distance.

where Esat,apo = Esat−∆EDF is the orbital energy of the remaining satellite after the passage.
To obtain a quantitative idea we assume again a Galactocentric distance of r = 60 kpc to be
comparable to the observations of HVSs. For the energy loss via dynamical friction ∆EDF
for simplicity we use the loss law (Eq. 5.19) found in our simulations. The velocities obtained
in this way are plotted in Fig. 5.9 as a function of the initial satellite mass Msat and for four
different initial angular momenta Lsat. The satellite system was assumed to approach the host
galaxy on a parabolic orbit, i.e. Esat = 0 km2 s−2. Only the most massive satellite galaxies
eject HVSs with substantial velocities comparable to the radial velocities of the observed
HVSs. Less massive galaxies could, in principal, also yield such large velocities if they move
on more energetic orbits themselves. For example, a satellite with mass Msat = 109 M�
would have to cross the virial radius of our parent galaxy3 with a velocity of ∼ 660 km s−1

to eject a star with 720 km s−1 at 60 kpc comparable to the fastest HVSs known. Such a
system would not lose enough energy to become bound to the larger galaxy. In this case one
hardly would speak about an ejected star since the galaxy would move along with the star
for a long period of time.
We now consider the subsample of observed HVSs with travel times ∼ 133 Myr pointed out
by Abadi et al. (2009, cf. their Fig. 1). The spread in velocities is roughly4 400 km s−1. Such
strong variations in the velocities translate into a progenitor mass of ' 1011 M�. If we select
only stars within the over-density region defined by Abadi et al. (2009) the spread reduces to
∼ 250 km s−1 resulting in a minimum progenitor mass still larger than 1010 M�. Concerning
the known satellite galaxies the respective authors of the HVS discovery papers already
excluded a kinematic connection to them (Brown et al. 2005, 2006a, 2009a; Edelmann et al.

3In our Galaxy model R200 ' 260 kpc.
4We ignore the fact that the stars reside at different galactocentric radii. Taking this into account would
enlarge the spread even further.
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2005; Hirsch et al. 2005). Since we do not expect such a system to have escaped observations
to date we conclude that a satellite origin for the sub-sample to be unlikely.
However, one should keep in mind that a more massive host galaxy (our host model has a
total mass of 1.1×1012 M�) would shift the lines in Fig. 5.9 upwards and would, in principal,
allow also very small galaxies to produce stars with velocities, e.g. > 500 km s−1. However,
the fact that only massive galaxies can eject stars with velocities significantly larger than
their own velocities remains unaffected by this.

5.5.1 The bound HVS population and the outer stellar halo

Several recent studies have shown that the outer stellar halo is almost purely made of accreted
stars (Abadi et al. 2006; Zolotov et al. 2009; Scannapieco et al. 2009). As smooth gas accretion
via cold flows plays only a minor role for Milky Way-type galaxies at low red shifts (Brooks
et al. 2009), we can assume the Galaxy has not grown significantly since its last major merger.
Our simulations now demonstrate that satellite accretion will inevitably produce stars with
velocities up to and exceeding their local escape speed. This means that the phase space
distribution of stellar halo stars reaches all velocities up to the local escape speed at all
times. For example, Smith et al. (2007) used this as a critical assumption for their technique
to estimate the mass of the Galaxy.
However, this also means that a classification of a star as a HVS ejected from the SMBH
based on its velocity is only valid for extremely large velocities. Without a confirmation of
their young ages the “bound” HVS population in the compilation of Brown et al. (2009a)
is indistinguishable from the normal (accreted) stellar halo population. To date only three
stars in the survey have clear spectroscopic identification as main sequences B stars (Fuentes
et al. 2006; López-Morales & Bonanos 2008; Przybilla et al. 2008) while others could be old
blue stragglers or blue horizontal branch stars (Perets et al. 2009).

5.5.2 An intragalactic stellar population

With our results we can also address the question on what kind of satellites are the main
contributors to a possible intragalactic stellar population (ISP) or Wandering stars (Teyssier
et al. 2009). For this we assume the in-falling satellite galaxies to be initially on parabolic
orbits, i.e. Esat = 0. Via dynamical friction the satellites will be shifted onto bound orbits
during their first passage. Thus not all stars in the trailing (high energy) tidal arm will
become unbound, but only those which gained more energy than is lost by their progenitor
system.
By integrating our fitting formula (Eq. 5.22) using the proper value for εw obtained via
Equations 5.18 and 5.26 over energies larger than the frictional energy loss ∆EDF we obtain
the fraction of the baryonic mass which became HVSs. In the upper panel of Fig. 5.10 this
fraction multiplied by the baryonic mass content of the satellite is shown as a function of the
total satellite mass. For the estimation an initial angular momentum L0 had to be set. The
plot shows the results for four different L0 (color coding is the same as in Fig. 5.9).
We then convolve this mass ejection function with an observational mass function of dwarf
galaxies. We therefore used the luminosity function obtained by Koposov et al. (2008) and
converted it into a mass function using the same relations used to create our satellite models
for the simulations. As a result we obtained the cumulative HVS mass production function
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Figure 5.10: Upper panel: Mass ejected at unbound velocities during one satellite orbit as
a function of initial progenitor mass. The satellite is assumed to have zero initial orbital
energy, i.e. to be on an parabolic orbit. Different lines correspond to four different initial
angular momenta of the satellite. The vertical dashed line indicates the mass of a single
star particle in our simulations. Lower panel: mass fraction of an unbound intergalactic
population originating from satellites with masses below Msat. The fraction were computed
using satellite mass function based on the satellite luminosity function of Koposov et al.
(2008). The mass function is also shown as thin dashed line. More than 95 percent of the
population is created by satellites more massive than 109 M�.

shown in the lower panel of Fig. 5.10. Color coding is the same as in the upper panel. The
dashed black line indicates the cumulative mass function of satellite galaxies. Consistent
with the results of Teyssier et al. (2009) obtained via cosmological simulations we find that
a tiny minority of massive satellites produces the overwhelming majority of HVSs. Given
the fact that more massive galaxies usually are also more metal-rich (Tamura et al. 2001)
we conclude that an intragalactic stellar population should have at least on average a higher
metallicities than the surviving dwarf galaxy population.
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6 Summary and conclusions

In the previous three chapters we led the reader in almost a zigzag course from theoretical
models to observational data and backwards. Doing this we explored several possibilities for
a productive combination of individual stellar observations and numerical simulations. It is
clear that there is no one general approach that is superior to everything else, but that each
question needs a tailored analysis strategy that fits the problem and the available data. In
the following we will summarize the analyses presented. Finally we attempt to formulate a
few more general conclusions.

6.1 Synthetic stellar surveys

The aim of the study presented in Chapter 3 was to explore the capabilities of various Galaxy
models by means of synthetic stellar surveys. As a testing ground we used the rich data
base of the Radial Velocity Experiment (RAVE), one of the first representatives of the new
generation of massive spectroscopic stellar surveys that provide velocities and astrophysical
stellar parameters for a substantial amount of stars. Before we could conduct this study we
had to complete the important preparatory task to evaluate the RAVE selection function.
This is described in the first section of Chapter 2 where we show the selection function can
be well recovered despite its complex structure in the space of position angles and apparent
magnitudes. Our major tool to facilitate the analysis of the Galaxy models into the space
of observables was the code GALAXIA that provides a flexible frame-work to combine these
models with the insights of stellar physics and evolution (i.e. stellar model atmospheres and
evolutionary tracks) and thereby allows to transfer the models into the space of observables.
The code could not be used “out of the box”, but we also had to adapt it for our purposes
as we described in Section 2.3.
As a first step we produced a mock RAVE survey based on the widely-used Besançon model
(Robin et al. 2003) and confronted it with the real data. An interesting aspect of this
exercise is that the Besançon model was created just at the time when the RAVE observations
started and thus presents pure prior knowledge. With this in mind we can state that the
model preforms very well in reproducing the velocity and stellar parameter distributions
in RAVE. In the metallicity distribution we find significant discrepancies pointing to a too
prominent and possibly also a too metal-poor thick disk component in the model. A higher
mean metallicity of the thick disk would also be more consistent with the high-resolution
measurements by Soubiran et al. (2003). Nevertheless, the good agreement between model
and real data in the aspects where it is expected gives us confidence in the validity of our
input assumptions and especially in our modeling of the RAVE selection function. Finally,
as we explore the correlations between the properties of the stars, in particular, the relation
between kinematics and chemistry, we reach the limits of the Besançon model that assigns
metallicities and kinematics to a large degree independently.
From here we move on and for the first time transform a full N -body model of the Milky Way
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into the space of observables to compare it with real stellar data on an equal footing. As an
input we use the hybrid model by Minchev et al. (2013a), the MCM model, that combines a
cosmological re-simulation with a chemical evolution model for the Galaxy. Resolved stellar
population synthesis with a discrete model is a novel approach and we extensively tested our
input set-up to understand the role of the different ingredients.
For this model it is straightforward to evaluate the selection effects in the RAVE data. We
find clear discrepancies in the metallicities distributions of the stars in the mock survey and
the underlying distribution in the survey volume. This clearly illustrates the need to model
the detailed selection function, as we do in this study, if the intrinsic properties of the stars
in the survey (metallicities, ages, etc.) are analyzed.
We find that the model is competitive in relation to the Besançon model in matching the
magnitude, color and stellar parameter distributions. Some aspects of the model are, however,
clearly hampered by the coarse representation of the smooth phase space distribution function
(DF) via mass particles. On the one hand we have the velocity distribution, where the large
phase space smoothing broadens the DF. On the other hand, we find a patchy structure in
the star counts as a function of position on the sky that is caused by the nearby mass particles
that are heavily over-sampled during the generation of the mock stars. To prevent this an
even stronger smoothing would be required. Both caveats could be resolved by improving the
mass, spatial and velocity resolution by increasing the number of particles in the input model.
We finally showed that the model is capable to reproduce the chemodynamical correlations
found in the RAVE data. Here the self-consistent dynamic history of all stars in the model
reveals its full power. From this point we head off and find predictions of the model in the
sense that we explore statistical properties for RAVE sub-samples, that are not available form
the real data, like ages and birth locations of the stars. We can show that we can identify
stars that have migrated radially via the mechanism described by Sellwood & Binney (2002)
by selecting a stellar population that combines large vertical motions with close to circular
orbits.
Finally, we studied the outcome of a full cosmological simulation of the evolution of a disk
galaxy using our machinery. Within the same volume this galaxy is represented by a number
of particles that is a factor of 5 less than in the MCM model, so the effects of limited
resolution are much stronger in this model. But even when we take this into account we
find strong discrepancies between model and real data, mostly in the surface gravity and
metallicity distributions. These can be traced back to the presence of a too massive metal-
poor spheroidal component in the galaxy. The too low disk-to-bulge ratio in this galaxy was
already known from previous analyses of this galaxy and is a common problem in simulations
of this type. The fact that we could detect it in our synthetic RAVE survey illustrates the
sensitivity of our approach to the global structure of a Galaxy model, i.e. that the signatures
of the global structure are not lost in the complex interplay of the stellar evolutionary tracks,
stellar atmosphere models, phase space smoothing and the selection function in the stellar
synthesis process. Our technique is hence suitable to discriminate between ’good’ and ’bad’
models of the Galaxy or even to fit a model to data.

In the general context, our study represents the first step to (re-)connect two important
astrophysical lines of research via a common frame-work: simulations of (disk) galaxy for-
mation and Galactic Astronomy with its massive stellar surveys already available now or in
the near future. Recently a number of successful simulations of disk galaxies were reported
(Governato et al. 2010; Guedes et al. 2011; Aumer et al. 2013; Marinacci et al. 2014) and
with the rapid developments in simulation techniques and computational power, it seems
clear that at least the next generation of simulations will provide close counter-parts of our
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Galaxy including also reliable information about the distribution of chemical elements (the
latter is currently often missing in the simulations). Pseudo-cosmological approaches like the
MCM model (Minchev et al. 2013a) provide already today excellent models for our Galaxy
with a self-consistent dynamic history.
At the same time the developments in observational astronomy, i.e. the realization of massive
spectroscopic survey projects, like RAVE, SEGUE, APOGEE, HERMES and eventually Gaia
and 4MOST, allow the statistical exploration of the stellar content of the Galaxy far beyond
the solar neighborhood into volumes well resolved by the above mentioned simulations. Fur-
thermore, stellar properties like the chemical abundances, precise kinematics, distances and
especially the correlations of those contain information about the past history of the Galaxy.
However, this information is masked in the data by the unavoidable selection effects. Even
an completely automated (and therefore well predictable) mission like the Gaia satellite will
have an extremely complicated selection function coming from the non-trivial scanning law
(e.g. Prusti 2012). It will hence in many cases be impossible to distillate information about
the Galaxy directly from the data. Our technique to transform physical models into observa-
tional space presents a straightforward approach to deal with the selection effects and recover
the underlying information. Our discussion on the planning of the 4MOST instrument in
Section 3.5 illustrates that the trend to more sophisticated selection criteria will extend into
the future.
Ad hoc models of the present state of the Galaxy based on photometry are clearly insufficient
to cope with the comprehensive data delivered by current and future surveys. In particular
the link between stellar dynamics and their elemental abundances appears to play a key role
in the recovery the formation history of the Milky Way (e.g. Minchev et al. 2013b) and it is
a difficult and yet unsolved problem to implement such trends into an analytic model. With
our method we gain access to the computationally relatively cheap models like the hybrid
MCM model – that could be used in a fitting process – as well as to the above mentioned fully
self-consistent cosmological models that naturally give rise to these chemodynamic correla-
tions. Such models are required to proof the consistency of the ΛCDM paradigm on scales
of galaxies like the Milky Way or even smaller. Proofing this consistency could be the next
major success of numerical astrophysics comparable to the reproduction of the large scale
filamentary structure of the Universe.
Before this problem can be actually tackled another issue has to be resolved. Current simu-
lations rely heavily on the largely phenomenological modeling of physical processes that yet
cannot be resolved or are not well understood (star formation, feedback, etc., see Springel
(2012) for an overview). Rix & Bovy (2013) recently asked whether there is “testable ev-
idence that the feedback implemented in the simulations actually took place”. Synthetic
stellar observations of such simulations can certainly help answering this question.
An interesting type of discrete models that we have not considered in this thesis, are massive
test particle simulations that allow the study of kinematic sub-structure induced by non-axis-
symmetric features in the Galaxy (Monari et al. 2013). These simulations allow extremely
high particle numbers and are from this point of view well suited for the creation of synthetic
observations. A drawback is that these simulation do not have a real evolutionary dynamic
and chemical history, so only the effects of the current structure of the Galactic disk (like bar
resonances) can be tested. Exploring these models through the eyes of RAVE could possibly
clarify the nature of the velocity gradients found by Siebert et al. (2012) and Williams et al.
(2013) in this survey.
With the machinery to generate synthetic surveys set-up we are not restricted to concentrate
on a specific survey – as we have done in this thesis. Different surveys probe different aspects
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of the Galaxy and therefore we will dramatically increase our leverage to evaluate models if
we consider more than one survey. A simultaneous analysis of the complementary surveys
RAVE and SEGUE appears to be the next logical step. Another powerful addition could be
a stellar sample with precise age determinations via astroseismology coming from the Corot
and Kepler missions (Chaplin & Miglio 2013). An obstacle for such a simultaneous analysis
is currently that different surveys often have systematic shifts between their parameter esti-
mates, for example in distance or metallicity. These shifts have to be well understood before
a sensible combined analysis can be done.

6.2 The Galactic escape speed and the mass of the Milky
Way

In Chapter 4 we analyzed the the RAVE survey together with additional literature data, to
estimate the Galactic escape speed (3esc) at various Galactocentric radial bins and through
this the virial mass of our Galaxy. For this we define the escape speed as the minimum speed
required to reach 3R340. In order to break a degeneracy between our fitting parameters we
had to calibrate our method on a set of cosmological simulations of disk galaxy formation.
The 90% confidence interval for our best estimate of the local escape speed is 492 < 3esc <
587 km s−1, with a median value of 533 km s−1.
Our estimate is very close to the previous measurement by Smith et al. (2007) (544 km s−1)
who used a much earlier version of the RAVE survey that included only radial velocities.
In this work we could use available distance estimates for the stars and take the fact into
account that many of the RAVE stars are located far from the Sun and closer to the Galactic
center where the velocity distribution is shifted to higher values. These stars violated the
implicit assumption made by Smith et al. (2007) to have a local sample.
With our new 3esc value we can estimate the virial mass of the Galaxy (baryons and dark
matter) by assuming a simple mass model of the baryonic content of the Galaxy and a
spherical (adiabatically contracted) NFW halo profile and fixing the local standard of rest to
220 km s−1. The resulting values can be found in Table 4.2. Despite the very similar value
for the escape speed we find a slightly higher mass for the Galaxy, because we consistently
apply the definition of the escape speed mentioned above.
The local standard of rest (VLSR) is still under debate. If we loosen our constraint on VLSR
and and use a prior on the halo concentration parameter, c, coming from large cosmological
simulations we find a most likely value for the virial mass M340 = 1.3+0.4

−0.3 × 1012 M� for the
pure NFW profile and 1.2+0.4

−0.3× 1012 M� for an adiabatically contracted halo profile. We also
provide estimates for other definitions of the virial mass, M200 and M100, that are often used
in the literature and for which the values are higher for an equivalent Galaxy model.
The mass measurements within 25 and 80 kpc recently published by Kafle et al. (2012) and
Gnedin et al. (2010) are in better agreement with our model with an unaltered NFW profile.
However, this model predicts a circular speed at the solar radius of only 187 km s−1, in strong
disagreement with recent estimates favoring values larger than 220 km s−1 (Schönrich 2012;
Bovy et al. 2012a). The adiabatically contracted halo model predicts a more realistic value of
229 km s−1, but agrees worse with the measurements by Kafle et al. (2012) and Gnedin et al.
(2010). The un-contracted halo model is further consistent with the requirement that the
satellite galaxy Leo I is on a bound orbit. A halo model with a more moderate contraction
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due to the condensation of baryons as proposed by Abadi et al. (2010) in its center might
mitigate the tensions introduced by the various constraints.

In this study we could not address all properties that define the Galactic dark matter halo
from a dynamical point of view. We had to assume a spherically symmetric halo, because
the kinematics of our locally confined stellar sample do not contain any information about
the geometrical shape. Theoretical predictions (e.g. Allgood et al. 2006; Vera-Ciro et al.
2011) as well as observations (Law et al. 2009; Vera-Ciro & Helmi 2013) favor a triaxial
configuration. Long thin stellar streams in the halo hold information on the flattening of the
halo and hence an analysis as done by Koposov et al. (2010) for GD-1 is complementary to
our results. Accurate distances and proper motions are key for these studies.
Another open question is the amount of sub-structure in the halo. Simulations predict a large
number of sub-halos in our Galaxy (Gao et al. 2004; Klypin et al. 1999), many of which are
unobservable, because they lost their gas content before they could form stars. Again, thin
stellar streams could shed light into this problem, because these should be visibly perturbed
and heated by the constant passages of these dark matter over-densities Johnston et al.
(2002); Carlberg et al. (2012). Note that our tests with cosmological simulation showed that
neither the non-spherical shape nor the existence of dark sub-halos do invalidate our results
on the Milky Way mass.
The space mission Gaia will provide substantial data for studies like ours as well as for studies
of thin stellar streams. This should allow to pin down the mass of the Galaxy much more
accurately, even though our approach might brush over too many details of the Galaxy to be
the best choice for a data set with the precision and completeness of the Gaia results. The
constraints on the shape of the Galactic potential might be accessible only for the inner halo,
because of the relatively bright limit of the Gaia spectrograph. It is, however, expected that
the shape is changing with radial distance (Kazantzidis et al. 2010; Vera-Ciro et al. 2011).
A global assessment of the shape profile might be only possible with the data coming from
4MOST that can will provide radial velocities and spectro-photometric distances for much
more distant stars in the halo and thereby complete the set of phase space coordinates for
these stars.

6.3 Hypervelocity stars in galactic tidal tails

In Chapter 5 we have used a suite of 41 N -body simulations to study the tidal debris of
satellite galaxies interacting with their much more massive host systems. Abadi et al. (2009)
suggested that a fraction of the stripped-off stars can reach significant velocities and could
be confound with Hypervelocity stars (HVSs) ejected from the Galactic center by a super-
massive black hole. We find that, as suggested by these authors, the stripped-off stars are in
fact observed in a confined region on the sky. However, for stars at distances still observable
from the solar position the reason for this is not only the projection of a collimated stellar
stream along the line of sight, but in addition that so shortly after the stripping event
the stars had not yet enough time to disperse in physical space. We further developed a
simple analytic model to predict the maximum possible ejection velocities via estimating the
maximum possible energy kick a star can obtain during such a tidal encounter (Eq. 5.18).
Following Johnston (1998) we suggest that the general shape of the energy distribution of
particles stripped-off during one orbit is self-similar and can be described quite accurately
by Equation 5.22. There are only two free parameters in the distribution, its width and its
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normalization. The first represent a characteristic energy and is tightly connected to the
maximum energy kick described by our stripping model. The normalization simply reflects
the fraction of mass lost by the satellite. Both can be predicted knowing only the initial
properties of the host and satellite galaxy without the need of computationally expensive
N -body simulations.
We also address the recently reported Hypervelocity star population. Velocities larger than
500 km s−1 are only generated by massive satellite galaxies (> 1011 M�) or by galaxies with
very large in-fall velocities in which case these galaxies stay unbound from the host and leave
the parent galaxy together with the HVSs. Furthermore the larger spread in velocities of
HVSs with common travel times also requires a massive progenitor (> 1010 M�). The absence
of the remnant of such a massive system makes a tidal debris origin for the HVSs unlikely
even from a kinematic point of view.
Convolving our formalism with a satellite mass function allows us to determine the masses of
the progenitors of the main contributors to a potential intergalactic stellar population (ISP).
We find that stars originating from satellite galaxies with masses > 109 M� form about 95
percent of the population. This is consistent with the findings of Teyssier et al. (2009) who
traced back the origin of unbound particles in the cosmological simulations of Bullock &
Johnston (2005). We thus conclude that such an ISP should tend to have the same or even a
higher metallicity than the outer halo population and also as the present population of Milky
Way satellites. An interesting aspect of this topic is added by the fact that most Galactic
satellite galaxies orbit in a “disk of satellites” (Metz et al. 2008; Pawlowski et al. 2012). If the
early Galactic satellites also followed this distribution, the ISP should also exhibit a highly
anisotropic distribution (see also Pawlowski et al. 2013).

6.4 Closing remarks

If we remove our focus on the individual questions addressed in our three studies we can try
to find their place in a more holistic research strategy. But what is the general question we
are asking? The ultimate goal of Astrophysical research (or fundamental research in general)
appears to be open to one’s personal opinion, but the study of the Milky Way as a galaxy is
clearly motivated from a cosmological point of view. We want to learn about the formation
and history of these objects and thereby about the history of the Universe as a whole. The
Milky Way provides the unique opportunity to study the individual constituents of a galaxy
in finest detail.
The current Galactic structure should be accessible via direct inference methods, like we have
applied to obtain the virial mass of the Milky Way (other examples are Kafle et al. (2012),
Bovy et al. (2012c) or Golubov et al. (2013)), or via dedicated simulations, e.g. to model the
Sagittarius stream (Law et al. 2009; Vera-Ciro & Helmi 2013) and our study on a accretion
origin of the hypervelocity star population. To do this we do not need a comprehensive model
of the Galaxy including detailed information about the individual histories of the stars.
We can then search for evolutionary models that lead to a galaxy with structural parameters
similar to those of the Milky Way, be it full cosmological simulations or hybrid models like the
MCM model. The great question here is the uniqueness of such a model. The high degrees
of stochasticity and non-linearity of galaxy evolution implied by the ΛCDM paradigm make
it seem plausible that there will be many scenarios leading to the same galaxy. This is
particularly clear since the discovery of radial migration as an important mechanism in the
secular evolution of galaxy disks (Roškar et al. 2008; Schönrich & Binney 2009; Minchev
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et al. 2012). Here our approach to generate synthetic stellar observations unfolds its power.
For example, the chemical tagging approach (Freeman & Bland-Hawthorn 2002) will identify
signatures of merging history of the Galaxy. With synthetic observations we are able to
predict the number of sub-structures detectable in the GALAH survey (Zucker et al. 2013)
for a given Galaxy model – in analogy to the missing satellite problem – and might be able to
discard many of these models. The complex structure of the Galactic disk revealed by Bovy
et al. (2012c) in the SEGUE survey is also difficult to interpret without model predictions
that consistently cover the effects of radial mixing.
It is hence a combination of various approaches that we will eventually lead us to a coherent
picture of our Galaxy and its evolution. Synthetic stellar observations might play the key
role in connecting Galactic Astronomy with physical cosmology.
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